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Abstract The assumptions leading to the barometric formula are discussed, with
remarks on the influence of temperature, gravitational field, Earth rotation, and non-
equilibrium conditions. A generalization of the barometric formula for negative
heights, e.g., for pressure inside shafts and deep tunnels, is also presented, and some
surprising conclusions obtained. Related historical aspects are also discussed.
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Historical and technological aspects

1 Introduction

In a previous article the barometric formula [1] that gives the pressure dependence
with height of an isothermal and ideal gas was discussed. Generalizations of the baro-
metric formula for a non-uniform gravitational field and for a vertical temperature
gradient were also presented together with a brief historical review. The effect of a
gravitational field on fluids and quantum particles as well as a discussion of the van
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der Waals equation of state was carried out in a series of articles. [2–4] Worth citing
about a similar type of problem is a quite recent paper by Dubinova [5] that presents
an exact barometric equation for a warm isothermal Fermi gas.

In the present paper we will deepen the discussion on the barometric formula with
additional remarks on the influence of temperature, gravitational field, Earth rota-
tion, and non-equilibrium conditions. A generalization of the barometric formula for
negative heights, i.e., for pressure inside shafts and deep tunnels, is also presented.

In its simplest form, the barometric formula relates the pressure p(z) of an isother-
mal, ideal gas of molecular mass m at some height z to its pressure p(0) at height
z = 0, where g0 is the standard acceleration of gravity, k the Boltzmann constant, m
the molecular mass, and T the temperature [1,6],

p(z) = p0 exp
(
−mg0z

kT

)
= p0 exp

(
− z

H

)
. (1)

With a scale height H = kT/mg0 = 8.4 km if T = 288 K and m = 29 g mol−1.
The numerator of the quotient in the exponential of Eq. 1 is the potential energy of a
molecule, while the denominator, except for a constant numerical factor, is the mean
kinetic energy of a molecule. This means that the decreasing pressure with height is
the result of a balance between gravity pulling downward and random thermal motion
in all directions, upward inclusive.

In spite of its approximate nature, namely owing to the assumption of a static iso-
thermal atmosphere in thermodynamic equilibrium, and also that g is independent
of height, i.e., g(z) = g0 = 9.8 m/s2, Eq. 1 applies reasonably well to the lower
troposphere, i.e., for altitudes up to 6 km, the error being less than 5%, and also to
the stratosphere up to 20 km, where T = 217 K, that is, T = −57 ◦C [7,8]. Certain
assumptions that are necessary for the derivation of the simple barometric formula do
not apply to the real atmosphere. Equation 1 hides another simplifying assumption,
i.e., that the Earth is flat and that it has no finite vertical extent. To get round this
problem is to write the hydrostatic equation in spherical polar coordinates and assume
that atmospheric variables depend only on the radial coordinate.

2 Discussion of the assumptions

2.1 The atmosphere is not isothermal

Temperatures in the real atmosphere range widely, between about 15 ◦C on the surface
(average value) to −100 ◦C in the upper mesosphere, not to mention the thermosphere,
a highly rarefied layer whose temperatures can exceed 2,000 ◦C. Consider the case of
uniform gravitational field but with a vertical temperature gradient. Assuming the fol-
lowing linear variation of temperature with height, which is a good approximation for
the troposphere (z < 10 km) [7,8],

T (z) = T0 − βz. (2)
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Here β is a positive constant in K/m (frequently called temperature lapse rate, often
given in K/ km), we have a result already obtained in [1].

p(z) = p0

(
1 − βz

T0

)mg0/kβ

. (3)

This equation represents well the pressure dependence on altitude for the whole tro-
posphere (up to 11 km), with p0 = 105 Pa, T0 = 288 K (15 ◦C) and β = 6.5 K km−1.
If Eq. 1 is used instead, the best empirical fit is obtained with H = 7.8 km.

The fall of temperature with altitude in the troposphere is due to the fact that air
is warmed mainly from the surface of the planet. This fall is, however, smaller than
could be expected, because of convection that occurs up to the tropopause [9].

On the other hand, there is a temperature rise in the stratosphere (β = −1.0 K km−1

from z = 20 to 32 km [8]). This increase is associated with ozone, which concentrates
in a layer ca. 20 km thick, and centered at an altitude of ca. 30 km. This layer strongly
absorbs ultraviolet light from the Sun, and subsequently releases the corresponding
energy as heat [9]. A flat temperature minimum at −57 ◦C is observed between 11 and
20 km [7,8], corresponding to a compromise between the cooling and heating profiles.

2.2 The acceleration of gravity is not a constant

This constant, in fact, varies with latitude, longitude, and elevation. These variations,
however, are quite small and lead to only a small error. In general case for an isothermal
atmosphere,

p(z)

p0
= exp

⎛
⎝−

z∫

0

mg(u)

kT
du

⎞
⎠ . (4)

Acceleration g depends on altitude z. According to the law of gravitation, and noting
that the mass of the atmosphere is very small compared to Earth’s mass,

mg(z) = G
m M

(R + z)2 , (5)

where M is the mass of the Earth and R is its radius, while at the Earth’s surface

g0 = g(R) = G
M

R2 (6)

hence

g(z) = g0
1

(1 + z/R)2 . (7)
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Inserting Eq. 7 into Eq. 4 we have

p(z)

p0
= exp

⎛
⎝−mg0

kT0

z∫

0

du

(1 + u/R)2

⎞
⎠ . (8)

Integration of this equation gives

p(z)

p0
= exp

[
−mg0 R

kT0

(
1 − 1

1 + z/R

)]

= exp

(
−mg0z

kT0

1

1 + z/R

)
= exp

(
− 1

1 + z/R

z

H

)
. (9)

Calculations show that a noticeable difference between data obtained from Eqs. 1
and 9 shows up for z > 0.01R ≈ 64 km(≈ 8%, T0 = 288 K), i.e. well above the
stratosphere.

Notice that it follows from Eq. 9 that pressure and molecular concentration do not
go to zero as the altitude goes to infinity, which is not physically possible. This aspect,
already discussed in [1] for the general 3D case, shows that a static and isothermal
atmosphere is intrinsically unstable.

2.3 The Earth spins

Suppose that the Earth atmosphere is rotating with the same angular velocity ω as the
Earth (for the lower atmospheric layers this is appropriate). Due to rotation, the weight
of gas is different at the pole and at the equator. At the pole, acceleration of gravity
is described by Eq. 6. At the equator, the weight is decreased by the centrifugal force
mω2(R + z), i.e., the effective acceleration is smaller than acceleration of gravity and
obeys the equation

g(z) = g0
1

(1 + z/R)2 − ω2 R (1 + z/R) = g0
1

(1 + z/R)2

[
1 − ω2 R

g0
(1 + z/R)3

]
.

(10)

Assuming that ω = 7.27 × 10−5 rad/s, g0 = 9.8 m/s2, R = 6.4 × 106 m, we have
ω2 R/g0 ≈ 3.45 × 10−3. It is clear from Eq. 10 that the centrifugal force becomes
important (change in gravity acceleration ≥ 1%) for

ω2 R

g0
(1 + z/R)3 ≥ 0.01 ⇒ z/R ≥ 0.43, (11)

which leads to a large value (z > 2,700 km). If it is assumed that the atmosphere rotates
with the Earth’s as a whole, i.e., irrespective of height, the upper limit of the atmosphere
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at the equator can be obtained from Eq. 10 by setting the acceleration to zero,

1 − ω2 R

g0
(1 + z/R)3 = 0 ⇒ z/R = 5.6, (12)

which leads again to a very large value (z = 36,000 km). This is of course meaning-
less, considering that the density of outer space is attained for altitudes lower than
1,000 km. Escape of molecules, atoms and ions from the upper atmosphere occurs in
fact by thermal and photochemical mechanisms still in the presence of a significant
inward force.

Using Eqs. 10 and 4, we obtain for the barometric equation in the case of an iso-
thermal atmosphere,

p(z)

p0
= exp

⎛
⎝−mg0

kT0

z∫

0

1

(1 + u/R)2

(
1 − ω2 R

g0
(1 + u/R)3

)
du

⎞
⎠ . (13)

Integration of this equation gives, instead of Eq. 9,

p(z)

p0
= exp

(
−mg0z

kT0

[
1

1 + z/R
− ω2 R

g0

(
1 + z

2R

)])

= exp

(
−

[
1

1 + z/R
− ω2 R

g0

(
1 + z

2R

)]
z

H

)
. (14)

Calculation shows that a noticeable difference (≈2%) between data obtained from
Eqs. 14 and 9 occurs for z > 0.01R ≈ 64 km, i.e. well above the stratosphere.

The major problem in applying the barometric formula to the real atmosphere,
however, derives from the fact that the atmosphere is not in equilibrium, as mentioned
above at several places.

2.4 The atmosphere is not in equilibrium

The fact that the barometric formula is valid only under conditions of equilibrium
(hydrostatic or static atmosphere) raises far more significant issues. This is because
the atmosphere as a whole is never in a state of general equilibrium, as it continuously
exchanges mass and energy with its surroundings. Only locally can a quasi-equilib-
rium be defined, the so-called local thermodynamic equilibrium. In fact, a state of
equilibrium means that (i) the entropy of the parcel of air is maximized, (ii) no mea-
surable differences in temperature exist, (iii) no measurable changes in pressure take
place, and (iv) no measurable changes in density take place. Furthermore, there should
be no net evaporation or condensation. In other words, there should be neither weather
nor even winds.

Daniel Bernoulli (1700–1782) was the first to quantify the observation that for a
fluid in motion there is an associated pressure drop. When the flow is laminar, this
drop is proportional to the square of the velocity. This means that a flow of air at any
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elevation in the atmosphere creates a drop in pressure on both the underlying and the
overlying air. It is this pressure drop that leads to the phenomenon generally known
as “entrainment.” This phenomenon occurs when moving air undergoes a net gain in
molecular number density due to the fact that more molecules are entering the mov-
ing stream of air than are leaving it. Moreover, the pressure drop due to air flow is
cumulative, that is, a westward flow at one elevation does not cancel out an eastward
flow at a different elevation. Instead, the two (or more) pressure drops are additive. If
these winds persist for any appreciable length of time, differential rates of molecular
diffusion will transmit the pressure change to other elevations, and, eventually, to the
surface.

The effects of vertical movements of air on pressure are even more dramatic (in this
case the Bernoulli equation should be modified). Subsidence can create substantial
increases in pressure, and updrafts can create substantial decreases in pressure. These
are not predicted by the barometric formula. Since, at some elevation or other, winds
are almost always blowing, and updrafts and downdrafts are normal phenomena of
atmospheric processes, this means that any attempt to use the barometric formula to
predict the pressure at elevation z from the pressure at some other elevation is bound to
some degree of error. The full Bernoulli equation, which can take care of the elevation,
is strictly valid only to the extent that the fluid is ideal. If viscous forces are present
thermal energy will be involved.

2.5 Agreement with observations and altimeters

Finally, we should note that when observations are taken via weather balloons, the val-
ues for the observed pressures do not correspond to the projected values very closely.
There is general agreement, in that pressures do indeed decrease with elevation, but
there is little in the way of specific agreement. The actual readings (real pressures)
have to be “corrected” for variations in density, temperature, humidity, etc. (corrected
pressures) before coming very close to the projected values. This is to be expected, of
course. Whenever we take a formula that is valid only for an ideal gas under conditions
of equilibrium and apply it to the real atmosphere, we should not be surprised if it
does not work perfectly. Nevertheless, pressure seldom departs from the average value
(which is well predicted by the barometric equation) by more than a few percent. With
respect to ground level atmospheric pressure (whose average value is about 101 kPa
or 760 mmHg), the highest recorded value is 109 kPa (814 mmHg), and occurred at
Mongolia on 19 December 2001. The lowest recorded value is 87.0 kPa (653 mmHg),
and occurred in the Western Pacific during Typhoon Tip on 12 October 1979.

3 Barometric equation for negative heights

3.1 A historical excursion

Curiosity about the depths of the Earth is as old as man himself. For the primitive men,
the cave was both a shelter and a place for magic rites. On the other hand, burial of
the dead and a modicum of imagination easily led to the belief on an afterlife spent
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in the underworld. Volcanoes and other manifestations of an inner heat such has hot
springs also suggested the existence of a specific place appropriate for punishment
located beneath the surface of the Earth (Tartarus or Hell). These were the prevailing
views in ancient Greek and Roman times, as described in Homer’s Iliad and Odyssey
(ninth or eighth century BC), and in Virgil’s Aeneid (first century BC).

On more scientific grounds, Aristotle (fourth century BC) provided evidence for
the sphericity of the Earth (in his work On the Heavens), giving at the same time but
without details an estimate of its radius that is within the correct order of magnitude.
Later Eratosthenes (third century BC) computed Earth’s radius with much better accu-
racy. Note that some uncertainty exists on the value in meters of the unit of length
used by both authors, the stadium.

In medieval times (end of the thirteenth century) Dante describes in The Divine
Comedy a journey through a spherical Earth where Hell is located underneath Jerusa-
lem and extends down to the centre, and Purgatory is a mountain in an island located
near the antipodes. Paradise lies, of course, above in the heavens. According to Dante’s
artistic interpretation of the Bible, Lucifer fell from Heaven straight down to the cen-
tre of the Earth, being forever prevented from leaving this place (according to the
Aristotelian system, objects had a natural tendency to fall down to the center of the
Earth).

In The Dialogues Concerning the Two Chief World Systems (1632), Galileo Galilei
imagined the terrestrial globe pierced by a hole which passed through the center, and
examined the motion of a cannon ball dropped in such a hole. He states that the ball
“…would have acquired at the center such an impetus from its speed that it would
pass beyond the center and be driven upward through as much space as it had fallen
(…) the time consumed in this second ascending motion would be equal to its time of
descent.” It is thus a fortunate situation that Lucifer was not able to resurface. Or did
he?

The motion of an object (neglecting drag) dropped in a bottomless shaft was again
considered by Hooke in 1679 [10]. The main point under discussion was the effect
of Earth’s rotation on the trajectory. Hooke obtained the correct result qualitatively:
The object should oscillate like a pendulum, describing an ellipse. In fact, an object
dropped in a shaft connecting the poles of a homogeneous and spherical Earth behaves
as a one-dimensional harmonic oscillator and strictly obeys Hooke’s “law”, although
this is not the present standard pedagogical example. Newton, on the other hand, ini-
tially believed that the trajectory should be a spiral, even in the absence of drag [10].
It has to be remarked that later quantitative treatments of the problem are all based on
Newtonian dynamics.

The motion of an object (neglecting drag) dropped in a hypothetical tunnel con-
necting the two poles was also studied by Euler in 1727 [11]. Surprisingly, he obtained
the incorrect result that the object would never go further than the centre, and would
then return to the point of departure (as reported in [11]).

Investigation of the internal structure of Earth by digging a very deep shaft was con-
sidered by Maupertuis in his Lettre sur le progrès des sciences (1752) as an important
and timely research project. This proposal was ridicularized by Voltaire (as part of a
dispute on the paternity and philosophical meaning of the principle of least action).
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In his Letters to a German princess (1760–1762), Euler mentions this dispute in
Letter XLIX (Voltaire, alive and influential, is alluded to as “Monsieur ***”) and also
states “if a hole were made to the center of the Earth, the density of the air would
increase progressively, attaining that of the water first, and then that of gold” (Letter
XI).

The increase of air density with depth is a difficulty mentioned but conveniently
underestimated by Jules Verne in his celebrated Journey to the Centre of the Earth
(1864). It is interesting to remark that at about the same time Thomas Andrews was
doing his far-reaching work on the condensation of gases.

In 1882 the respected French civil engineer and applied mathematician Édouard
Collignon (1831–1897) speculated on the possibility of travel between cities by means
of long linear tunnels inside the Earth, in a kind of partial free-fall planetary subway,
for which the transit time in the absence of drag is 42 minutes, independently of the
location of the two cities. An account of his ideas, published on a semi-humorous tone
in the scientific periodical La Nature, is suggestively entitled “From Paris to Rio de
Janeiro in 42 minutes and 11 seconds” [12]. In it, the effect of pressure is discussed,
and considered to be an insurmountable problem. Numerical estimates of enormous
pressures at several depths (unfortunately provided without computational details) are
given, but differ from our own calculations (see below) by several orders of magnitude.

Several nineteenth century fiction books describe journeys in deep tunnels or shafts.
This theme was thus a relatively common topic, which is not surprising in a society
where Mechanics (including Kinematics and Dynamics) played a growing role in
everyday life, and with new mechanical devices and means of transportation continu-
ously appearing. The fall in a deep hole is a well-known episode of Alice’s Adventures
in Wonderland (1865). In a later fictional work (Sylvie and Bruno Concluded, 1893),
Lewis Carroll even briefly mentions [Collignon’s] underground gravitational train.

A little known fiction story for the youth that involves a planetary tunnel is Through
the Earth (1898) by the American author C. Fezandié (1865–1959). In it, the construc-
tion and operation of an evacuated linear tunnel connecting Australia and the US for
commercial purposes is discussed, and the consequences of free fall are fully explored.
The action takes place in the 1980s–1990s. The effect of Earth’s rotation on the tra-
jectory is compensated by means of electric repulsion between the walls of the tube
and the car. This book, conveniently adapted, would provide a good argument for a
science fiction movie with a nineteenth century flavour.

During the twentieth century attention continued to be paid to the subject. In 1909,
the famous French amateur astronomer and science popularizer C. Flammarion wrote
a short article for The Strand Magazine entitled “A Hole Through the Earth” [13]. In
it, the meager knowledge of the Earth’s interior available at the time is discussed, and
Maupertuis project again advocated. Flammarion proposed that the shaft be dug in
France or Belgium, among several places (but not in England, as erroneously stated
in [14]—it is enough to pay attention to the first illustration, where a hand marks the
country of the Landes, in the southwest of France), and that the work should be car-
ried out by soldiers (Fig. 1). These words were unintendedly prophetic: A few years
later, millions of soldiers would be indeed incessantly digging in France and Belgium,
unfortunately not a deep shaft for peaceful purposes, but the shallow and infamous
trenches of the First World War from which many would not return.
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Fig. 1 The orifice of the shaft during construction, showing the factories, railways, enormous cranes, and
other machinery, attended by an army of workers [13]

Shortly before this war (1913), another book was published with a section devoted
to these matters: Physics for Entertainment, by Ya. Perel’man. At the time of his
author’s death in 1942, during the St. Petersburg (then Leningrad) blockade, the book
had already had 13 editions. It underwent many more posthumous editions, and is still
in print. In the section devoted to the problem, the period of oscillation and the effect
of Earth’s rotation are discussed. It is remarked that the period of oscillation is inde-

pendent of the Earth’s radius, and is solely defined by its density. Indeed, T =
√

3π
Gρ

.

A previous (1902) proposal by a Russian author of a 600- km tunnel connecting the
two main Russian cities, St. Petersburg and Moscow, is also described.

In 1965, an article entitled “High-Speed Tube Transportation” appeared in Scientific
American [15]. In it, a high-speed subway connecting Boston and Washington, D.C.
(630 km) in 90 min was proposed. It was based on pneumatic propulsion and to a small
extent on gravity. Note that present-day Maglev (magnetic levitation) trains running
on the surface attain similar average speeds. In the following issue of the mentioned
journal, a letter to the Editor by M. Gardner appeared [16] drawing attention to the
possibility of using only gravity for the thrust, and mentioning (not always accurately)
some previous works where this possibility was foreseen. In the next year, a pedagog-
ical article discussed again (not citing [15,16] but mentioning a similar article) the
gravitational subway [17]. As in [15], the tunnel connected Boston and Washington,
D.C. This apparently revolutionary idea was echoed in the press of the time, but it
rapidly surfaced that many other authors, namely Collignon, had already speculated
on the subject.

More recent works describing in detail the kinematics of this kind of motion, and
even taking into account the rotation of the Earth, but always in the absence of drag, are

123



J Math Chem (2010) 47:990–1004 999

references [14,18,19]. An entire book [20] was recently devoted to some mathematical
and historical aspects of Newtonian mechanics in the Earth–Moon system.

3.2 The barometric equation

Not unexpectedly at this point, suppose a shaft is drilled down to the center of the
Earth, some 6,370 km below sea level (in fact, the Earth is not perfectly spherical,
and the polar radius, 6,357 km, is slightly smaller than the equatorial one, 6,378 km).
Notwithstanding the technical impossibility of this feat, namely owing to the immense
pressures and temperatures that exist inside the Earth, and to the physical state of its
inner layers, it is interesting to imagine what would be the depth dependence of air
pressure within this imaginary shaft. Assuming for simplicity that air temperature and
Earth’s density are both uniform, Eq. 4 applies, with an acceleration of gravity given
by

g(z) = 4

3
πGρ (R + z) = g0

(
1 + z

R

)
. (15)

With −R < z < 0. In this way, Eq. 4 becomes

p(z) = p0 exp
[
−mg0

kT

(
1 + z

2R

)
z
]

= p0 exp
[
−

(
1 + z

2R

) z

H

]
. (16)

The dependence is similar to Eq. 1, apart from the multiplicative factor (<1) in the
exponential’s argument that slightly reduces the variation, owing to the decrease of g
with depth. The deepest gold mines in South Africa presently attain a depth of 3.9 km,
for which one obtains p = 1.6 atm, in good agreement with observations.

It may be mentioned that the deepest Earth drilling ever carried out was done in
Russia, in the Kola peninsula, near the Norwegian border (Kola Superdeep Borehole
project) and attained 12.3 km in 1989. The hole was very narrow, less than 25 cm in
diameter. As the temperature at the bottom attained 180 ◦C further drilling, initially
planned to go down to 15 km, was abandoned. In connection to this, a “well to Hell
hoax” appeared on the Internet in 1997, and is still in circulation (Wikipedia). Accord-
ing to this “urban legend”, the drilling was stopped after Hell was hit and screams of
the damned recorded. This extreme case is another reminder that notwithstanding all
technical advances our civilization has experienced, scientific culture and scientific
reasoning are far from being universal, and remain the privilege of a learned minority.

Equation 16 predicts a pressure of 2 atm for z = −5.8 km, and a pressure of
1,000 atm for z = −58 km, which is roughly the mirror distance of the stratopause
with respect to sea level. For z = −R the calculated pressure is

p(−R) = p0 exp

(
R

2H

)
� 10165 p0. (17)

Now this value is meaningless, as the air ceases to behave as an ideal gas for pressures
of a few tens of atmospheres.
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Assuming that a van der Waals equation with parameters for nitrogen applies, the
pressure dependence with depth is initially that expected from Eq. 16, but after the
first 50 km approximately it starts to diverge (see Fig. 3 below). Note that nitrogen is
supercritical at room temperature and that condensation cannot occur in the van der
Waals picture. Computation of the pressure dependence with depth along the lines
described in [2] is now presented: For a van der Waals gas, the barometric equation is
[2]

dC

dz
= − gMC

RT
(1−bC)2 − 2aC

, (18)

where M is the molar mass, R the gas constant, a and b the van der Waals parameters,
and C is the molar concentration. Using Eqs. 15 and 18 can be rewritten as

dC

dz
= −

1
H

(
1 + z

R

)
1

C(1−bC)2 − α
, (19)

where R is the Earth radius, H is the scale height, and

α = 2a

RT
. (20)

Equation 19 can be integrated to give

(C − C0)

[
b

(1 − bC) (1 − bC0)
− α

]
+ ln

C (1 − bC0)

C0 (1 − bC)
= −

(
1 + z

2R

) z

H
. (21)

For a = 1.408 dm6 bar mol−2 = 1.408 × 104 dm5 kg s−2 mol−2 and b =
0.03913 dm3 mol−1 [21], one has α = 0.1180 dm3 mol−1. According to the van der
Waals equation, the pressure is given by [2]

p = RT
1
C − b

− aC2. (22)

In Figs. 2–4 are shown the computed concentration and pressure dependences on
depth, using Eqs. 21 and 22.

A simple approximate equation that relates pressure and depth for a supercritical
fluid can be obtained from Eqs. 21 and 22 and is

p = RT

b
W

(
bpid

RT

)
, (23)

where W (x) is the Lambert function, i.e., the function that satisfies W (x)eW (x) = x
(this function is implemented in technical computing software e.g. as ProductLog[x]
in Mathematica) and pid is the pressure for an ideal gas, given by Eq. 16. Note that for
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Fig. 2 Air concentration (M) as a function of depth ( km) according to Eq. 21
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Fig. 3 Pressure (atm) of air as a function of depth ( km) for the first 60 km according to Eqs. 21 and 22
(solid line). Also shown (dashed line) is the result for an ideal gas (Eq. 16)
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Fig. 4 Pressure (atm) of air as a function of depth ( km) according to Eqs. 21 and 22
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Fig. 5 Relative error (%) corresponding to the use of Eq. 23 as a function of depth ( km). The approximate
Eq. 23 underestimates the van der Waals result, with a maximum error of 37% at 55 km, but is a good
approximation for depths below 20 km and for depths above 250 km

small x one has W (x) � x hence p reduces to pid for small depths. The relative error
(in %) is displayed in Fig. 5. The equation is therefore quite useful to complement Eq.
16 in the high depth regime (−z > 250 km).

It is seen that the van der Waals equation and the ideal gas equation give similar
results down to 50 km. The van der Waals solution for z = −R is C = 25.5 M, which
is very close to 1/b. Note that the concentration of liquid nitrogen at 1 atm and 77 K is
somewhat higher, 28.9 M, which means that the computed concentration is very likely
underestimated owing to the fact that b is a constant obtained from fitting experimental
data corresponding to relatively low densities. The pressure corresponding to a con-
centration of 25.5 M is 223,000 atm. This is again a very rough estimate, as the van
der Waals equation is not expected to be accurate for very high pressures. Indeed, it
is known that nitrogen at room temperature solidifies at 24,000 bar [22], a phase tran-
sition that cannot of course be predicted by the van der Waals equation. This would
roughly correspond to a depth of 420 km. Such a depth is still in the mantle part of the
Earth, which is known to be solid (but somewhat hot!). It is thus amazing to think that
if an isothermal shaft with a depth of a few hundred kilometers could be dug in our
planet, air would rush into it, and the lower part of the shaft would become filled with
solid air (a full simulation should account for the initial release of heat on account
of the air’s decreased gravitational potential energy). In this way, the neglect of air
pressure when discussing deep tunnels or shafts reminds us of von Neumann’s “dry
water” (i.e., liquid water assumed to have zero viscosity in unrealistic hydrodynamical
models).

It should be noted that in the giant planets (Jupiter, Saturn), rich in hydrogen, the
inner pressure is so high that the core is believed to be in the form of metallic hydrogen.
In even more massive bodies (stars) the enormous pressures (and temperatures) render
nuclear fusion viable, not to mention the quantum and relativistic effects that exist in
neutron stars and black holes.

Curiously, and apart from [12], in none of the mentioned works on the gravitational
train is the variation of pressure with depth discussed. At most, it is mentioned that
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air resistance has to be eliminated by means of vacuum pumps. Nevertheless, both
cord links (St. Petersburg–Moscow and Boston–Washington, D.C.) would involve a
maximum penetration of about 8 km below the Earth surface. At this depth, the air
pressure, estimated with Eqs. 21 and (22), is already 2.8 atm. The effect of gravity on
air pressure thus implies that deep tunnels must be kept in a vacuum, not only because
of air drag but also on account of the mechanical resistance of the transportation
device, as its interior must be kept at or near 1 atm without too much weight. Another
major challenge would be the construction of stable tunnel walls. Such a convenient
and ecological means of transportation may (literally) never see the daylight, but who
knows?

4 Conclusions

The assumptions leading to the barometric formula were discussed, with remarks on
the influence of temperature, gravitational field, Earth rotation, and non-equilibrium
conditions. A generalization of the barometric formula based on the van der Waals
equation for negative heights, e.g., for pressure inside shafts and deep tunnels, was also
presented, and some applications discussed, along with relevant historical aspects.

Let us close this study with Thiele’s words on Euler [11]: ‘The physical word was
an occasion to apply mathematics, and if it failed to fit his analysis, it was the physical
world, not the mathematics, which was in error”, and also with the illuminating Euler’s
words cited by Thiele: “I did not consider it necessary to confirm my theory by any
experiments. For this theory is derived from the most certain principles of mechanics.
Hence there can be no doubt, whether it be true or have a place in praxi.”
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