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Kinetics with time-dependent rate coefficients are treated by a linear response formalism. Results obtained are applied to
several cases: excimer formation, relaxation after sudden perturbation and energy migration and transfer. Literature results are

critically commented.

1. Introduction

Complex kinetics with time-dependent rate coeffi-
cients become of importance, because progress in ex-
perimental techniques for the study of fast chemical
and photochemical processes demands increasingly
sophisticated kinetic models [1-3]. Time-depen-
dent rate coefficients arise whenever the “well-stirred
reactor’ assumption of classical kinetics fails. In par-
ticular, this occurs for fast contact processes such as
fluorescence collisional quenching if diffusion influ-
enced [4] and for long-range processes such as di-
polar energy transfer, wich can take place even in the
complete absence of molecular translational motion
[4]. The notion that a time-dependent rate coeffi-
cient is a mere (hopefully useful) device that allows
one to extend the use of the language of classical ki-
netics beyond its realm is not always appreciated, and
has been the cause of errors in the treatment of com-
plex kinetics:

Some controversy exists in the literature [5-12]
concerning the use of differential equations to de-
scribe the concentration time evolution of species
participating in reactions with time-dependent rate
coefficients. Hauser et al. [8~10] based on the con-
cept of convolution integral proposed several rules to
calculate the time evolution profiles of the concentra-
tions and concluded for the inapplicability of kinetic
differential equations. This conclusion was criticized
by Sienicki and Durocher [11], who showed that

there exists a direct relation between the convolution
procedure and the differential kinetic equations, by
using an ensemble average procedure. The equiva-
lence between the differential kinetic equations and
the “convolution” kinetics has already been proved,
provided the appropriate rate coefficient is used
[3,12].

In this work, an attempt is made to clarify what is
meant by a time-dependent rate coefficient, and how
it may be used within a linear response approach. The
scope and limitations of the theory are examined, as
well as some published treatments of complex kinet-
ics with time-dependent rate coefficients. The struc-
ture of the article is as follows: in section 2, several
schemes of increasing complexity are treated by a lin-
car response approach. In section 3, selected appli-
cations of the developed formalism are discussed: ex-
cimer formation, relaxation kinetics and energy
migration and transfer. Finally, the main conclusions
are summarized.

2. Formalism

2.1. A single species

We begin by considering the time evolution of the
concentration of a single species i, which may in fact
exist as part of a network of kinetic processes. This
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species i is produced at a rate P;(¢) and disappears at
arate k;(1)C;(¢) (see scheme 1).

The main problem is to find the time evolution of
C, i.e. Ci(t). To do so, we make two assumptions:
(i) when P;(t) =4(t), the system’s response (Green’s
function), f;(t), is known and (ii) for a general pro-
duction rate P,(t), the system behaves linearly and is
stationary, therefore

C,=P.®f, | (1)

where ® stands for the convolution integral *'. The
linear response assumption, that is additivity of re-
sponses to different stimuli, implies the absence of
saturation effects, i.e. that one is sampling from an
essentially infinite population. A material balance
may be written for scheme 1,
dC;
I =P;—k;C;. (2)
Indeed, this is the usual approach for kinetics with
time-independent rate coefficients. Here, however,
one need not of course solve this equation to obtain
C,, as it is already given by eq. (1). Eq. (2) must
instead be considered as the defining equation for
k().

Solving eq. (2) for k; one obtains, with the help of
eq. (1) and using eq. (A.6) (Appendix A),

P,®df;/dt
P;®f;

For &-function production, this equation reduces
to

ki=— (3)

_df/dr_ dnf

ki&= f; dr 3 (4)

or

ﬂ=e‘xp(— jkza(u)du)’ 5)
e

%1 Some properties of the convolution that will be used in this
work are listed in Appendix A.

Scheme 1.

Eq. (4) is the usual way of defining k;s [13] #*. Sub-
stitution of eq. (5) ineq. (3) finally yields [12,14]

_P®Ukuf)

ki= P& (6)

One therefore gets the somewhat unexpected result
that the generalized time-dependent rate coefficient
is a function of the production rate. The importance
of eq. (6) becomes apparent when more than one
species is considered, as will be seen below. At this
point it may be remarked that use of this generalized
rate coefficient allows one to extend the procedures
of formal kinetics to cases where time-dependent rate
coefficients are necessary. Note that k; verifies the
following two properties: (a) for P;(t)=4d(t), k()
reduces to k;5(1); (b) if k;5(¢) is time independent,
k;=k;sfor any P, ().

2.2. A single species with two decay channels

The situation depicted in scheme 2 is a simple ex-
tension of scheme 1, where there is now an additional
decay channel, with a time-independent rate coeffi-
cient I'.. As it can be added to k;(¢) to yield the total
rate coefficient for decay, this case is expected to re-
duce to that of scheme 1, with a time-dependent rate
coefficient ki(¢t)=I;+k;(t). From eq. (6) one
obtains

, P;®(kisf:)
ki(=="5 o (7)
but, as k's(?) =17 +k;s(t), it indeed follows that eq.
(6) continues to hold.
It is of interest to consider the steady state for this

2 Note that k;; can be obtained for any positive function f;. For
example if .= exp( —at—bt'/2), one obtains k;=a+1bt /% and
iff;="3,a,exp( —kt), then k;s= 3, ak,exp(—kt)/3,;a;exp( - kit)-

P (1) @ Ky (t)

I

L

Scheme 2.
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scheme, i.e. the limit -0 for continuous produc-
tion P.. If for long time P; stabilizes at a constant value
P, then, using eq. (A.7),eq. (1) becomes

CfszP?"fﬁ(u)du, (8)
4]
and eq. (6) becomes
J& kis(u)fi(u) du
kS = — 9
T% fi(u) du ®)
But, integrating by parts,
[ kst su=1-1, [ 7wy au, (10)
4] ¢
and hence
k=1 _p (11)

T E f(uydu T

2.3. 4 single species with two production modes

This case is shown in scheme 3. We consider that
the time evolution of C; is not the same for both pro-
duction modes, hence two rate coefficients exist for
J-production, kis(t) and k%(¢), and consequently,

f?(t):exp(«- fk?g(u) du), (12a)
0

f}-’(t):exp(~ Jk};(u) du). (12b)
0

The total concentration of species I can be viewed
as the sum of those coming froma and b sources, viz.

GC()=CH1)+Ch(1), (13)
P, (1) Py (£)
. o

lk. (t)
i

Scheme 3.

where
CH)=P,(1)®f (1), (14a)
CHO =P (1)®f (1) . (14b)

Note thateq. (13) results from a linearity assumption.
Again, rate coefficients k? and k® can be defined,
and directly from eq. (6 },

a_ Pa®(ki12)

ki—‘““—EI;————, (15a)
a b

)o = Do ® LS (15b)

c?

The overall rate coefficient k; of scheme 3 is now de-
Jined by the equation

%%=g+&—hq. (16)

But from egs. (13) and (14), upon substitution in
eq. (16),

G (OB =R +p kG (1)

Using eq. (A.5), one obtains
kiCi=P, ® (ki AP (kEf?) (18)

and, substituting eqs. (15) into eq. (18), one finally
gets

C? (04

C. C, (19)
and thus k; is the weighted average of k? and k?. Eq.
(18) is an important relation, as it is the production
term for hypothetical species J produced from species
i with a rate coefficient k.

2.4. Sequential processes
Consider now the more complicate case of sequen-
tial kinetics as defined by scheme 4 where k; are time

dependent and C;(0) =0 (i>1). The time evolution
of 1 is obviously

e 1 e i n g

Scheme 4.
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C, =PR®f , (20)

where

f,:exp(—— jkw(u)du). (21)
4]

The time evolution of the other species is not so
easy to obtain if one reasons on the basis of formal
kinetics [ 12]. The production rate for 2 is here clearly
k,C,, hence

sz(klcl)®f:2a (22)
where
_ P®(kishi)
ky = Tref (23)
and
j@:exp(—— sz(;(u)du). (24)
0

From egs. (20) and (23), eq. (22) finally becomes
C,=P®(kis/1)®f> . (25)
This relation is easily generalized to any n,

C,=PQ (ki5/1)® (k25 /,)®..Qf, . (26)
One again sees the usefulness of the concept of a gen-
eralized rate coefficient, as given by eq. (6).

2.5. Two coupled species

Consider now scheme 5 where, for simplicity, it is
assumed that only %, is time dependent and that
C,(0)=0. The relations needed for the solution of
this scheme have already been obtained. For species
2, the situation is analogous to scheme 2; hence

| k, ()
JRESSEEN— [ S ——
k.?

Scheme 5.

Cy=(k,C)BS;, (27)
where

fr=exp[— (ky+13)t]. (28)
For species 1, scheme 3 applies, therefore
C=PRf$+ (k, ()RS}, (29)

where we now distinguish between the external pro-
duction (P(t)) and internal production (k,C,(t))
responses. The production term &, C; appearing in eq.
(27) isgiven by {(compareeq. (18))

kiC, =PRKkSsf§ +hk C;Qkisf - (30)
Substitution of this equation in eq. {27) yields
C=P®(k$s[$)®L+C,Q(kisf1)®f.  (31)

The two coupled equations (29) and (31) may be
solved either by Laplace transformation, yielding

Ci=PRf+POP'®(kSs[)®(k )®f, (32)

C,=POP'®(kisf1)®f2, (33)
where P’, which we shall call secondary production
rate, is

P':Sf“[ 1 ], (34)

1 -Zkisf 112k fo]

or, by repeatedly substituting the left side of eq. (31)
in itself, giving directly the expansion of egs. (32)
and (33),

C,=PRf S +P® (k$sf$)® (ko fo) ®F i +P

® (k5s/§) ® (kafo)® (Kisf 1)@ (kaf2) @ 1+

(35)
C,=P® (k$:/1)®L
+PR (ki 5)® (k) B (Kisf1)®f
+PQ (kisf$)® (kafa)® (Kisf )
QR (ko 2)® (Kisf 1) ®f
+o . (36)

In these expansions, each term is associated with a
number 7 of association steps in the association-dis-
sociation cycle, n=1 for the first term, n=2 for the
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second term, and so on. Note that the first associa-
tion step in each term always occurs through the ex-
ternal mode (kS5 /'§), while subsequent steps are de-
scribed by the internal mode (ki;/% ), as one should
expect.

A similar kinetic scheme was already studied by
Hauseret al. [5,8] and Sienicki and Winnik [15] also
using convolution procedures. However, neither of
the authors differentiate between the two production
modes considered here and were thus unable to re-
cover the correct time evolutions.

It is of interest to study the long-time behaviour
when the production P stabilizes for t—oo, ie., the
steady-state of the system. The limits C P
lim,,,C, and CS =lim,_,, C, can be calculated
from egs. (32) and (33) by using eq. (A.7),

cr=p,, [ £1(u) du
[¢]
+PoofP’(u) dujk}’(;(u)f?(u) du
0 [¢]
P fkﬁ%u)dujfil(u)du, (37)

C?:RxJPTWdufﬁﬂuyﬂuﬂmfﬁUUdw
0 o Y

(38)

These expressions can be further simplified to (Ap-
pendix B)

k?’ss kz 1
$S=P -
C; b k?’ss'*‘[’; kz +F2 klfss +F1

X(l... _kifss k> )-l
K +T; by + 15

i

+POOW . (39)
S8 k?,ss l
CZ _‘Poo k?’ss—{r'f’l kz +F2
. -1
kl{ss kz )
X(“ Kis+I ke, +1, ) (40)

From eq. (30) one also obtains

1
“ :(” <1+rz/kz><1+n/k%ss>~1)

e k
1 i i
X + — — .
<k'f'” ks (1+Fz/kz)(1+Fn/ki’ss)~1)
(41)

Ik =k =Ky, eq. (41) gives simply k¥ =%, If
ky=0, k¥ =k$*, as could be expected.

Consider again scheme 3, but with I, =1,=0, ie.,
I and 2 are interconverting but otherwise stable spe-
cies. Suppose further that P, the external production,
vanishes for long times. With these assumptions, 1
and 2 are expected to evolve towards an equilibrium.
Indeed, taking the limit 7—oc0 on both sides of eqs.
(32) and (33) gives #3

?°=P;0£P<u)du_ofkmu>f?<u)du

Xszfz(u)duffil(u)du, (42)
0 0

€ =P | Pty du [ Ky(w) £5u [ fi(u) du,
0 0 0

(43)
where (Appendix C)
P = ! 44
P Uk 1)k (44)
Hence, using the results of Appendix B,
i l/kxlss T
7 -—-Wop(u)du, (45)
o [k, T
Cz _WOP(u)du. (46)

In this way, one has, in the equilibrium, the familiar
form

#* In this case P'(1) g0¢s 10 a constant, nonzero value as ¢ —oo
(Appendix C), hence [g P'(u) du will diverge. The order of P
and P’ is therefore reversed before applying property (A.7) of
convolution.
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kifSSC?O :kzcao, (47)

and k¥ is the equilibrium value of the global rate
coefficient k, (¢), that is k$° = k¥, as can be checked
directly from eq. (30) or (41).

Suppose now that the system, initially in the equi-
librium state obtained before is suddenly perturbed,
and thus forced to evolve to a new equilibrium.

We now describe its evolution for that case, and
start by noting that 1 and 2 exist in initial concentra-
tions C9 and CY. The appropriate evolution equa-
tions are

C,=Ci6Qfs+k, C,®f '}, (48)
C,=C%Q%,+k,C, 8f>, (49)
where (compare eq. (18))

kC,=k,C,®K\sf} +C®kS 515 . (50)

The use of f§ as the response function for the pre-
existent 1 molecules, in concentration C?, will be jus-
tified in section 3. Solution of the system (48)-(50)
is

C, =C6@f §+CRP' @ (k5sf1)® (ko )2)Bf
+C30QP'® (k2 2)®f 1, (51)
C,=C6®P'® (ks f5)®L+CIS®P'®f,  (52)

where P’(1) is given by eq. (34).
The equilibrium concentrations are obtained as
before, the final results being

o 1/ky™ 0 0

OF -“—-‘-—“‘“‘1/k2+1/kifss(cl+cz), (33)
oo I/kz (4] (¢]

€5 = i (CTH ey, (54)

where again k™ =k$°.

3. Selected applications
3. 1. Monomer-excimer kinetics

Intermolecular excimer formation kinetics in so-
lution can be represented by the mechanism of
scheme 6, where the electronically excited monomer
(M*), produced at a rate /(¢), may decay towards

. O
M+ M - D
k2
J () f',‘ FQ
M+ M
Scheme 6.

the ground state at an intrinsic rate I', = 1 /7y, 7, being
the monomer lifetime, or may react with an unex-
cited monomer (M) by a diffusion-influenced pro-
cess to yield the excimer (D*). This may reverse back
to the excited-plus-unexcited pair of monomers with
rate constant k, or decay at an intrinsic rate [,=1/
1,, T, being the excimer lifetime, to yield two ground
state monomers. In general, photon density is such
that [M*] < [M], and the excimer formation pro-
cess is pseudo-unimolecular. The forward rate coef-
ficient k, is in general time dependent owing to the
time evolution of the distribution function of M
around M*. Two distinct production modes exist for
the excited monomer: light absorption and excimer
dissociation. Excitation by photon absorption is a
spatially random sampling process, and therefore
ground state monomers are uniformly distributed
around the excited one in the absence of short range
potentials. On the other hand, excimer dissociation
produces a highly non-uniform distribution, mainly
as a consequence of the existence of a ground state
monomer close to the excited one, former partner in
the excimer. Nevertheless, there exists a background
distribution superposed on this monomer. This dis-
tribution is not the same for all excited monomers
produced by excimer dissociation. Indeed, it will be
close to uniform for the first excimers formed but less
so as time progresses. On the other hand, the average
waiting time between excimer formation and disso-
ciation (excimer effective lifetime (lo+ 1)1 al-
lows some evolution of the background distribution
towards the uniform one. An exact treatment of this
aspect appears to be very difficult. Application of the
linear response approach requires the system re-
sponse to be the same for a given production act: in
this case, one should have the same distribution every
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time the excimer dissociates. The application of the
linear response formalism to monomer—excimer ki-
netics will thus rest on an approximation: the back-
ground distribution is assumed to be always uniform.
One should note that this approximation is reasona-
ble: for concentrated solutions, monomer depletion
is not very important, and the uniformity assump-
tion holds; for dilute solutions, the background is
negligible compared with the nearest-neighbour con-
tribution [3,16]. There is now (limited) experimen-
tal evidence that this approximation does not sub-
stantially prevent the applicability of the linear
response approach to monomer—excimer kinetics
[17]. In this way, monomer-excimer kinetics is well
described by the results obtained for scheme 5 in the
previous section, where we identify the external pro-
duction mode with light absorption and the internal
production mode with excimer dissociation, species
1 with excited monomer and species 2 with the exci-
mer. Time-resolved observables, including the deri-
vation of expressions for /' (¢) and [ (t), have been
fully treated elsewhere [3,16]. Egs. (39)-(41) of this
work complement these, as they pertain to the steady-
state experiment.

3.2. Relaxation kinetics

We now turn to ground-state reactions, specifically
the disturbance of a state of dynamic equilibrium by
a sudden perturbation (T-jump, P-jump, etc ). The
system will thus evolve (relax) towards a new state
of equilibrium. For the simple equilibrium A =C this
is the case that was treated in section 2.5, where A—C
is pseudo-unimolecular and diffusion influenced and
C—A is truly unimolecular, that is, the complete
equilibrium is A + B=C, where [B] > [A] and thus
incorporated in the forward rate coefficient. The sur-
vival probability £ (¢) will in this case correspond to
the unperturbed initial equilibrium distribution of B-
type molecules around A-type molecules, not neces-
sarily a uniform one. On the other hand, fi(t) cor-
responds to the geminate pair A, B at the encounter
distance plus a background that again is the unper-
turbed equilibrium distribution only at time zero. The
formal time evolution equations for this problem are
e€gs. (51) and (52), and for the new equilibrium state
eqs. (53) and (54). One thus obtains for the equilib-
rium constant

= ! (55)

e JEKU(OS1(1) de 1
k"ss = ’ == ; . 56

N Y O R O Y (3¢)
For a given initial background distribution one has

[3,16]

i _ kld(z) e
fi0= 2265750, (57)

where k,5(¢) is the Collins—-Kimball rate coefficient
and k,5(0) =k, [B], k, being the intrinsic (chemical )
bimolecular rate constant and [B] the concentration
of B, hence

o kB]
= O (O i (38)

If the initial background concentration is uniform,
then

ri0=exsf - [ kistu de) (59)
0

and the forward rate constant at the new state of
equilibrium becomes

ki*®=k,[B], (60)

whereas the equilibrium constant is

K= k [B] , (61)
k,

as found by Keizer [18]. Nevertheless, it should be
stressed that the present treatment contains an im-
portant simplification, i.e., the assumption that, after
each dissociation step C—A+B, the background
concentration is that of the initial equilibrium state.
This approximation should be a reasonable one for
small perturbation that will not strongly affect con-
centration radial profiles.

3.3. Energy migration and transfer
The kinetics of electronic energy transfer in con-

densed matter has been recently treated by the linear
response approach [12] or an equivalent theory [19-
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221]. The simplest case is that of sequential, irrever-
sible transfer, to which the results given in section 2.4
directly apply. If the entities participating in scheme
5 are regarded as sucessive generations of the same
species, the process described is pure energy migra-
tion, and summing the concentration of all genera-
tions one finds that the global decay is not affected
by the existence of migration amongst the molecules
[19], as originally obtained by Forster from the mas-
ter equation [23]. A more demanding case is that
represented by scheme 7, where energy migration and
energy transfer coexist. Excited donors D, produced
at a rate P(¢) may transfer energy to acceptors with a
time dependent rate coefficient kp, or may transfer
energy amongst themselves with a time-dependent
rate coefficient kpp. A third decay channel is the in-
trinsic unimolecular decay, with a time-independent
rate constant I'5. Using the results obtained in sec-
tion 2, the concentration of the successive genera-
tions of D molecules is given by

D, =PRf, (62)
Dy =PQ® (kpp /) ®f, (63)
D3=P®(kDDf)®(kDDf)®fr (64)

etc., where the survival probability is

A1) =exp(—Tt) exp(—- fkmw)du)
(4]

Xexp(-— JkDD(u) du). (63)
O

Summing all generations, one obtains for the global
concentration of D molecules

D=PQP'Qf, (66)
‘ o ‘ 5 X %
3
_wav* D, Kop D, Koo D, DD
RDA kDA iKDA
Scheme 7.

where

P':y~‘[ 1 } (67)

1 —Llkop/S]

Eq. (66) was obtained by Sienicki and Winnik [19],
and describes the fluorescence decay of the donor
species in the presence of migration and transfer to
an acceptor species. Its formal simplicity and com-
pactness are remarkable, as compared with the re-
sults of other models [24,25]. In a subsequent paper,
Sienicki and Mattice [20] attempted a refined ver-
sion of the original treatment that “accounts for the
correlations between molecules”. We believe their re-
sult to be incorrect, owing to a misinterpretation of
the linear response treatment. Indeed, the survival
probability f(¢) that should be used always refers to
the system without feedback (see section 2), while the
improved survival probabilities considered in ref.
[20] result from it. Indeed, it is eq. (66) that has to
be compared with the probability of residence of ex-
citation in the donor’s ensemble computed from LAF
theory [24]. Therefore it is incorrect to state that the
return of excitation should be incorporated in f(¢),
as stated in refs. [19,201]. It should also be noted that
no approximations are involved in scheme 7 beyond
the assumption that the rate coefficients kpp (¢) and
kpa (1) are the same for all generations. Indeed, only
if every jump resets the system {on the average), do
the rate coefficients remain unchanged. This is not
totally correct, but should hold at least for kpp com-
parable to, or larger than, kp4.

The process of energy migration can be monitored
through the fluorescence anisotropy decay. The an-
isotropy of indirectly excited donor molecules is usu-
ally negligible [26], and owing to the additive nature
of this observable, the overall anisotropy is simply the
initial one times the probability that the excitation is
on first-generation molecules. It is not easy to com-
pute this probability within linear response theory.
In fact, the successive generations considered in
schemes 4 and 7 may contain the same molecules, as
excitation returns many times to a given site. There-
fore, a generation is a mixture of sites previously vis-
ited a variable number of times, and the original sites
cannot be separately counted.

Sienicki, Itagaki and Mattice have recently pro-
posed a model for depolarization of the fluorescence
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based on a generalization of the arguments used for
the derivation of eq. (66) [21]. A serious objection
to their treatment is on the validity of the linear re-
sponse assumption. That assumption breaks down in
this case when applied to macroscopic populations,
as we shall prove. The above mentioned authors con-
sider, for instance, that for a pair ensemble, the se-
quence of scheme 8, where D, are the directly excited
molecules and D, the indirectly excited ones, leads to
the following time evolution for D{?),

D§2) =P®(kDDf)®(kDDf)®fz (68)

where f(¢) is the survival probability (eq. (65 ) with
kpa=0and I'=0). This result is no longer valid since
a distribution of distances g(r) is considered. In-
deed, the correct result is

PP W)= [ 2P (1) ar, (69)
¢
where
D (r, 1) =P® [kpp (1)f(r, 1)]
® koo (Nf(r, 018, 1), (70)

which is different from eq. (68), where kpp(t) and
S (t) are pre-averaged quantities,

koo (1) = [ &((r, Do () (71)
0

f=[srfnnar, (72)

that is, the distance average integral and the convo-
lution integrals cannot, in general, be interchanged.
For the general case, the decay should be written

p@@= [ [ [t rsr)
000

XDgz)(r19r2>r3)[)drl drzdr3, (73)
where
P T (2 2
- D" Dy D, D,
Scheme 8.

D (r,ry,r3,1)=P® lhkpp (r)f(r, t)]
® [kpp(r2)f(r, 1) 1Qf(rs, 1) . (74)

If the hops are uncorrelated, as in scheme 4,

g(’"l,"2»’3)243’(’"1)8(?’2)&’(’3), (75)

g(r) being the common density function for a uni-
form distance distribution, and eq. (68) is obtained
from eq. (73). If on the other hand, hops are corre-
lated, the distances are no longer independent. In the
case of molecular pairs, the distance is the same for
all jumps, therefore

g("za"2,r3)=g(’"1)5(r2‘-rx)5("3'""1)> (76)

and eqgs. (69) and (70) are obtained, instead of eq.
(68). One may note that Huber’s pair model in-
voked in ref. [21] precisely results from approxi-
mate averaging over the distance in a manner similar
to that of eq. (69) [27]. The objection raised also
applies to the results of ref. [22].

4. Summary and conclusions

A linear response approach is applied to kinetics
with time-dependent rate coefficients, and its scope
and limitations are discussed. Several important ap-
plications are examined, including excimer forma-
tion, relaxation kinetics, and energy migration and
transfer. The formalism developed, although with
some limitations for cases with feedback, allows to
extend the simple macroscopic formalism of classical
kinetics to complex, important situations.
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Appendix A. Some properties of the convolution
integral

In this Appendix, several useful properties of the
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convolution integral are given. Properties 1-4 are
found in most mathematical handbooks and are in-
cluded here for completeness only.

The convolution between two functions f{¢} and
g(1), [@gis defined by

fog= [ flr-wge) du. (A1)
0

The following properties are obeyed by the
convolution:
1. Commutativity:

f®g=g®f. (A.2)
2. Associativity:

(®g)®h=1Q(g®h) . (A.3)
3. Neutral element:

f®é=1". (Ad4)

4. Laplace transform:
L/®gl=21/1¢15] . (A.5)

5. Derivative:
d _e 98 +
LB =f® L (0%, (A6)

6. Long-time limit:

lim fRg®..Qz=f(c0) fg(u) du... f z(u) du.
¥ 4]

—oo

(A.7)

Appendix B. Steady-state values for scheme 5

Egs. (33) and (34) may be simplified by using
expressions analogous toegs. (10) and (11);

O

[ Ksseorsa au=1-1 [rieo e, ®1)
0

0

T 1
ifz(u)du‘:m, (B.2)

T 1
ifz(u)du: Py (B.3)

T I

] R P 4
ifmu)du sl (B4)
and by noting that

| P du=21P )1,
[s]

= (1—— j.kﬁa(u)f%(u) du J szz(u)du) ,
O O

(B.5)
or, using egs. (B.1)-(B.3),

s kiss k -1
, 1 1 2
iP(u)du_(l el k2+f’2) (B.6)

Substitution of these relations in egs. (37) and (38)
yields (39) and (40).

Appendix C. Evaluation of lim,_, ., P'(¥)

The secondary production rate P'(¢) is given by eq.

(34),
1 ] (C.1)
1 —-ZLksf 1121k A1 '

In order to evaluate lim,_ ., P’(¢) one uses the final
value theorem of Laplace transform theory,

lim P'(1)= lim s¢[P ()], (C.2)

£ 5

P'(t):ff“[

orfromeq. (C.1)

R}
fim P = I e 1 2Thah]
(C.3)

but
lim 2 kaf 1= lim [ e=kis(0)4 () dut
50 5—0

0

(C.4)
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O

lim £[kofo] = lim | ek, £ () dut . (C.5)
50

S—0

Using the linear approximation, valid for small s,
e Ml —su, (C.6)

one obtains, retaining only the terms linear in s,

P_=1lims
50
X{I *(f Kis(u)f i (u) du)(f ks fo(u) du)
5 0

fo o)

+s[(j kis(u)fi(u) du)(J uszz(u)du)
+(j ukis(u)fi(u) du)(J ko fo(u) du)]}" )

0

<

(C.7)

If I'y, I7>0, P, =0; if I',=I,=0 one has (see Ap-
pendix B)

[retoriw au= [lpwa=1,  (cs)
4] 0
hence

o oo -1
P;:(f uk, f>(u) du+ Juk‘w(u)fi,(u)du) .

o] 4]

(C.9)
Integrating by parts one finally obtains
1

P=— (C.10)

°= 1k +1/k=
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