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Abstract

The existence of thermally activated delayed fluorescence in C is demonstrated by the study of the temperature60
Ž .dependence 291–353 K of the fluorescence intensity of C degassed solutions. The determined singlet–triplet energy gap,60

35"2 kJrmol, agrees with the value calculated from previously reported fluorescence and low temperature phospho-
Ž .rescence spectra for this molecule 35 kJrmol . The estimated quantum yield of triplet formation, 0.8"0.1, agrees with

previous determinations. The fluorescence lifetime of C , also measured, ts1.1 ns, does not change appreciably with60

excitation wavelength, degassing nor with temperature, in the range 243–343 K. q 1997 Elsevier Science B.V.

1. Introduction

Ž .Thermally activated delayed fluorescence TDF
w x1 , occurs whenever, after S §S molecular pho-n 0

toexcitation, there is an intersystem crossing to the
Ž .triplet manifold S ™T , followed by a second1 1

intersystem crossing back to the singlet manifold
Ž . ŽS §T , fluorescence emission ensuing Scheme1 1
.1 .

TDF is significant only if the two following con-
w x Ž .ditions are met 2 : i reasonably high probability of

S ™T intersystem crossing, i.e., high quantum1 1
Ž .yield of triplet formation F , and, ii reasonablyT

high probability of subsequent S §T back inter-1 1

system crossing, i.e., high quantum yield of singlet
formation, F . In fact, the steady-state intensitiesS

Ž .ratio of delayed fluorescence DF to prompt fluores-
Ž . w xcence PF is given by 2

I F 1DF DF
s s . 1Ž .

I F 1rF F y1PF PF S T

From the theory of nonradiative transitions, it is
known that high values of kS are favoured by aISC

Ž . Tsmall D E S –T gap . The same holds for k ,ST 1 1 ISC
w xapproximately given by 1,3

D ESTT Tk sk exp y , 2Ž .ISC ISC ž /RT
Twhere k is the average rate constant for theISC

adiabatic S §T intersystem crossing, and the ex-1 1

ponential factor is the fraction of triplets whose total
Ž .internal energy electronicqvibrational is equal or

larger than the electronic energy of S . TDF is1

therefore only possible for molecules with small
D E and even then at not too low temperatures.ST

w x ŽAlthough known for many years 1 and refer-
.ences therein , the phenomenon of TDF remains

rare, with a few unambiguous observations in some
w x w x w xdyes 1 , aromatic ketones 4 , aromatic thiones 5 ,

w xaromatic hydrocarbons 6–9 , and, more recently, in
w xthe fullerene C 2 . In most of the cases studied,70

w xincluding the classic one, eosin 1 , it is exceedingly
weak, in the sense that F <F . We have re-DF PF

Ž .cently observed strong TDF F 4F in theDF PF
w xfullerene C 2 , for which F rF can in princi-70 DF PF

ple be as high as 167 in the high temperature limit
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Scheme 1.

Ž .the maximum value measured was 50, at 708C . The
same study enabled the revision of the published
values of D E and of F , the last one obtainedST T

from a new kinetic analysis.
The known photophysical properties of C ,60

namely the quantum yield of triplet formation close
w x w xto one 10–13 , the small S –T gap 10,14,15 and1 1

the relatively long intrinsic phosphorescence lifetime
w x12 , although not as favourable as in C , should70

also predispose C for TDF. However, and apart60

from the expected weaker TDF, there are three addi-
tional experimental difficulties with the study of C :60
Ž . Ži The weak fluorescence intensity 2 to 3 times

. Ž .lower than that of C , already weak ; ii The low70
w x Ž .solubility in most solvents 16,17 iii The absence

of detectable phosphorescence in hydrocarbon sol-
vents for temperatures higher than a few kelvin
w x15,18–20 . This last fact precludes the use of the

w xParker plot 1 , the only steady-state method of
analysis left being that based on the dependence of

w xthe total fluorescence intensity with temperature 2 .
In this work, we report the observation of TDF in
Ž .C F fF , and give values of D E , F and60 DF PF ST T

Tk , obtained from the kinetic analysis previouslyISC
w xdeveloped 2 . The value of D E found, 35"2ST

kJrmol, is compatible with that calculated from
w xpreviously reported fluorescence 18,19,21–24 and

w xlow temperature phosphorescence spectra 18 for
this molecule, 35 kJrmol. The value of F found,T

0.8"0.1, is in reasonable agreement with previous
determinations.

2. Experimental

Ž .C )99.9% was purchased from Stefan Kaes-60
Ž .dorf Munich . USP light oil, a mixture of long-chain

Žalkanes of moderate viscosity 31 cP at 208C, 13 cP
.at 408C, 4 cP at 808C , was passed through an

activated silica column to remove fluorescent impuri-

ties. Purity of both materials was controlled by UV–
VIS and luminescence spectroscopies. Taking advan-
tage of the high boiling point of the solvent, solu-

Ž y5 .tions of C ca. 10 M were degassed at room60

temperature with a turbomolecular pump, under vig-
Ž y8 .orous stirring final pressure: ca. 3=10 atm , and

the respective cells sealed afterwards. Luminescence
spectra were obtained in a Spex Fluorolog F112A
fluorimeter. Excitation wavelength was usually 330
nm. A UG-11-S bandpass filter and an LG-625-S
cut-off filter were used in the excitation and emis-
sion, respectively. Temperature was controlled to
within "0.58C. At each temperature, fluorescence

Ž .intensities were measured in the presence I andPF
Ž .in the absence I q I of oxygen. Time-resolvedPF DF

picosecond fluorescence intensity decays were ob-
tained by the single-photon timing method with laser
excitation. The set-up consisted of a mode-locked
Coherent Innova 400-10 argon-ion laser that syn-
chronously pumped a cavity dumped Coherent 701-2

Ž .dye rhodamine 6G laser, delivering 3–4 ps pulses
Ž .with ca. 40 nJrpulse at a frequency of 3.4 MHz.
Intensity decay measurements were made by alter-
nated collection of impulse and decays with the
emission polarizer set at the magic angle position.
Impulse was recorded slightly away from excitation
wavelength with a scattering suspension. For the
decays, a cut-off filter was used, effectively remov-
ing all excitation light. Detection was always done
by passing the emission through a depolarizer and
then through a Jobin–Yvon HR320 monochromator
with a grating of 100 linesrmm. Usually no less
than 5000 counts were accumulated at the maximum
channel. A timescale of 2.76 psrchannel was used.
The detector employed was a Hamamatsu 2809U-01
microchannel plate photomultiplier. The instrument
response function had an effective FWHM of 35 ps.
Decay data analysis was performed with the Globals

ŽUnlimited software package Laboratory for Fluores-
.cence Dynamics, University of Illinois, USA .

3. Results and discussion

3.1. Fluorescence spectrum and fluorescence decay

Fluorescence spectra of degassed solution of C60

in USP light oil, taken at different temperatures, are
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shown in Fig. 13. The observed variation is at-
tributable to the increasing contribution of delayed
fluorescence as the temperature increases, as ob-

w xserved for C 2 . The effect is reversible, i.e., an70

equivalent intensity decrease is observed upon cool-
ing of the heated samples.

The fluorescence decay of C in the same sol-60
Žvent, as a function of temperature 243, 293, 318,

.and 343 K , was measured for both aerated and
degassed solutions. The decay at 293 K of an aerated
solution is shown in Fig. 2.

A single exponential decay is observed, with a
lifetime of 1.1 ns. This value is identical to the
previously reported lifetime for C obtained with60

w x595 nm excitation 25 , and agrees with literature
w xvalues 26,27 . Within experimental error, the life-

times were also constant for both aerated and de-
gassed solutions in the whole temperature range
Ž .243–343 K . The insensitivity towards oxygen can
be explained on the basis of the combined effect of
the high viscosity of the solvent and of the short
lifetime of C . From a simple Stern–Volmer equa-60

tion, assuming a diffusion-controlled quenching and

Fig. 1. Fluorescence spectrum of a degassed solution of C in60
w x y5USP light oil at 18, 40, 50 and 608C. C s1.2=10 M. The60

intensity of non-degassed solutions is independent of temperature,
and is entirely due to prompt fluorescence. The rise with tempera-
ture observed in the degassed solution results from the increasing
contribution of delayed fluorescence to the total intensity. Excita-
tion and emission slits were 18 and 4.5 nm, respectively.

Fig. 2. Fluorescence decay of C in USP light oil at room60
w x y5temperature. C s1.2=10 M. Excitation and emission60

wavelengths were 330 and 695 nm. The time scale was 2.76
Žpsrchannel. The decay is well fitted reduced chi-squareds1.07,

.random residuals and negligible autocorrelation by a single expo-
nential, t s1.1 ns.

Žan oxygen concentration similar to dodecane 2=
y3 .10 M one obtains for the aerated solution at the

Ž .highest temperature 343 K a quenching rate con-
stant k (3=109 My1 sy1, hence 10t rt0q 0

0.993, and the lifetime is therefore practically insen-
sitive to oxygen.

The insensitivity towards temperature, already ob-
w xserved in the temperature range 100–293 K 25 , is

in agreement with an efficient and non-activated
intersystem crossing as the dominant decay path of

w xS 10 .1

3.2. Analysis of delayed thermal fluorescence kinet-
ics

The standard method of analysis of the delayed
w xthermal fluorescence problem, due to Parker 1 , is to

Ž .measure the steady-state delayed fluorescence DF
Ž .and the steady-state phosphorescence P intensities,

as a function of temperature, and then to determine
Ž .D E from a plot of ln I rI vs. 1rT. In theST DF P

present case such an approach is unfortunately not
feasible owing to both the low solubility and the
extreme weakness of the phosphorescence of C in60

Žhydrocarbons recorded up to now only for relatively
w x.concentrated solutions at 1.2 K 18 .

An alternative approach is however possible, and
D E can in principle be obtained from the tempera-ST
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ture dependence of the ratio I rI , because Eq.DF PF
Ž . w x1 can be rewritten as 2 ,

TI 1 k qk D EPF P G ST
ln y y1 s ln q .

Tž / ž /I F RTk FDF T ISC T

3Ž .
Ž T . TProvided k qk , often dominated by k , is es-P G G

sentially temperature independent, a plot of the l.h.s.
vs. 1rT should be linear. However, the correct value

Ž .of F also assumed temperature independent isT

required for a linear least-squares fit. In effect, the
shape of the plot is a very sensitive function of F T

in the high temperature domain, not being, in gen-
eral, a straight line. Continuous variation of this
parameter in the search for maximum linearity yields
its best value and, simultaneously, D E . The methodST

Ž .based on Eq. 3 yields therefore D E and F , and,ST T
Twith lesser accuracy, k .ISC

3.3. Singlet–triplet energy gap

We now describe the application of the method to
C dissolved in liquid USP light oil. Firstly, the60

assumed temperature independence of certain param-
eters was checked by the measurement of the fluo-
rescence quantum yield of non degassed solutions
Žwhere, owing to quenching of the triplet by molecu-

.lar oxygen, delayed fluorescence is negligible : It
was temperature independent, from 291 K up to 353
K, in agreement with a non thermally activated

Ždominant decay channel S ™T intersystem cross-1 1
.ing . The phosphorescence lifetime does not appear

to change much with temperature: Reported values
w x w xare 0.4 ms at 1.2 K 18 , 0.3–0.4 ms at 77 K 28 ,

Žand 0.25 ms and 0.13 ms both extrapolations to zero
.concentration in degassed benzene at room tempera-

w xture 29,30 .
Secondly, the possibility that the delayed fluores-

Ž .cence is due to triplet–triplet T–T annihilation is
ruled out by the low concentration used, relatively
low phosphorescence lifetime of C , and the high60

viscosity of the solvent. No concentration effect was
indeed found experimentally.

Thirdly, to exclude the possibility of thermal or
photochemical reactions of C that might affect the60

fluorescence intensity, the degassed solutions were
submitted to a complete thermal cycle, in order to

check the reversibility of the intensity upon cooling.
Aerated solutions did not change significantly their
intensity upon heating. Further evidence for the ab-
sence of decomposition in other fluorescing products
is provided by the already mentioned invariance of
the fluorescence lifetime with temperature.

Using the kinetic analysis method described
above, for 1.2=10y5 M solutions and for tempera-
tures from 188C to 808C, Fig. 3, one obtains a
singlet–triplet gap of 35"2 kJrmol from the slope
of the best straight line.

From the accepted spectroscopic assignment of
ca. 650 nm as the 0–0 band of the S §S and1 0

ŽS ™S transitions in similar solvents cyclohexane1 0
w x w x.31 , decalin–cyclohexane 3:1 vrv 18 , the deter-

Ž .mined range of values of D E 33–37 kJrmolST

places the 0–0 band of the phosphorescence in the
range 789–810 nm, which is compatible with the
reported value for the phosphorescence 0–0 band of
C in the same decalin–cyclohexane mixture at 1.260

w xK, 798 nm 18 . The values reported in the literature
w x w xfor rare gas matrices, 783 nm 19 and 787 nm 20 ,

are expected to be blue shifted, owing to the weaker
w xsolute–matrix interactions 20 . The estimated gas-

w xphase value is 774 nm 20 . In this way, and in
w xcontrast to what is observed for C 2 , it is possible70

Ž .Fig. 3. Fit of I r I versus 1rT , according to Eq. 3 , forPF DF

temperatures from 18 to 808C. The effect of F on the linearity isT
Ž . Ž . Ž .apparent: F s1.00 I , 0.90 ` , 0.78 best value, v , 0.70T

Ž . Ž .^ , 0.60 e . Excitation and emission slits were 18 and 4.5 nm,
respectively.
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that the wavelength of the phosphorescence origin
does not shift with temperature. The range of values
allowed by the experimental error is however sub-
stantial, and, in the absence of the phosphorescence
spectrum in the same temperature range, more defi-
nite conclusions cannot be drawn.

3.4. Intersystem crossing rate constants

The direct intersystem crossing rate constant is
S Ž . 8 y1k sF rt s 8"1 =10 s . The fit accord-ISC T F

Ž .ing to Eq. 3 yields an intercept from which, using
the measured phosphorescence lifetime at low tem-

T 8w x Ž .perature, 0.4 ms 18 , a value of k s 9"4 =10ISC

sy1 is calculated. A much higher phosphorescence
lifetime, obtained from time-resolved Raman spectra,
has also been reported for oxygen free films of C ,60

w x55"5 ms 32 . Interestingly, this value is close to
w xthe reported phosphorescence lifetime of C 2,28 .70

TCalculation of k with the higher phosphorescenceISC
T 6 y1Ž .lifetime yields k s 7"3 =10 s . From theISC

available experimental data, a wide range of values
Tis therefore possible for k . Note that for C , itISC 70

T 7 y1 Shas been found that k s10 s , and k s2=ISC ISC
9 y1 w x10 s 2 .

3.5. Triplet quantum yield

The plot shown in Fig. 3 yields the best straight
line for F s0.78. From Fig. 3 it can be seen thatT

values of F below 0.7 or above 0.9 produce curvedT

lines. Reported quantum yields of triplet formation
w x w xfor C are 0.88"0.15 13 and 0.93"0.07 12 .60

With our data, the assumption of unit quantum yield
Ž .yields a slightly curved plot Fig. 3 . The recovered
Ž .values from a straight line fit F s1 are D E sT ST

T 8 y130.4 kJrmol and k s10 s . The singlet–tripletISC

energy gap thus obtained seems too small.
Ž .Direct application of Eq. 1 to the raw experi-

mental data already allows the estimation of a lower
w xbound for F 2 . That equation can be rewritten asT

1 1
F s ; 4Ž .T 1q I rI FPF DF S

Because F is smaller or equal to unity, a lowerS

bound for F isT

1
minF s . 5Ž .T 1q I rIPF DF

F min is the closest to F , the closest F is to one,T T S

that is, the highest the temperature. At 808C, I rIDF PF
Ž . min Ž . Žs0.867, and therefore, from Eq. 5 , F s 1 r 1T

.q0.867 s0.54. On the other hand, from the experi-
mentally determined value F s0.8"0.1 and fromT

Ž .Eq. 1 , one obtains for the high temperature limit
Ž . Ž . q5F s1 , that I rI s4 . In this way, theS DF PF max y2

Žglobal fluorescence quantum yield F sF qF PF
.F of C can in principle be, at most, 10 timesDF 60

higher than that of prompt fluorescence.

4. Conclusion

The existence of considerable thermally activated
delayed fluorescence in C , with F fF , was60 DF PF

demonstrated by the study of the temperature depen-
Ž .dence 291–353 K of the fluorescence intensity of

C degassed solutions. The determined singlet–tri-60
Ž .plet energy gap 35"2 kJrmol agrees with the

value calculated from previously reported fluores-
cence and low temperature phosphorescence spectra
for this molecule in a similar solvent, and is higher

Ž .than that reported for C 26"2 kJrmol . The70

estimated quantum yield of triplet formation, 0.8"

0.1, reasonably agrees with previous determinations.
The fluorescence lifetime of C , also measured,60

ts1.1 ns, does not change appreciably with de-
gassing nor with temperature, in the range 243–343
K.
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