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ABSTRACT

Social networks are nowadays the most prominent online
environments for communication and interaction among in-
dividuals, that allow people to communicate more often. In
fact, in recent years, most studies have concluded that we
are more close now, with the number of degrees of separation
becoming smaller for most social networks. These networks
are nevertheless continuously changing and evolving, being
in fact highly dynamic, with many relations among users not
being always active, or even becoming dead links. In this pa-
per, we describe the reconstruction of interaction networks
from Twitter data, along a given period of time. We re-
port detailed statistics for these networks and results about
observed degrees of separation. Our results point out that,
taking into account just real time interactions, the degrees
of separation are higher than those reported for traditional
contact networks.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—

Data mining; H.3.3 [Information Storage and Retrieval]:

Information Search and Retrieval

General Terms

Experimentation, Measurement
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1. INTRODUCTION

The massive number of online social interactions that are
made at each second through social networks can be seen
as an opportunity to study people communication patterns,
propagation of ideas, viral marketing, among other phenom-
ena. Microblogs, a relatively new phenomena in online so-
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cial networking, provide a new communication channel for
people to broadcast information in a different way when
compared to other online social platforms. Microblogging
refers to the activity where users broadcast brief text up-
dates about small little things happening in daily life, such as
working activities, news on the media, and experiences [19].

Within the interaction models of these networks, specially
within microblogs, people tend to communicate more often.
Moreover, studies on degrees of separation within social net-
works have emerged and most of them have concluded that
social network users are more close now, since the number
of degrees of separation is becoming smaller [16, 1].

Since networks are a communication channel of excel-
lence for the diffusion of information, one of the applications
in studying the average number of intermediaries between
two people, i.e. the degrees of separation, is in influence
propagation and diffusion information models. However, as
pointed out by Rogers [21], the four main elements that
influence the spread of a new idea are: innovation, commu-
nication channels, time, and a social system. Therefore, the
evolution of the networks over time, namely the dynamics
underlying the interaction of network users through time,
can influence the average number of intermediaries between
users as well as influence its change thought time. Even
more, we may observe the presence of weak ties [15] that
hardly correspond to active interaction links and that would
probably not be continued with the evolution of the network
over time. In fact, they may even became dead ties.

Therefore, to better understand the dynamic structure of
interaction patterns underlying social networks, we propose
to study the degrees of separation on a social network con-
sidering only user interactions that occur in the observa-
tion period, ignoring pre-defined relations and contact lists.
With this approach we mitigate the presence of weak ties and
we believe to be more close of comprehending the dynamic
nature of social networks.

Our work explores the Twitter network, which being a
microblogging service, is not only used as a social network
but also as medium for information diffusion, since the com-
munication model underlying Twitter captures the publish-
subscribe messaging pattern. Namely, Twitter users declare
other T'witter users that they are interested in following, in
which case they get notified when the followed user posts a
new message (tweet). Unlike most social online networks,
the user who is being followed by another need not to follow
back. To capture the dynamic nature of Twitter network,
we rely our study on tweets exchanged during an observation



period. In fact, we focus on active ties, i.e., links between
pairs of users that exist whenever one of the users explic-
itly refers to, or mentions, the other user. By relying on
this approach, we obtain significant differences on several
well known network metrics when comparing with previous
studies of Twitter network [16]. In particular, we observe a
higher number of degrees of separation.

2. PROBLEM

Several studies, in recent years, have discussed the rele-
vant properties of several networks underlying well known
online social systems, providing sometimes diverging results.
In what concerns the number of degrees of separation, by
taking a quick look on some of those studies, we observe
that later studies [16, 1] conclude that the value is smaller
than in previous studies [20, 17]. We should however be
careful about this conclusion. As discussed in previous sec-
tion, we are accumulating data over the years and we may be
considering interactions and links that are no longer active.
Moreover, as is the case with recent studies about Twit-
ter [16], contact networks are usually considered instead of
interaction networks, which are also subject to the existence
of dead links. Thus, how interaction and communication
networks have changed over time? And, moreover, what
may we conclude by observing such networks for a limited
period of time?

These questions have been addressed by some well known
studies [20, 17] and, given Twitter public nature and data
availability, we study interaction networks underlying Twit-
ter and we compare our results with other social networks.
We focus on the distance distribution for these interaction
networks and we try to answer to the question: how differ-
ent is the number of degrees of separation, which is given by
the average distance minus one, compared with other inter-
action and communication networks? Note that in this case
the average distance considers only reachable pairs, being
also known as average connected distance [10].

3. METHODS AND RESULTS

We collected data through Twitter streaming API by track-
ing users for four months, obtaining about 325 million of
tweets produced by 19 million of users. Then we recon-
struct underlying interaction networks and we analyze them
using the Webgraph framework and related tools [7, 6]. We
describe here our reconstruction approach and underlying
principles, we present our results concerning the number of
degrees of separation and other related metrics, and we com-
pare them with results from published studies.

3.1 Twitter social network

Online platforms have been used for information diffusion
as well as for personal communication. Diffusion actions are
usually implemented in the underlying system in the form
of sharing and/or reposting actions, which allow users to
broadcast information for their own contacts. Personal com-
munication, or conversation when bidirectional communica-
tion occurs, implies interaction between people that men-
tion, implicitly or explicitly, the recipient of the message.
Both information diffusion and personal communication are
possible, and are present, in Twitter.

Twitter allows follower-following relationships, i.e. users
may follow others and/or might be followed by others. When

Table 1:

at least one mention between them.

The details for all data collected, with
22,343,103 users and 123,621,864 pairs of users with

Data Total Authors Mentioned
Tweets | 325,333,833 | 19,558,917 | 10,250,087
Mentions | 322,204,140 | 19,548,896 | 10,250,087
Replies 86,004,326 7,579,946 6,033,393
Retweets | 105,361,317 | 15,895,165 5,135,943

a user posts a message, Twitter broadcasts it to its followers.
Posts are known as tweets and can be classified as: normal
tweets or just tweets, being messages with fewer than 140
characters; mentions which are tweets addressing a specific
user; replies which are tweets addressing another user as
a reply to another tweet; and retweets which are reposts
by a user of tweets posted by other users. When a user is
retweeted, replied, or just mentioned in a tweet, it appears
in the tweet as @ followed by the user id. Besides mention-
ing the user that made the initial tweet, retweets are also
marked with the string “RT”. When using the Twitter API
for accessing data, all this information is provided as part of
a JSON document for each tweet.

The different kinds of tweets and the publish-subscribe
messaging model underlying Twitter make its interaction
network much more richer and dynamic than other interac-
tion networks, that privilege communication among users in
contact lists, usually established a priori as friendship rela-
tions. In Twitter, given the possibility of retweeting others’
tweets, interactions among users become strongly dynamic.
Moreover, users are always able to mention or reply directly
to a user, even if that user is not in their contact list. In
both cases, and specially with respect to retweeting, an user
mention can be seen as a manifestation of influence as the
tweet author is mentioning that user. We can clear discuss
influence orientation, as it can be positive or negative, even
though it will be a kind of influence.

In this paper we will use mentioning events to infer inter-
action networks. Note that this approach is rather different
from follower-following based approaches, where a “static”
network is studied instead, and where interactions among
users are not being captured. We will study three different,
but related, interaction networks. The mention network, the
influence network, and the conversation. The first one con-
siders a link from user a to user b whenever a mentions b,
either in reply, retweet or a simple mention. The influence
network is the transpose of the mention network and reflects
influence among users as discussed above. Finally, the con-
versation network corresponds to the symmetric subgraph
of previous networks.

3.2 Data collection

Our dataset was collected for four months, comprising 325,
333,833 tweets authored by 19,558,917 users. Since our ap-
proach relies on following such many users, we developed
a distributed application for this task that establishes sev-
eral independent connections to the statuses/filter Twitter
public streaming and stores all collected tweets in a large
MongoDB instance. While collecting data, our application
follows a set of users and extracts all mentioned users in col-
lected tweets, adding new users to a following list. The data
collecting process operates through that list giving priority
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Figure 1: The distribution of the frequency of tweets
(in red) and of tweets with mentions (in blue), per
author.

to more active authors. In fact we distribute the workload
uniformly by simultaneously allocating 10% of processing
capacity in each worker to more active users and scheduling
less active users in a round-robin fashion within the remain-
ing 90% workers capacity. The application can start with
an initial list of users or with a set of topics to track.

Note that our approach can be seen as a breadth first
search over Twitter network, where we identified 22,343,103
different users. This and other details are provided in Ta-
ble 1. It is interesting that both the frequency of tweets
and the frequency of tweets with mentions, per author, fol-
low a similar distribution, as depicted in Figure 1, with
99.04% of tweets containing at least a mention to some
user. Figure 2 depicts the frequency distribution per au-
thor for tweets, replies and retweets. As detailed in Ta-
ble 1 we have that 40.61% and 32.70% of the tweets are
retweets and replies, respectively. Figure 3 depicts the fre-
quency distribution per user for tweets, replies and retweets
containing mentions to that user. If we try to fit these dis-
tributions to a power law, we obtain for the distributions
in Figure 2 the coefficients 3.97, 3.24 and 3.57, respectively.
And, for the distributions in Figure 3, the coefficients 2.04,
3.10 and 2.03, respectively. The most interesting difference
is observed for retweets distributions, as the per author fre-
quency distribution (Figure 2) has a coefficient of 3.57 and
the per retweeted user frequency distribution (Figure 3) has
a coefficient of 2.04, providing and interesting insight on
retweeting dynamic on Twitter.

3.3 Network construction

We start by identifying the pairs of users for each mention,
namely the author and the mentioned user. In order to get
some insight on the data, we analyzed mention frequency
per pair of users, identifying also different kinds of mentions
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Figure 2: The distribution of the frequency of tweets
(in red), of replies (in green), and of retweets (in
blue), per author.
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Figure 3: The distribution of the frequency of men-
tions (in red), of replies (in green), and of retweets
(in blue), per mentioned user.

(retweet or reply), which distributions are provided in Fig-
ure 4. Our first network, the mention network, is obtained
by adding each observed user as a vertex and a link per
each observed mention (reply, retweet or just a simple men-
tion). Note that this network is directed and unweighted.
Although we can derive weights from mention frequency,
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Table 2: The details for studied networks, where the
mention network contains a link from u to v when-
ever u mentions v, the influence network is the trans-
pose to the mention network, and the conversation

network is the symmetric subgraph.

Networks Mention Influence Conversation
Le+05 — Vertices 22,341,855 22,341,855 5,807,158
Links 121,705,381 | 121,705,381 28,031,968
% Avg. outdg 5.45 5.45 4.78
';: Max. outdg 30,908 518,075 4,534
Min. outdg 0 0 0
Outdg. exp | 3.49 (>268) | 2.13 (>57) 3.70 (>222)
Avg. indg 5.45 5.45 4.78
le+02 — Max. indg 518,075 30,908 4,534
Min. indg 0 0 0
Indg. exp 2.13 (>57) | 3.49 (>268) 3.70 (>222)
Term. nodes 12.51% 54.28% 0.85%
Giant comp. 99.98% 99.98% 96.36%
Comp. ratio 73.6% 55.3% 55.1%
Avg. dist 6.64 £0.04 | 6.63 £0.03 7.67 £0.05
weight Efect. dmt 7.71 £0.05 | 7.73 £0.05 8.95 £0.05
Diameter 16 19 22
Figure 4: The distribution of weights for mention Harm. dmt | 17.53 £0.92 | 18.43 +0.57 7.56 £0.19
links (in red), for reply links (in green), and for SPID 0.20 £0.01 | 0.21 £0.01 0.26 £0.01
retweet links (in blue), where the weight is the num-
ber of times that a given link was observed.
1.0 = A T
0.9 - e
and we have analyzed it to some degree, we will skip that 08 - 4
analysis in our discussion. 14
The influence network and the conversation network are 0.7 u
easily obtained from the mention network. In the first case 0.6 7 i
we transpose it and, in the second case, we keep only the 0.5 Y
links for which we have the reciprocal one. All three net- 0.4 — !
works were compressed using the Webgraph framework [7]. 03 -
3.4 Network characterization gf i
We computed several statistics for each network, including P, T N N N N 0" A S O O O

compression ratio through network hierarchical clustering
followed by vertex reordering [5] and the neighborhood func-
tion values, that allow us to compute several other statistics
as provided in Table 2.

The neighborhood function values were computed with
the HyperANF algorithm [6]. This algorithm, which is a
diffusion-based algorithm, provides an approximation of the
neighbourhood function subject to a relative standard de-
viation. This error depends on the number m of registers
per counter and is less or equal than 1.06/y/m. Hence, with
m = 512, we obtain a relative standard deviation for all
statistics less than 5%. As noted by HyperANF authors, the
relative error for the neighbourhood function becomes how-
ever an absolute error for the distance distribution. There-
fore, as recommended by HyperANF authors, we run the
algorithm several times and we estimated the standard er-
ror of our measurements with the Jacknife method [13].

From measurements in Table 2 and degree distributions
in Figures 6 and 7, we observe that studied graphs have the
common characteristics of scale-free small-world networks.
We note nonetheless some interesting characteristics. Since
our approach to collect data mimics a BF'S, the giant compo-
nent is almost 100% for both the mention and the influence
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Figure 5: The distance probability mass function for
the influence network (solid line) and for the con-
versation network (twodash line), and cumulative
distribution functions (dotted and dotdash lines, re-

spectively).

networks. Note also that, after hierarchical clustering fol-
lowed by vertex reordering, we obtain high compression ra-
tios which denote the presence of rich clustering structures.

The neighborhood function approximation allows us to
compute the average distance, which is equal to the num-
ber of degrees of separation plus one, the effective diameter,
which is the 90th percentile of distance distribution, the har-
monic diameter, and the shortest path index of dispersion
(SPID). If we compare our values with the values in Table 3
for known studies, we may observe that our values are more
close to those of dynamic networks. In particular, it is inter-
esting that we obtain a number of degrees of separation close
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Figure 6: The outdegree distribution for the men-
tion network or, equivalently, the indegree distribu-
tion for the influence network.
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Figure 7: The outdegree distribution for the influ-
ence network or, equivalently, the indegree distribu-
tion for the mention network.

to six, rather different from results obtained in recent stud-
ies of Twitter static networks, but in line with Milgram and
MSN experiments. See Figure 5 for the distance probabil-
ity mass and cumulative distribution functions. The SPID
is around 0.2 for the three studied networks, corroborat-
ing the conjecture that proper social networks have a SPID
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Figure 8: The densification law for the influence net-
work.
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Figure 9: The density variation over time for the
influence network.

value bellow one [6]. Finally, we observe that the harmonic
diameter is close to the effective diameter and to the average
distance for the conversation network, which is interesting as
this is also observed for other symmetric networks (Table 3).

3.5 Network over time

In order to better understand how these networks change
over time, we provide the measurements for the influence
network over 323 incremental snapshots. We order the tweets
in a non-decreasingly date and we consider for the first snap-
shot the first one million tweets from our dataset. Then,
each snapshot increments the previous one with the next
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Figure 10: The average distance over time for the
influence network.
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Figure 11: The effective diameter over time for the
influence network.

one million tweets. We prefer this approach instead of split-
ting data by date, for instance, by weeks, because there were
some variations on the amount of data collected per unit of
time due, for instance, to holiday periods.

As we can observe in Figure 8, the number of edges grows
superlinearly in the number of nodes, although with a coef-
ficient smaller than 2. Since the number of possible edges
grows quadratically with the number of vertices, we can con-
clude that the density of the influence network decreases over
time, as is observed in Figure 9.

In Figures 10, 11, 12, and 13, we can observe that the aver-
age distance, the effective diameter, the harmonic diameter
and the SPID, although decreasing, seem to be stabilizing.

4. RELATED WORK

Given the large scale proportions that online social net-
working services have gain in last years, we have today the
opportunity to study and analyze large social networks in-
volving the interaction among millions of persons [4, 24]. In
this context, several studies have focused the measurement
of the average distance on social networks, and other related
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Figure 12: The harmonic diameter over time for the
influence network.
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Figure 13: The shortest path index of dispersion
(SPID) over time for the influence network.

metrics, in order to replicate the study conducted by Stanley
Milgram [20, 22] and to better understand “small world phe-
nomena” in large scale networks. Surprisingly, even though
studied networks are rather different, most recent results
for interaction and communication networks, including those
discussed in this paper, corroborate the estimate by Milgram
in 1967: the number of intermediaries on postcard routing
is on average 5.2 (and, hence, the average distance is 6.2).
We provide in this section, and in particular in Table 3, a
briefly comparison of ours and others results.

As we discussed earlier and as is described in Table 3, we
obtain in this work an average distance similar to the one
obtained in Milgram experiment. In fact, if we consider the
influence network, we have a similar setup as messages are
propagated from authors to forwarders. Although only few
persons were observed in Milgram experiment, we should
not forget that the experiment took place over a large real
network. Similarly, in our study, we are also observing a
subset of users, but we have a much larger and representative
sample. The interesting fact is that we are observing similar
values for all metrics on this larger network sample.



Table 3: Comparison of large social networks and with the Milgram experiment.

distance includes also the percentage of pairs of vertices at such distance.

Note that the median

Milgram Exp.[20] MSN [17] Facebook[l1, 8] | Twitter[16] | Tt. Influen.9| Tt. Conv.?

Vertex person user user user user user
Link selected person | message exchange® friendship® follower mention® mention®
Link type dynamic dynamic static static dynamic dynamic
Symmetric no yes yes no no yes
Avg. dist 6.2 6.6/6.618° 4.74 4.12/4.46* 6.63 7.67
Efect. dmt — 7.8 — 4.8 7.73 8.95
Harm. dmt 18.29° 8.935° 4.59 5.29% 18.43 7.56
Median 00 6 /7 (78.7 %)° 5 (92 %) 5 (73.16%)* oo | 8 (69.65%)
SPID — — 0.09 0.17 0.21 0.26

# Value reported in http://law.di.unimi.it/webdata/twitter-2010/ for same data.
P Friendship connections stablished prior to the date of collecting data.

¢ During the period of collecting data.
4 Networks studied in this paper.
¢ Value reported in [8].

Leskovec and Horvitz[17] observed also that the average
distance within the MSN messenger network is 6.6. Their
data corresponds to the interactions among messenger users
during June 2006, from which they identified a communica-
tion network where a link exists between two users if they
exchanged at least a message during that month. The av-
erage distance was computed by randomly sampling 1000
users and calculating for each user the shortest paths to all
other users in the network. They have also observed that
the effective diameter is 7.8. As in our case, this network
is highly dynamic since it was built from as messages ex-
change among users. Note however that the MSN network
is symmetric (with a lower harmonic diameter) and, hence,
we should compare it with our conversation network, where
we have slight larger values, although comparable.

More recently, Backstrom et al. computed the average dis-
tance for the Facebook network, obtaining a value of 4.74,
as well as other metrics (see Table 3). For this study, the
authors collected data between 2007 to 2012 and only con-
sidered users that were active in May of 2011. In contrast
to the networks studied in our paper, the type of link is
“static” since it is not capturing users dynamic activity as
links are just friendship connections, including passive/weak
links. Moreover the Facebook network is symmetric and,
comparing with the MSN network and with our conversation
network, its values are significantly smaller. This fact may
not be so surprisingly given that Facebook is the largest so-
cial network analyzed till nowadays and, in this case, authors
are not capturing user interactions, just friendship links. It
would be interesting to replicate our study considering in-
stead information exchange on Facebook.

In what concerns Twitter, Kwak et al. [16] studied a di-
rected network based on following and followed by links, ob-
serving an average distance of 4.12 and an effective diameter
of 4.8. Authors conjecture that these results are an evidence
that Twitter has another role than a social network. By
comparing with the MSN network, the average distance and
effective diameter is indeed smaller, but such values are al-
most the same as those obtained for the Facebook network.
Hence, based on this observation and on our study, we be-
lieve that the difference observed is more related with the
type of links considered than with Twitter role.

Network evolution over time has been also addressed in
several studies. Leskovec et al. [18] studied the citation
graph for U.S. patents and affiliation graphs of authors, by
observing snapshots of these network over long periods of
time. They observed that most of these graphs densify over
time, i.e., the number of edges grows superlinearly in the
number of nodes, and that the average distance shrinks over
time. Notice that the densification definition used by the
authors is not equivalent to the usual density definition (ob-
served edges vs the number of possible edges). In what con-
cerns our analysis, although we observe a similar feature
for the densification (Figure 8), we do not observe a similar
result with respect to the average distance. In fact, the aver-
age distance appears to be stabilizing, being in concordance
with the results by Backstrom et al. [1] for Facebook.

Since we based our analysis on mentions, that translate
influence among users, we point out some work on influ-
ence supporting our previous observations. There are sev-
eral recent studies about influence in social networks and, in
particular, in Twitter [25, 2, 11, 23]. However, current influ-
ence metrics may be fooled, for instance, by spammers [3],
by bots [9], by social capitalists [14], and may not capture
the temporal dynamics of Twitter. Cha et al. [11] observed
also that the most followed users are not the necessarily
the more influential ones. Moreover, Counts and Fisher [12]
found evidences that there are some reply patterns that re-
flect attention interest. These observations were the main
motivation for our work, since friendship and subscription
links do not necessarily correspond to active links and, more-
over, it may exist even contextual interactions beyond such
“static” links.

5. CONCLUSIONS AND FURTHER WORK

We analyzed different interaction networks from Twitter
social platform. Contrary to previous studies of Twitter,
that define underlying networks based on following and fol-
lowed relations among users, we observed higher values for
the average distance and for the effective diameter, 6.6 and
7.73 respectively. Moreover, by comparing these results with
published ones for different social networks, even though
they are different in nature, observed differences seem to
be related with particular network characteristics. In par-



ticular, network symmetry and link nature seem to be the
main distinguishing features, where by link nature we mean
if links are inferred from observed interactions among users
or if links are just friendship or following relations.

In our case we studied networks inferred from user interac-
tions on Twitter, namely through the analysis of mentions,
ignoring existing following relations. This is an important
difference with respect to previous analyses of Twitter since
we try to capture possible influence among users beyond
static links and to avoid the existence of weak/dead links.
Moreover, we considered a similar setup to the one in Mil-
gram experiment, where messages are propagated from au-
thors to forwarders. The observed values for all metrics are
similar to both the Milgram experiment and the MSN ex-
periment, which is an interesting fact given that both our
study and the MSN experiment consider a much larger set
of users than the Milgram experiment.

We analyzed also networks through time and, as in pre-
vious studies, we observed densification over time, i.e., the
number of edges grows superlinearly in the number of nodes,
and that the average distance appears to be stabilizing.

Given our conclusions, and in particular the fact that we
obtained different results for Twitter interaction networks
than those known for Twitter static networks, but similar
to those obtained for other different dynamic networks un-
derlying social platforms, we consider that it would be in-
teresting to replicate our study to other well known social
networks. It is our belief that this kind of analysis provide
new insights on how social interactions should be consid-
ered, given their dynamic nature over time, with significant
implications on most applications relying on user influence
and information propagation models on social systems.

Finally, we leave also as future work the task of mod-
elling this kind of network, as well as the fitting of existing
theoretical network models. This is a crucial step to fully
understand these complex networks.
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