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How Fast is a Fast Equilibrium? A New View of Reversible
Reactions
Carlos Baleiz¼o and M�rio N. Berberan-Santos*[a]

1. Introduction

According to the principle of microscopic reversibility, all ele-
mentary chemical reactions are reversible to some extent.[1, 2] In
many cases the degree of reversibility is small, and the corre-
sponding reverse reaction can be neglected. Effectively reversi-
ble reactions are nevertheless very common in both ground-
and excited-state mechanisms. Chemical examples comprise
acid–base and enzyme reactions, whereas photochemical pro-
cesses include excited-state proton transfer and homo-FRET.

Although the kinetic treatment of these relatively simple
mechanisms is known,[3] the consequences of reversibility are
not fully disclosed by the available results that mainly consist
of special mathematical approximations, namely those apply-
ing to pre-equilibrium conditions[4] or to relaxation kinetics.[5]

Herein, two-state reversible reactions are viewed according
to a new approach, based on the concept of cycle. Two useful
parameters are introduced: 1) average cycle duration and
2) average number of cycles, with the latter applying to cycles
with at least one unstable species. These parameters allow an-
swering the question “How fast is a fast equilibrium?” in abso-
lute and relative terms, respectively. The usefulness of the ap-
proach is demonstrated by its application to several systems.

2. Results and Discussion

2.1. The Simplest Case

Consider an elementary unimolecular (or pseudo-unimolecular)
equilibrium, shown in Scheme 1. For a molecule that starts as
the X1 species, the equilibrium can be viewed as an infinite se-
quence of cycles of the type X1!X2!X1 (Scheme 2). The dura-
tion of each cycle is a random variable t = t1 + t2, where t1 and
t2 are the survival times of X1 and X2, respectively. The cycle du-
ration density distribution is given by Equation (1):

fcðtÞ ¼
k1k2

k1 � k2
e�k2t � e�k1t
� �

ð1Þ

as shown in the Appendix. The average duration of a cycle, tc,
is shown in Equation (2):

tc ¼
1
k1
þ 1

k2
ð2Þ

This equation answers the question “How fast is a fast equilib-
rium?” in absolute terms.

It is of interest to contrast the average duration of a cycle
for a given system with the relaxation time of the same
system, tr [Eq. (3)]:

tr ¼
1

k1 þ k2
ð3Þ

When the forward and reverse reactions have very different
unimolecular (or pseudo-unimolecular) rate constants, tr is de-

Reversible reactions are described in terms of kinetic cycles. From
this description, two useful parameters arise: 1) average cycle du-
ration and 2) average number of cycles. The latter applies to
cycles with at least one unstable species. These parameters allow
answering the question “How fast is a fast equilibrium ?” in abso-

lute and in relative terms, respectively. The general interest of the
approach is demonstrated by application to reactions drawn
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Scheme 1. Elementary unimolecular equilibrium.

Scheme 2. Elementary unimolecular equilibrium viewed as a sequence of
cycles.
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termined by the fast constant, whereas tc is controlled by the
slow constant.

The distribution of the duration of n cycles is obtained as
Equation (4):

fnðtÞ ¼ fcðtÞ � ::::� fcðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
n�

ð4Þ

where � denotes the convolution between two functions (see
the Appendix). For a large number of cycles, this distribution
becomes a narrow Gaussian with mean ntc and standard devi-
ation

ffiffiffi
n
p

tc.

2.2. Cycles with at Least One Unstable Species

Now, consider Scheme 3, where X1 and X2 are unstable species
and namely excited states. Again, assuming that a molecule
starts as X1, this scheme can be redrawn as a sequence of
cycles, as shown in Scheme 4. In this case it makes sense to
ask how many X1!X2!X1 cycles take place before decay (via
the G1 or G2 channels) occurs. Clearly, the number of cycles n is

a random variable. We first compute the probability of decay
via each of the two channels. The probability of decay via G1

and after n cycles is given by Equation (5):

p1ðnÞ ¼ 1�F2ð Þ F1F2ð Þn ð5Þ

where Equation (6):

F1 ¼
k2

k2 þ G2

ð6Þ

is the probability that X2 yields X1 when it reacts, and Equa-
tion (7):

F2 ¼
k1

k1 þ G1

ð7Þ

is likewise the probability that X1 yields X2 upon reaction. The

probability of decay via G2 and after n cycles is given by Equa-
tion (8):

p2ðnÞ ¼ 1�F1ð ÞF2 F1F2ð Þn ð8Þ

According to Equation (9), the probability of decay after n
cycles is thus:

pðnÞ ¼ p1 nð Þ þ p2 nð Þ ¼ 1�F1F2ð Þ F1F2ð Þn ð9Þ

and the average number of cycles is finally obtained as Equa-
tion (10):

�n ¼
X1

n¼0

np nð Þ ¼ 1
F1F2

� 1

� ��1

ð10Þ

or, in terms of the rate constants of the elementary processes,
as Equation (11):

�n ¼ 1þ G1

k1

� �
1þ G2

k2

� �
� 1

� 	�1

ð11Þ

Equation (11) answers the question “How fast is a fast equilibri-
um?” in relative terms, by comparing the equilibrium rate con-
stants with those of the competing decay processes.

For large n̄ there is a rapid equilibrium (in relative terms) be-
tween X1 and X2, and Equation (11) becomes Equation (12):

�n ¼ G1

k1
þ G2

k2

� ��1

ð12Þ

This situation is in fact a pre-equilibrium, as X1 and X2 eventual-
ly die out. It has been shown[4] that for a pre-equilibrium be-
tween m species that disappear via m unimolecular channels
Gi (i = 1, 2,…, m), there is a long-time common decay rate
given by Equation (13):

k ¼ 1
t
¼
Xm

i¼1

xiG i ð13Þ

where the xi are the fractions of each species. In the case of
Scheme 3, Equation (13) reduces to Equation (14):

1
t
¼ x1G1 þ x2G2 ð14Þ

and, as quasi-equilibrium holds, one also has Equation (15):

x2

x1
¼ k1

k2

ð15Þ

Equation (14) yields Equation (16):

t ¼ k1 þ k2

k2G1 þ k1G2

ð16Þ

Now, rearranging and using Equation (2), Equation (17) is ob-
tained:

Scheme 3. Unimolecular equilibrium for unstable species.

Scheme 4. Unimolecular equilibrium for unstable species viewed as a se-
quence of cycles.
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t

tc
¼ G1

k1
þ G2

k2

� ��1

ð17Þ

This corresponds exactly to Equation (12), confirming that the
average number of cycles in the case of a pre-equilibrium is
given by Equation (18):

�n ¼ t

tc
ð18Þ

In monomer–excimer intermolecular kinetics, as well as in
thermally activated delayed fluorescence, k2 markedly increases
with temperature, whereas the remaining rate constants have
a much weaker temperature dependence. In this way, for suffi-
ciently high temperatures, the average number of cycles at-
tains its maximum value, given by Equation (19):

�n1 ¼
1

F1
1 F1

2 � 1

� ��1

ð19Þ

which reduces to Equation (20):

�n1 ¼
1

F1
1

� 1

� ��1

ð20Þ

when F1
2 �1.

The importance of reversibility for a given reaction under
specific conditions can be ascertained by computing the frac-
tion of molecules undergoing at least one full cycle. This can
be obtained from Equation (9) as Equation (21):

p n � 1ð Þ ¼
�n

1þ n
ð21Þ

Average numbers of cycles of 9, 19 and 99 respectively cor-
respond to 90 %, 95 % and 99 % of all molecules undergoing at
least one full cycle.

When X1 is continuously generated (either by its continuous
feed to a stirred reactor, or by continuous irradiation of a pre-
cursor ground state species), a steady state is attained after
some time, and the concentration of X1 obeys Equation (22):

X1½ �
X1½ �0
¼ 1þ �n ð22Þ

where [X1]0 is the concentration that X1 would have in the ab-
sence of reversibility, that is, for F1 = 0 (which includes k2 = 0
and G2!1 cases), all other conditions being kept constant.

2.3. Acid–Base Equilibrium

Of the many possible kinds of reactions that are described by
Scheme 1, the acid–base (proton transfer) equilibrium as
shown in Scheme 5 is probably the most common situation.
The average duration of an acid–base cycle is given by Equa-
tion (23):

tc ¼
1
k1
þ 1

k2 Hþ½ � ð23Þ

For acetic acid in water at room temperature,[6] for instance,
k1 = 9 � 105 s�1 and k2 = 5 � 1010

m
�1 s�1, hence the average cycle

duration is 1 ms for pH<4, but becomes 33 min for pH 14 (see
Figure 1), owing to the extreme slowness of the reverse reac-

tion under these conditions. The infinite dilution relaxation
time ([H+] @ [A�]), on the other hand, is of the order of 200 ps
for pH 1, and increases for higher pH values, stabilizing at 1 ms
for pH>6 (see Figure 1).

2.4. Enzyme Kinetics

As a further application of Scheme 1, consider the simplest de-
scription of enzyme kinetics, the Henri-Michaelis–Menten
mechanism shown in Scheme 6. Here, the substrate S is in

large excess. A central quantity is the turnover rate rt given by
Equation (24):

rt ¼
1

E½ �T
d P½ �

dt
ð24Þ

where [E]T is the total enzyme concentration. Equation (24) can
be rewritten as Equation (25) in terms of the rate constants of
the elementary steps and of the substrate concentration[7]:

Figure 1. Average cycle duration and relaxation time for acetic acid in water
as a function of pH.

Scheme 6. Henri-Michaelis–Menten mechanism.

Scheme 5. Acid–base equilibrium.
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rt ¼
kakr½S�

kd þ kr þ ka½S�
¼ kcat½S�

Km þ ½S�
ð25Þ

where Equation (25) corresponds to the usual form and nota-
tion, with kcat = kr and Km = (kd + kr)/ka. Considering the cycle de-
scription of the same mechanism, where Scheme 6 is replaced
by Scheme (7), the average cycle duration is now as shown by
Equation (26):

tc ¼
1

ka½S�
þ 1

kd þ kr
¼ 1

ka

1
½S� þ

1
Km

� �
ð26Þ

On the other hand, one can define a yield per cycle for the
formation of product, as in Equation (27):

FP ¼
kr

kd þ kr
¼ kcat

kaKm

ð27Þ

This is the probability that the enzyme–substrate complex will
result in the formation of the product.

The turnover rate can now be written as the product of the
average number of cycles per unit time and the yield per cycle
[Eq. (28)]:

rt ¼
FP

tc

ð28Þ

This equation has a clear dynamical interpretation, namely that
the turnover rate is the number of successful E!ES!E cycles
per unit time. Increasing the substrate concentration does not
change the yield of product formation per cycle, but it can
reduce the average cycle duration [Eq. (26)] . For very efficient
enzymes, for which the whole process is determined by diffu-
sion only, FP is close to unity and the average cycle duration is
tc ¼ ka½S�ð Þ�1, where ka corresponds to diffusion control.

Using representative values for b-galactosidase and RGP (re-
sorufin-b-d-galactopyranoside) substrate,[8] namely ka =

5 � 107
m
�1 s�1, kd = 18 000 s�1 and kr = 900 s�1, FP = 5 % is ob-

tained. For a substrate concentration of 50 mm the average
cycle duration is 450 ms, implying a turnover rate of 110 s�1,
see Figure 2. The minimum cycle duration, attained for sub-
strate concentrations higher than about 20 mm, is 50 ms, for
which the turnover rate attains its maximum value, kr = 900 s�1.

2.5. Excited-State Proton Transfer

Excited-state proton transfer kinetics, to which Scheme 3 ap-
plies, was studied in detail for the 7-hydroxyquinolinium ion.[9]

In 4.0 m perchloric acid, the rate constants have the following
values:[9] k1 = 1.6 � 1010 s�1, k2 = 2.7 � 1010 s�1, G1 = 9.3 � 107 s�1,
and G2 = 3.7 � 108 s�1. In this way, the average cycle duration is

100 ps, and the average number of cycles, computed from
Equation (11), is 51, which shows that a large number of
proton-transfer cycles are effected in the excited state before
decay to the ground state occurs. The distribution function of
the number of cycles is shown in Figure 3.

The effect of the analytical concentration of perchloric acid
on the average cycle duration and on the average number of
cycles is displayed in Figure 4. The existence of a minimum for

the average cycle duration, and of a maximum for the average
number of cycles at intermediate [HClO4] (but not for the same
values) is a consequence of the dependence of k1 and k2 on
[HClO4] .[9]

Figure 2. Average cycle duration and turnover number for b-galactosidase
as a function of substrate (RGP) concentration.

Figure 3. Probability of decay of the 7-hydroxyquinolinium ion in 4.0 m

perchloric acid after n excited-state cycles. The average number of cycles is
51.

Figure 4. a) Average excited-state cycle duration for the 7-hydroxyquinolini-
um ion in perchloric acid. b) Average number of excited-state cycles for the
7-hydroxyquinolinium ion in perchloric acid.

Scheme 7. Cyclic form of the Henri-Michaelis–Menten mechanism.
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2.6. Thermally Activated Delayed Fluorescence

The accepted kinetic model for thermally activated delayed
fluorescence (TADF) in the condensed phases is a three-state
system (thus assuming fast decoherence) that can be repre-
sented by Scheme 8. Here Iexc(t) is the excitation intensity, kF

and kP are the radiative rate constants for fluorescence and
phosphorescence, respectively, kS

G and kT
G are the nonradiative

rate constants for deactivation to the ground state (internal
conversion from S1 and intersystem crossing from T1, respec-
tively), and kS

ISC and kT
ISC are the intersystem crossing (ISC) rate

constants for singlet-to-triplet and triplet-to-singlet conversion,
respectively. For delta excitation, this scheme reduces to
Scheme 3. The simplest form for the triplet-to-singlet ISC rate
constant (kT

ISC) is the Arrhenius equation,[10, 11] given by Equa-
tion (29):

kT
ISCðTÞ ¼ A exp �DEST

kBT

� �
ð29Þ

where DEST is the S1–T1 energy gap. Owing to the relative ener-
gies of S1 and T1, the triplet-to-singlet ISC is always an activat-
ed process that is strongly temperature-dependent.

The average number of cycles ñ can in this case be written
as Equation (30):

�n ¼ 1
FT

1þ 1
kT

ISCt0
P

� �
� 1

� 	�1

ð30Þ

where FT is the quantum yield of triplet formation,
FT ¼ kS

ISC= kF þ kS
G þ kS

ISC

� �
and t0

P ¼ 1= kP þ kT
G

� �
. The maximum

average number of cycles value, �nmax, attained for sufficiently
high temperatures, is thus [Eq. (31)]:

�nmax ¼
1

FT
� 1

� ��1

ð31Þ

As the fluorescence intensity I is proportional to the concen-
tration of S1, Equation (32) follows from Equation (22):

FF

FPF
¼ IF

IPF
¼ 1þ �n ð32Þ

where FF and FDF respectively are the total and delayed fluo-
rescence quantum yields.[11] In this way, the increase in fluores-
cence intensity owing to TADF is a direct measure of the aver-
age number of S1!T1!S1 cycles performed. This result is rea-

sonable, as each return from T1 to S1 brings a new opportunity
for fluorescence emission.

The combination of several remarkable photophysical prop-
erties of fullerene C70, specifically the FT very close to one, the
small DEST gap, and the long intrinsic phosphorescence life-
time, lead to an exceptionally strong TADF in this molecule.[10–12]

Using the following set of data, obtained for C70 in polystyr-
ene:[11, 12] FT = 0.99, tF = 630 ps, t0

P = 28 ms, A = 8 � 107 s�1,
DEST = 29 kJ mol�1, the maximum average number of cycles is
estimated to be 99, and the maximum fluorescence intensifica-
tion factor to be 100. The computed average number of cycles
as a function of temperature is displayed in Figure 5 a. It is
seen that a large number of excited state cycles are already ef-
fected at moderate temperatures, as experimentally observed
for C70 and for a C70 monoadduct,[11] shown in Figure 5 b.

2.7. Monomer–Excimer Kinetics

Scheme 3 also applies to monomer–excimer kinetics in fluid
media[13, 14] if X1 is identified with the monomer (intrinsic decay
rate G1) and X2 with the excimer (intrinsic decay rate G2). For
the intermolecular case, the forward rate constant k1 is
pseudo-unimolecular, as it is the product of the diffusion-con-
trolled bimolecular rate constant by the monomer concentra-
tion. The backward rate constant k2 is thermally activated, and
increases markedly with temperature. At the high-temperature
limit of monomer–excimer kinetics, a fast equilibrium is at-
tained in the excited state in many cases. It is thus of interest
to estimate the average number of cycles, which allows a
more precise characterization of such an equilibrium.

Two different excimer-forming molecules are considered
here: pyrene[13] and toluene.[15] One of the most stable, the
pyrene excimer has a binding energy of 40 kJ mol�1, and the
system is only weakly reversible at room temperature. The op-
posite is the case with toluene, whose excimer has a small
binding energy (16 kJ mol�1).

The rate coefficients for pyrene in degassed cyclohexane at
30 8C are:[13] k1 = 6.7 � 109 [M] s�1, where [M] is the monomer
concentration in mol dm�3, k2 = 6.5 � 106 s�1, G1 = 2.3 � 106 s�1,
and G2 = 1.6 � 107 s�1. For [M] = 10�2

m, which is near the solu-
bility limit of pyrene in cyclohexane, the average cycle duration
is 170 ns, below the monomer lifetime (440 ns), but significant-
ly above the excimer lifetime (63 ns), and the average number

Figure 5. a) Computed average number of S1!T1!S1 cycles as a function of
temperature for C70 in polystyrene. b) Average number of S1!T1!S1 cycles
as a function of temperature for both C70 and a C70-derivative in polystyrene.

Scheme 8. Kinetic Scheme for TADF.
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of cycles is only 0.4. Therefore p ACHTUNGTRENNUNG(n�1) = 0.29, that is, only
about a third of the excited monomers are reformed from an
excimer. It is interesting to note that a hypothetical increase in
the concentration of monomer above 10�2

m does not marked-
ly affect either the average cycle duration or the average
number of cycles, as both parameters are controlled by the
rates of excimer dissociation and decay in the high-concentra-
tion range.

Quite a different picture is obtained for toluene in degassed
cyclohexane, for which the rate coefficients at 20 8C are:[15] k1 =

5 � 109 [M] s�1, where [M] is the monomer concentration in
mol dm�3, k2 = 3.1 � 1010 s�1, G1 = 4.2 � 107 s�1, and G2 =

6.3 � 107 s�1. For [M] = 10�2
m, the average cycle duration is

20 ns, close to the monomer lifetime (24 ns) and to the exci-
mer lifetime (16 ns), and the average number of cycles is 1.2.
The estimated dependence of the average cycle duration and
of the average number of cycles on the concentration of tolu-
ene is displayed in Figure 6. Contrary to the pyrene case, both

parameters change significantly with the monomer concentra-
tion, for example, for 1 m toluene, the average cycle duration is
230 ps and the average number of cycles is 96. The average
number of cycles increases with the monomer concentration,
and is predicted to reach a value of 350 for 10 m toluene,
whereas the computed average cycle duration attains 52 ps for
the same concentration.

It is important to remark that in reactions involving bimolec-
ular steps the actual molecules participating in the cycling pro-
cess may change with time. In the monomer–excimer situation
the initially excited monomer is part of the first excimer, but as
this one dissociates, it may or may not become the new excit-
ed monomer again. Also, the ground state partner that joins
the excited one to yield the new excimer may even be a third
molecule. What cycles is the excitation energy.

2.8. Reversible Excitation Energy Transfer (Homo-FRET)

Fully reversible excitation energy transfer (homotransfer), as
depicted in Scheme 9, is also an example of a cyclic process in
the excited state. We restrict the analysis herein to a molecular
pair at a fixed distance and with fixed relative orientation. As-
suming a dipolar mechanism (Fçrster resonance energy trans-
fer, FRET),[16] k is given by Equation (33):

k ¼ G
R0

r

� �6

ð33Þ

where R0 is the effective critical radius. According to Equa-
tion (34), the average number of cycles is thus:

�n ¼
R0

r

� �12

1þ 2 R0

r

� �6 ð34Þ

and is independent of the lifetime. For R0 ! r, Equation (34) re-
duces to �n ¼ R0=rð Þ12 whereas for R0 @ r it becomes
�n ¼ 1

2 R0=rð Þ6. Homo-FRET can lead to a very high number of ex-
cited-state cycles (Figure 7). Considering typical values R0 =

40 � and r = 10 �, the average number of cycles is of the order
of 2000. Assuming a lifetime of 5 ns, the computed average
cycle duration is 2 ps. Note that the above picture is valid only
in case of thermalization of X* prior to each transfer.

3. Conclusions

Two-state reversible reactions were viewed according to a new
approach, based on the concept of cycle. Two parameters
were introduced, namely the average cycle duration [Eq. (2)]
and the average number of cycles [Eq. (11)] , the last one apply-
ing to cycles with at least one unstable species. These parame-
ters allow answering the question “How fast is a fast equilibri-
um?” in absolute and relative terms, respectively. In this way,
what is generally simply termed a fast equilibrium can be
better characterized, and a distinction made in terms of the
defined parameters.

The usefulness of the approach was demonstrated by appli-
cation to selected ground-state mechanisms (acid–base equi-
librium, enzyme kinetics) and excited-state processes (proton

Scheme 9. Homotransfer of electronic excitation energy.

Figure 6. a) Average excited-state cycle duration for toluene in cyclohexane.
b) Average number of excited-state cycles for toluene in cyclohexane.

Figure 7. Average number of excited-state cycles vs R0/r for a molecular pair
undergoing homo-FRET.
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transfer, thermally activated delayed fluorescence, monomer–
excimer kinetics, homo-FRET).

It was shown that for reversible excited-state processes the
average number of cycles can range from a few tens (proton
transfer, thermally activated delayed fluorescence) to many
thousands (homo-FRET).

Appendix

According to Scheme 1, once formed, both X1 and X2 decay unimo-
lecularly with rate constants k1 and k2, respectively, hence the re-
spective survival probability follows an exponential distribution,
Equation (A1):

fiðtÞ ¼ ki exp �kitð Þ ði ¼ 1,2Þ: ðA1Þ

The average duration or lifetime (also called transit time[17]) is
given by Equation A2:

�ti ¼
Z 1

0
tfiðtÞdt ¼ 1

ki
ði ¼ 1,2Þ: ðA2Þ

For the assumed mechanism the survival probabilities of X1 and X2

are uncorrelated.
The cycle duration is a random variable that is the sum of two in-
dependently and exponentially distributed variables—the survival
probabilities of X1 and X2. In this way, the probability density func-
tion for the cycle duration is given by the convolution of the two
PDFs in the form of Equation (A3)[18]:

fc tð Þ ¼ f1 tð Þ � f2 tð Þ ¼
Z t

0

f1 uð Þf2 t � uð Þdu ðA3Þ

which leads to Equation (A4)

fc tð Þ ¼ k1k2

k1 � k2
e�k2 t � e�k2 t
� �

: ðA4Þ

The average cycle duration is given by Equation (A5)

tc ¼ �t1 þ�t2 ¼
Z1

0

tfc tð Þdt ¼ 1
k1
þ 1

k2
ðA5Þ

The PDF for the duration of n cycles is again obtained by taking
into account that it is a random variable resulting from the sum of
n independent variables, all distributed according to Equation (A4),
hence Equation (A6)

fnðtÞ ¼ fcðtÞ � :::::� fcðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
nx

ðA6Þ

It follows from the central limit theorem[19] that for large n this PDF
approaches a Gaussian PDF with mean ntc and standard deviationffiffiffi

n
p

tc.
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