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Abstract The standard approach in chemical and photochemical kinetics is to pro-
ceed from the kinetic scheme to the corresponding system of first-order differential
equations, and then to integrate it, analytically or numerically. An equivalent integral
formulation circumventing such system was recently developed on the basis of phys-
ical arguments. The mathematical basis of this ansatz is discussed here. A compact
representation of the general solution of the linear first-order differential equation is
also obtained.

Keywords Ordinary differential equations · Chemical kinetics · First-order linear
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1 Introduction

The standard approach in formal chemical and photochemical kinetics is to proceed
from the kinetic scheme to the corresponding system of first-order differential equa-
tions, and then to integrate this system, analytically or numerically, in order to obtain
the concentrations of selected species as a function of time, which is the main goal
[1,2].

When the species of interest decay solely via unimolecular or pseudo-unimolecular
steps, it is nevertheless possible to sidestep the system of differential equations. In
fact, the evolution equations can be directly written in integral form by application
of the convolution method (CM) [3–6]. The equations are in general coupled, but the
explicit solutions can be obtained in most cases by repeated substitution or by appli-

M. N. Berberan-Santos (B)
Centro de Química-Física Molecular and IN, Institute of Nanoscience and Nanotechnology,
Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal
e-mail: berberan@ist.utl.pt

123



J Math Chem

cation of Laplace transforms. Specific applications are given in [7–10]. The CM is
nevertheless not applicable if at least one of the species of interest decays by one or
more bimolecular processes [6].

The CM was recently extended by developing a completely general integral formu-
lation of chemical and photochemical kinetics [11]. The results obtained were derived
on the basis of physical reasoning. In this work, a connection is made with standard
mathematical methods for solving ODEs, and the mathematical basis of the ansatz
established. A compact representation of the general solution of the first-order linear
differential equation is also obtained as a side result.

2 Physical approach

The central quantity in the CM is the survival probability of a given species
Xi (i = 1, 2, . . .) after delta (instantaneous) production [3–6]:

Xiδ(t) = exp (−ki t) (1)

where for simplicity Xi stands also for the concentration of species Xi . The survival
probability function is assumed to be the same, whatever the time at which production
takes place. This means in particular that the decay of species Xi is not dependent
on the concentration of other species, hence it must be unimolecular (or pseudo-
unimolecular at most). The response to other types of stimuli, be they reactants or
other production modes (e.g. light absorption that generates an excited state) is writ-
ten as

Xi (t) = Pi ⊗ Xiδ(t) = Pi ⊗ exp (−ki t) (2)

where⊗ stands for the convolution between two functions, f ⊗g= ∫ t
0 f (u)g(t − u) du.

This results from an assumption of linearity [3–6].
Equation (1) is now generalized in order to include cases where Xi decays by bimo-

lecular processes. If Xi is generated at time t0, then the respective survival probability
is [11]

Xiδ(t |t0) = exp

(

−
∫ t

t0
ki (u) du

)

(3)

where ki (t) is an appropriate time-dependent rate coefficient. The time dependence
may arise from a concentration dependence, if the respective disappearance step is
bimolecular, with ki (t) = ki j X j (t), but also from the temperature dependence of a
unimolecular rate constant, if the reaction is not isothermal. In both cases the delta
response is neither independent of the production time nor of the subsequent system’s
evolution (unlike the cases previously considered in the so-called transient kinetics
[3,4] where the same time-dependent rate coefficient is valid for impulses occurring
at different times). The time evolution of a species is linked to the rest of the system
not only by the production, but also by the disappearance rate. Instead of Eq. (2), the
response to a general (non-delta) production is now given by [11]
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Xi (t) =
∫ t

0
Pi (v)Xiδ(t |v)dv (4)

This is the main result of the integral formulation of chemical kinetics [11], and
represents a complete generalization of the CM. An assumption of linearity is still
implicit, which is consistent with the usual differential equation formalism. Indeed,
differentiation of Eq. (4) with respect to time gives

d Xi

dt
= Pi (t) − ki (t)Xi (t) (5)

This result demonstrates the equivalence of the two approaches. The differential and
integral kinetic formalisms are thus strictly equivalent.

In the CM, the long-time limit of Xi , Xi∞, is given by [4]

Xi∞ = lim
t→∞ Pi ⊗ Xiδ(t) = Pi (∞)

∫ ∞

0
Xiδ(u)du (6)

And assumes a simple form if Xi δ(t) is given by Eq. (2).
The more general result in integral kinetics is [11]

Xi∞ = Pi (∞)

∫ ∞

t0
X∞

iδ (u|t0)du (7)

where X∞
iδ (u|t0) stands for the limiting form of Xiδ(u|t0) when t0 is very large. Eq. (7)

is valid only when Pi (t) attains a constant value for t → ∞.

3 Mathematical basis

Insertion of Eq. (3) in Eq. (4) gives

Xi (t) =
∫ t

0
Pi (v) exp

(

−
∫ t

v

ki (u)du

)

dv (8)

This is therefore the full-fledged solution of Eq. (5). On the other hand, the general
solution of the first-order linear differential equation

y′ + P(x)y = Q(x) (9)

is [12]

f (x) = b exp [−A(x)] + exp [−A(x)]
∫ x

a
Q(t) exp [A(t)]dt (10)
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with b = f (a) and

A(x) =
∫ x

a
P(u)du (11)

Setting a = 0, and changing P(t) into ki (t) and b into Xi0, Eq. (10) becomes

Xi (t) = Xi0 exp

[

−
∫ t

0
ki (u)du

]

+ exp

[

−
∫ t

0
ki (u)du

] ∫ t

0
Q(v) exp

[

−
∫ v

0
ki (u)du

]

dv (12)

Eq. (12) can then be rearranged to give

Xi (t) = Xi0 exp

[

−
∫ t

0
ki (u)du

]

+
∫ t

0
Q(v) exp

[

−
∫ t

v

ki (u)du

]

dv (13)

Eqs. (8) and (13) are thus equivalent only if

Pi (t) = Xi0δ(t) + Q(t) (t ≥ 0) (14)

Indeed, when discussing chemical reactions it is assumed that species Xi is initially
present with concentration Xi0, and that the reaction begins at time t = 0 only (“mix-
ing of the reactants”). Eq. (5) is in fact valid only for t ≥ 0, and Eqs. (8) and (14)
reflect this asymmetry. On the other hand, Eq. (10) is assumed to hold for all values
of x. If P(t) > 0, then in order for Xi (0) = Xi0, Q(t) must be nonzero for at least
some negative values of t, and can even be a continuous positive function for t < 0.

There is no need for a delta-type function term, as the action of Q(t) during negative
times allows Xi to smoothly approach Xi0 at t = 0, see Eq. (16) below.

The above discussion leads to a compact representation of the general solution of
the linear first-order differential equation, valid for any P(x) and Q(x),

f (x) =
∫ x

a
[ f (a)δ(v − a) + Q(v)] exp

(

−
∫ x

v

P(u)du

)

dv (15)

compare Eq. (10). Although simple, this appears to be a new result.
For t = 0 Eq. (15) gives

Xi0 = f (a) exp

(

−
∫ 0

a
P(u)du

)

+
∫ 0

a
Q(v) exp

(

−
∫ 0

v

P(u)du

)

dv, (16)

and Xi0 results from the two contributions mentioned above. Eq. (16) encompasses
the special case Q(t) = X i0δ(t) (t ≤ 0) but shows that allowance for negative times
leads to an infinite number of ways of getting X i0 at t = 0. The Q(t) in Eq. (14) is thus
Q+(t), i.e. for t > 0 only, a distinction that is necessary only when a discontinuity is
present at t = 0.
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4 Conclusions

An integral formulation of chemical kinetics was recently developed on the basis
of physical arguments. The mathematical basis of this ansatz was obtained here, by
comparison with the general solution of the linear first-order differential equation.
A compact representation of the general solution of the linear first-order differential
equation emerged from the discussion.
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References

1. K.J. Laidler, Chemical Kinetics (Harper & Row, Cambridge, 1987)
2. P. Érdi, J. Tóth, Mathematical Models of Chemical Reactions (Princeton University Press, Prince-

ton, 1989)
3. M.N. Berberan-Santos, J. Lumin. 50, 83 (1991)
4. M.N. Berberan-Santos, J.M.G. Martinho, Chem. Phys. 164, 259 (1992)
5. M.N. Berberan-Santos, L. Pogliani, J.M.G. Martinho, React. Kinet. Catal. Lett. 54, 287 (1995)
6. L. Pogliani, M.N. Berberan-Santos, J.M.G. Martinho, J. Math. Chem. 20, 193 (1996)
7. M.N. Berberan-Santos, J.M.G. Martinho, J. Phys. Chem. 94, 5847 (1990)
8. M.N. Berberan-Santos, J.M.G. Martinho, J. Chem. Phys. 95, 1817 (1991)
9. M.N. Berberan-Santos, J.P. Farinha, J.M.G. Martinho, Chem. Phys. 260, 401 (2000)

10. C. Baleizão, M.N. Berberan-Santos, J. Chem. Phys. 126, 204510 (2007)
11. M. N. Berberan-Santos, MATCH, submitted
12. T. A. Apostol, Calculus, 2nd edn., vol. 1 (Blaisdell, Waltham, 1967)

123


	Mathematical basis of the integral formalism of chemical kinetics. Compact representationof the general solution of the first-order linear differential equation
	Abstract
	1 Introduction
	2 Physical approach
	3 Mathematical basis
	4 Conclusions
	Acknowledgments


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


