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The modeling of systems that exhibit near-exponential decay is most commonly done using a sum
of exponentials or a stretched exponential. We note some drawbacks of these representations and
present an alternative model, the stretched or compressed hyperbola, first described by E. Becquerel
in the 1860s. This representation might be more helpful for interpolation, extrapolation, and
classification of decays and requires only one additional parameter compared to simple exponential
decay. © 2009 American Association of Physics Teachers.
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I. INTRODUCTION

This paper concerns the well-known phenomenon of de-
cay, in which a quantity of interest gradually decreases to
zero as a function of time or distance. There are many dif-
ferent types of decay, but one in particular is mathematically
simple and intriguing; it arises when the rate of decrease of
the quantity is proportional to the quantity itself,

dI

dt
= − kI , �1�

which has the well-known exponential decay solution:1,2

I�t� = I�0�e−kt. �2�

A common scenario for such a decay involves a very large
number of independent entities, each having a constant prob-
ability per unit time of changing form.

Such simple decay characteristics are rarely realized. Most
decays are more complex, and this complexity manifests it-
self in nonexponential decay. In this paper we are primarily
interested in situations for which the departure from expo-
nential is too much to ignore, but is describable by a modest
departure from exponential decay.

Deviation from exponential decay is especially evident if
we plot ln�I� versus t, because only exponential decay results
in a straight line in such a plot. As an example, Fig. 1 shows
the decay of the electrical potential difference in two simple
electrical circuits in which the switch is closed at t=0 com-
mencing a decay of the voltage toward zero. For circuit �a�
the plot is the straight line associated with exponential decay,
and for circuit �b� it is clearly not.

Although the electrical circuit �b� is more complex, it is
straightforward to determine the functional form of the de-
cay. Even if we did not know the values of one or more of
the components in the circuit, it would take only a few mea-
surements to have enough data to determine these parameters
and thus have a useful characterization of this more complex

system.
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In real systems it is common not to have detailed knowl-
edge of the functional decay mechanism, but only to observe
that the decay is approximately, but not exactly, exponential.
Examples include decays involving light guides3 and
luminescence,4 but more generally any complex system that
exhibits decay has the potential to be in this category. The
phenomenon of decay is ubiquitous; it is observed in any
system transitioning from a nonequilibrium state toward
equilibrium, and with any quantity that decreases over dis-
tance or time. Decay is found in the physical and biological
sciences, medicine, education, business, economics among
many other fields. Deviations from Eq. �1� can occur for
many reasons such as the dependence of the decay parameter
k on I, and a variety of decaying subpopulations with a di-
versity of k values. Often, we have no information about
such details other than that provided by the decay data.

There are three main reasons that fitting a simple function
to the observed decay can be useful. One is interpolation.
Often measurements are difficult and only a few can be
made, and there is a need to estimate the value of the quan-
tity between measurements. Sometimes, it is important to use
extrapolation to make an educated guess about the future
value of a quantity, given its decay history. In the absence of
a model this procedure necessarily involves some degree of
uncertainty. It also might be helpful to characterize a given
decay process according to the degree to which it deviates
from a simple exponential decay. In such cases it would be
helpful to have a simple and easily determined measure of
this degree of deviation.

For each of these reasons it is desirable to fit the data with
a function that is simple and easy to use, and which works
well for interpolation, prediction, and classification.

The goal of this paper is to provide a useful mathematical
function for treating such situations. A form of this little
known function was first described in the 1860s by the
physicist Edmond Becquerel �discoverer of the photovoltaic
effect and father of Henri Becquerel, the discoverer of radio-
activity� for interpreting phosphorescence intensity decay

5
data. Becquerel used his phosphoroscope to measure the
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luminescence decay of various compounds. To analyze some
of his results he used a general empirical equation,5 which
satisfies the relation I�t�m�t+a�=a and has the form

I�t� =
1

�1 + t/a�1/m , �3�

with m�1 and a a parameter with dimensions of time. Here
we use a variant of this function that has a more intuitive
connection to exponential decay.

II. DEVIATION FROM EXPONENTIAL DECAY

The most popular method for fitting nonexponential decay
curves is to use a sum of exponentials.6 This approach is
valuable when a model predicts a sum of exponentials, but
otherwise such a sum contains many free parameters �for
example, five for a sum of three exponentials� lacking physi-
cal significance.

We propose another approach, which has two important
characteristics. The first is that the function be versatile and
do a reasonable job of interpolation, extrapolation, and clas-
sification. The second, which to some extent is a conse-
quence of the first, is that it should have a minimum number
of free parameters. If exponential decay is normalized to be
one at t=0 and approaches zero for long times, then it is
parameterized by one free parameter. Ideally, the simplest fit
for nonexponential decay would add just one more param-
eter.

One approach to slightly more complex exponential decay
is to modify the decay equation by adding one or more ad-
justable parameters. Two popular examples are the biexpo-
nential function2,5,6 and the stretched exponential
function.7–10 Assuming that I�0�=1, these are given by

I�t� = ae−k1t + �1 − a�e−k2t, �4�

I�t� = e−�kt�c
. �5�

These functions are useful in some contexts, but have prob-
lems, which limit their use in many settings. The biexponen-
tial introduces two new parameters, and both functions may
behave unnaturally for large values of t. A different ap-
proach, as described in the following is to make a modest
change not to the decay function, but to the differential equa-

Fig. 1. Decay plots for two simple electrical circuits.
tion for which the decay function is a solution.
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III. A SMALL MODIFICATION TO THE DECAY
DIFFERENTIAL EQUATION

Exponential decay can also be written as

I�t� = I�0�e−t/�, �6�

where the lifetime �=1 /k is a constant.
For nonexponential decay we expect that � might depend

on time. Equation �1� can be formally integrated to give

I�t� = I�0�exp�− �
0

t dt

��t�� . �7�

This result is completely general but is not useful because
��t� is not specified. If we consider the power series expan-
sion of ��t�,

��t� = ��0� + c1t + c2t2 + . . . , �8�

an approximate decay function can be obtained by truncating
the expansion at order n. Truncation to first-order yields

��t� = ��0� + ct , �9�

where c is an additional �dimensionless� parameter. Usually,
� increases with time, and hence c�0.

Equation �7� can be readily solved within this approxima-
tion. The solution with I�0�=1 is

I�t� = �1 + kct�−c−1
for c � 0,

I�t� = e−kt for c = 0. �10�

According to Eq. �10� the value of k is 1 /��0�. Note that for
sufficiently long times Eq. �10� depends on time as a power
law.

As will be apparent in the examples discussed in Sec. IV,
the value of c represents the extent to which a decay function
deviates from exponential. It is easy to show numerically
that c2 is approximately the mean square fractional error in
fitting I�t� by a simple exponential over the first 98% of the
decay.

Equation �10� is equivalent to Becquerel’s decay function,
and is a compressed hyperbola for c�1 and a stretched
hyperbola11 for c�1. The acronym DHARA is suggested for
this mathematical expression because the function in Eq.
�10� is the derivative of the well-known utility function used
in risk aversion known as the hyperbolic absolute risk aver-
sion function �HARA� �Ref. 12�. The form shown in Eq. �10�
has the advantage that the constant k is analogous to the
decay coefficient in purely exponential decay; in both cases k
is the fractional decay rate at t=0. It does not diverge as c
approaches zero, which can be helpful when fitting a decay
curve by means of iterative adjustment of the parameters k
and c.

IV. EXAMPLES OF THE USE OF THE DHARA
FUNCTION FOR FITTING DECAY DATA

A. Hollow light guide flux decay

The propagation of light in hollow light guides is a good
example of a continuous mixture of entities with various
decay rates. In this case the entities are light rays that have a
certain angular deviation from the guide axis. The greater the
deviation, the greater the rate of interaction with the wall of

the light guide, and hence the greater the rate of decay per
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us di
unit length down the guide.3 This simple interpretation is
only partially correct because light rays may change their
angular deviation from the guide wall as a function of dis-
tance, and generally the overall behavior will depend on the
original directional distribution of rays’ which is usually not
known. Nevertheless, even in the most nonideal case the
DHARA function appears to work well. Figure 2 shows the
fraction of the original flux measured as a function of dis-
tance down a 0.05 m diameter cylindrical pipe of unfinished
aluminum; the source is a commercial 50 W incandescent
reflector lamp. As can be seen, there is a good fit to a
DHARA function with k=8.3�0.2 m−1 and c=0.73�0.02.

B. Luminescence decay

In his original studies of luminescence decay, Becquerel
employed the function shown in Eq. �3�, which is formally
identical to the DHARA function, Eq. �10�, with a=1 /kc and
m=c. This nonexponential form of the luminescence decay
of phosphors is accounted for by trapping and retrapping
processes. There is an underlying distribution of decay times
due to a distribution of traps with different depths.4 The
DHARA function provides satisfactory fits to the lumines-
cence decay of phosphors.13–15 The luminescence intensity
decay of a sample of green glowing strontium sulfide is
shown in Fig. 3 �a selection of original Becquerel data, taken
from Ref. 5, pp. 293–294�. As can be seen, the DHARA
function with k=0.67�0.01 s−1 and c=0.877�0.007 pro-
vides a good fit that spans more than 3 orders of magnitude
in intensity.

Becquerel’s fit to the long-time portion of the decay
�25–80 min� yielded slightly different parameters �k
=0.438 /s, c=0.806�, which he used to extrapolate the inten-
sity to 30 h when the faint emission of the sample was still
visible to the naked eye but too weak to be quantified. He
obtained a relative intensity of 2�10−6 at this time. By tak-
ing into account the relation between the initial emission

Fig. 2. Decay of luminous flux vers
intensity and the intensity of a candle, and the relation be-

175 Am. J. Phys., Vol. 77, No. 2, February 2009
tween the intensity of a candle and the intensity of ambient
light in a sunny day, he concluded that the human eye was
sensitive to a range of light intensities spanning at least 11
orders of magnitude,5 an estimate that is in remarkably good
agreement with present knowledge.

Other examples of the use of the DHARA function in
photophysics can be cited. Wlodarczyk and Kierdaszuk16

found that the DHARA function provides good fits of fluo-
rescence decays, implying a narrow distribution of decay
times approximated by the gamma distribution. They also
used the DHARA function to analyze luminescence decay
when triplet excitation transport occurs in disordered organic
solids.17 This function was also successfully used for de-
scribing the decay of delayed fluorescence resulting from
triplet-triplet annihilation in polyphenylquinoxalines in fro-
zen solutions or films.18

An upper limit for the parameter c exists for luminescence
decays. It cannot be higher than unity, otherwise the inte-
grated intensity diverges.4 Therefore, only the compressed
hyperbola is relevant in this context.

We remark that, once illuminated, a great variety of bio-
logical systems emit a very weak delayed luminescence
whose decay can be modeled by the DHARA function.19–21

C. Stress decay in biological fibers

This example concerns the time dependence of the stress-
strain relation in polymeric materials. In Ref. 22 a fiber of
spider dragline silk was subjected to a rapid, substantial
strain at time zero, and the resultant stress was observed over
time. A portion of the stress decays away leaving a residual
stress Smin. Figure 4 shows the fraction that remains as a
function of time. As shown, the decay curve can be fit well
by a DHARA decay function with k=0.045�0.002 s−1; the
remarkably large value of c=3.45�0.07 accounts for the

stance down a rough metallic pipe.
long tail in the decay.
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Fig. 3. Phosphorescence intensity decay of strontium sulfide �original Becquerel’s data� �Ref. 5�. Note that the fit spans more than 3 orders of magnitude in

intensity.
Fig. 4. Decay of residual stress in spider silk, fitted with DHARA.
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D. Cancer survival rate decay

We fitted the survival rates as a function of the number of
years since diagnosis for various forms of cancer, based on
available epidemiological data.23 Figure 5 shows the fitted
DHARA fit of distant stage metastatic breast cancer with k
=0.48�0.01 yr−1, and c=0.73�0.03. This example illus-
trates a case where using DHARA for predictive purposes
may be helpful. If a new treatment modality is underway,
only results up to a certain point of time are available, and it
might be very helpful to extrapolate to estimate quickly as to
whether the results are tracking toward an improvement in
long term survival. As mentioned, extrapolation results
should be used carefully in the absence of a physical model.

E. Wood moisture content decay

As a further test of the applicability of the DHARA func-
tion, we did a simple test of the drying of wood. We used a
2.5 cm cube of kiln dried hemlock wood, weighed it, and
soaked it in water for 24 h. The weight of the wood in-
creased by about 50% as a result. The wood was then al-
lowed to dry through exposure to air at approximately 20 °C
at a relative humidity of approximately 50%. Its weight was
periodically monitored, and the fractional retention of the
added moisture was calculated.

Figure 6 shows the results of this investigation. The frac-
tional remaining moisture content decays over time, and is fit
well by a DHARA function with k=0.055�0.0008 h−1 and
c=0.20�0.02.

In selecting these examples we looked for a variety of
practical cases for which moderately nonexponential decay is

Fig. 5. Survival rates for dist
anticipated. The DHARA function has the potential to be
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useful in many settings, which leads to the interesting ques-
tion of when and why the DHARA function should be a
useful fit.

V. ALTERNATIVE DERIVATION

It is straightforward to demonstrate that the DHARA func-
tion is not a perfect model for all near-exponential decays.
For examples the nonexponential decay circuit �b� shown in
Fig. 1 exhibits a biexponential decay which can at best only
be approximated by the DHARA function. The limitations of
the DHARA function can be traced back to the fact that it
results from a series expansion truncated to the first-order,
Eq. �9�. It is interesting to consider whether there is a class of
decay conditions for which this function fits perfectly, and if
these conditions approximate a realistic range of typical con-
ditions. To do so we introduce some notation. Consider the
case of a large number of decaying entities exhibiting a dis-
tribution of decay times. We can classify each decaying en-
tity according to its individual decay time � or by its decay
rate k. At time t let d�� , t� be the density of entities with
decay time �. The intensity of each entity decays exponen-
tially with time such that

d��,t� = d��,0�exp�− t/�� . �11�

Thus the intensity I�t� at any time is given by the integral

I�t� = �
0

�

d��,0�exp�− t/��d� = �
0

�

f�k,0�exp�− kt�dk ,

�12�

where f�k ,0� is the probability density of the decay rates.

age metastatic breast cancer.
ant st
The decay function I�t� is thus the Laplace transform of
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al mo
f�k ,0�. If I�t� is the DHARA function, then f�k ,0� is given
by

f�k,0� =
�

��1/c�
��k��1/c�−1 exp�− �k� , �13�

with �=��0� /c. The analogous probability density function
of lifetimes d�� ,0� can also be obtained. Equation �13� is
known as the gamma probability density function in
statistics.24 As shown in Fig. 7, Eq. �13� is a plausible distri-
bution function because it can closely approximate an actual
distribution for a wide range of situations ranging from very
narrow �c�0� to very broad �c�1� distributions, or to dis-
tributions with a steep decay from k=0 �c	1�. The coeffi-
cient of variation �the ratio of the standard deviation to the
mean� of the probability density function is 	c. From this

Fig. 6. Decay of fraction

Fig. 7. Examples of decay density functions that yield exact DHARA decay
ranging from narrow to broad to decaying density distributions. ��0�=1
in all cases. The number next to each curve is the respective value of

parameter c.
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perspective it is not surprising that this simple model works
well in a variety of settings.

VI. CONCLUSION

The stretched or compressed hyperbola, already used by
E. Becquerel in the 1860s, is an easy to use, simple function
for characterizing near-exponential decay in a wide variety
of complex systems. An important advantage is that it is an
exact solution to a common situation in which the instanta-
neous decay time changes at a constant, nonzero rate. This
function has the advantage of mathematical simplicity, with
just one dimensionless additional parameter compared to
simple exponential decay. Most importantly, it works well in
a wide variety of settings for interpolation, extrapolation, and
classification of near-exponential decay. We recommend fur-
ther work to identify decay situations that may benefit from
this remarkably simple function. Possible areas for further
research might be a variety of decay mechanisms in econom-
ics, psychology, and the life sciences, where the complexity
of the systems limits the likelihood of a precise treatment of
the underlying mechanisms for decay.
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