CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exp@011;0:1-15 Prepared usingpeauth.cls [Version: 2002/09/19 v2.02]

Mining query log graphs
towards a query folksonomy
A. P. FranciscbT*, R. Baeza-Yatésand A. L. Oliveird

1 INESC-ID/ CSE Dept, IST, Tech Univ of Lisbon, Portugal
2 Yahoo! Research Barcelona, Spain & Santiago, Chile

SUMMARY

The human interaction through the web generates both implicit and explicit knowledge. An example of
an implicit contribution is searching, as people contribute with their knowledge by clicking on retrieved
documents. When thisinfor mation isavailable, an important and interesting challengeisto extract relations
from query logs, and, in particular, semantic relations between queries and their terms. In this paper we
present and discussresults on query contextualization through the association of tagsto queries, i.e., query
folksonomies. Note that tags may not even occur within the query. Our resultsrely on the analysis of large
query log induced graphs, namely click induced graphs. Results obtained with real data show that the
inferred query folksonomy provide interesting insights both on semantic relations among queries and on
web usersintent.

KEY WORDS. query folksonomies; query log analysis; graph mining; knowledgeodiry

INTRODUCTION

Nowadays the Web is the biggest representation of humanlkdge, where people contribute with
content either explicitly or implicitly. An example of an pticit contribution is searching, as people
contribute with their knowledge by clicking on retrievedcdanents. Thus, queries submitted to search
engines carry implicit knowledge and they can be seen asaqui to tags associated to clicked
documents. An interesting challenge is then to extracvasliesemantic relations from query logs,
which have several interesting applications. For instaraeking algorithms, query recommendation
systems and advertisement systems integrate such sefimémtioation to improve their results.

In this paper we discuss query classification, tagging ananing. Queries have usually less than
three words, which may have several different meaningsnidia problem is then how to identify and
distinguish the different meanings of a given query, whighasdress here through a query folksonomy.
A folksonomy is usually taken as content classification imithgiven domain through collaborative tag

*Correspondence to: INESC-ID, Rua Alves Redol 9, 1000-028 ¢4, PORTUGAI/ E-mail: aplf@ist.utl.pt
Twork done while visiting Yahoo! Research Barcelona.

Copyright(©) 2011 John Wiley & Sons, Ltd.

2 A. P. FRANCISCO, R. BAEZA-YATES AND A. L. OLIVEIRA @

annotation. Folksonomies become widespread in recens ysgrart of many social Web applications,
where users can collectively classify and annotate ressuitturns out that users implicitly provide
tags while searching, namely URL tags that lead to an infdl&lL folksonomy. In this context we
take a step further and obtain a query folksononey, we associate tags to queries based on common
clicked URLs. Note that in our work, although we use commackeld URLS, we only use terms from
queries as tags. Note that this is rather different from Udlging or URL folksonomies. We use click-
data to infer relationships and similarities among quefiéen, by finding closely related queries and
relevant terms, we are able to define a hierarchical quekgdolomy by associating tags to queries.
As we should see, this approach may associate a tag to a quesryfehat tag does not make part of
the query, leading to query contextualization, an impdr@ature for query recommendation systems.
Moreover, by providing a hierarchical query folksonomy, have a fine-grained query categorization,
being able to distinguish queries at different categorgleand to identify query specializations.

Our approach relies on graphs to represent relations botimgmueries and between queries and
URLs. We start with the bipartite graph of queries and URLkgke a queryg and an URLu are
connected if a user clicked in the URLthat was an answer for the quegyWe also know how many
times a given URLu was clicked for each query and, thus, we weight each edgedingty to click
frequency. A second graph has queries as nodes and we adgebe&sveen two queries whenever
they share at least a common clicked URL. Each edge is algghtesi by computing a similarity score
between queries, such as a vector representation of theeguerthe high dimensional space of all
unigue URLs. A more frequent approach is to define a simjlamiéasure among queries ignoring the
common clicked URLs. However it is more difficult to understavhy queries are similar and it can
add noise to data already noisy.

Within this line of work, graph mining techniques are crlit@auncover relations in query graphs.
According to SearchEngineWatch.com, the number of quefiEsge search engines per day is of the
order of hundreds of millions. By considering just a one dagrg log, the query graph would have
tens of billion edges. Thus, analyzing such huge graphs @és@task, that becomes even harder if we
take into account similarity weights on the edges. On therdtland, the number of potential relations
and their applications is huge.

Our study follows recent works on the analysis of query gsdfh2], which introduce the notion of
click induced graph and present several results concesg@ngantic relations among queries. Here we
propose three main contributions. First, given the existenf noisy relations among queries mostly
caused by multi-topical URLs, we start by discussing how étedt such URLS, proposing a new
heuristic. Second, we study how recent results on graphecing can improve the extraction of
semantic relations from query graphs and contribute toyqakassification. We tackle the problem
of clustering click induced graphs, namely we discuss anieffi hierarchical clustering method for
these large weighted graphs. We use a well known local opditioin approach applied to seed sets,
that may however fail if we choose the wrong seeds. Thus, wpgse a suitable core enumeration
procedure to select seed sets. Third, given a hierarchigstiecing, we discuss the inferred semantic
relations among queries and how the clustering can induagesy dolksonomy. Note that although
folksonomies are not usually hierarchical, in our casellapecialization allows the creation of a
hierarchical folksonomy. To evaluate our approach we ussngke of a query log of Yahoo! search
engine and we compare our results with a query classificatiwained by mapping queries over the
Open Directory Project (ODP) categories. The idea is toyaeahow much of the knowledge expressed
in queries is different from traditional topic classifieati

Copyright(© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@011;0:1-15
Prepared usingpeauth.cls

% MINING QUERY LOG GRAPHS TOWARDS A QUERY FOLKSONOMY 3

This is an extended and revised version of a preliminary vatndady published3].

RELATED WORK

Query logs record all the interactions of users with a seamfline and, thus, they constitute an
invaluable resource of information about users behaviodrwisdom. In the recent years there has
been an increasing amount of literature on studying pr@sennodels, and algorithms for query-log
data analysis. In this context, query similarity analysas been shown to be extremely effective for
unveiling user querying patterns and interests, with sagplications such as query recommendation
systems and other real time applications. Most of the worlqoery similarity is related to query
expansion or query clustering. Here we mention only the wlostly related papers to our work.

Clustering similar queries is a common task in many appbtioatsuch as query recommendation
systems. Weret al [4] proposed to cluster similar queries using four notions wérg distance: (1)
based on keywords or phrases of the query; (2) based on stdmching of keywords; (3) based on
common clicked URLs; and (4) based on the distance of th&edicddlocuments in some predefined
hierarchy. As the average number of words in queries is sanalithe number of clicks in the answer
pages is also smalb], notions (1) and (2) generate distance matrices that agesgarse. For notion
(4) we need a concept taxonomy and the clicked documentsireusassified into that taxonomy as
well, something that usually requires direct human intetiee and that cannot be done in a large scale.
Although notion (3) can generate also sparse distanceaaatihe sparsity can be greatly reduced by
using large query logs. Previous works have used notiors(8)) as Befferman and Bergél,[or even
variants combining (1) and (3) as well as other simpler femiguch as in Zaiane and Strilet$. [

Baeza-Yatest al.[8, 9] used the content of clicked Web pages to define a term-weégior model
for a query. They consider terms in the URLSs clicked aftererguEach term is weighted according to
the number of occurrences of the query and the number ofscti€khe documents in which the term
appears. Then, the similarity of two queries is equivaletiié similarity of their vector representations,
using the cosine distance function. This notion of queryilaiity is based on common clicked URLs
as (3) and has several advantages. First, it is simple agd®@asmpute. On the other hand, it makes it
possible to relate queries that happen to be worded diffigrieat stem from the same topic. Therefore,
semantic relationships among queries are captured. Moeatlg, Sheret al.[10] also used the notion
(3) to cluster similar queries and build a query taxonomyBasza-Yategt al,, they also consider the
terms in the clicked documents instead of the terms in théegién this paper we represent each query
in a high dimensional space, where each dimension corrésgora unique URL, and the weights are
defined accordingly to click frequency. This notion of sianity uses common clicked URLs and it
was introduced by Baeza-Yates and Tibéjfitp analyze a very large query log. They define semantic
relations such as equivalence or specificity based on diffeset conditions among the set of clicked
URLSs. Using the ODP they found a precision up to 83% on theiogla discovered and also that the
ones not found were too specific to appear in ODP. More regemt! [2] have further studied the query
graph generated by such similarity relations and we fouatiélien a simple clustering approach can
produce interesting results. In the present paper we fuittiigrove these results.

The work by Chuangt al.[11, 12, 13, 14] also uses query logs to build a query taxonomy to also
cluster answers. However they do not use any user feedhkekjder clicks. This idea of building
a taxonomy based on queries is extendedLh), [but this is not the same as building a taxonomy of

Copyright(© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@011;0:1-15
Prepared usingpeauth.cls

4 A. P. FRANCISCO, R. BAEZA-YATES AND A. L. OLIVEIRA @

S |

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1. Edge weight statistics. The box plot details the minimum at 0.0, wer lguartile at 0.132, the median
at 0.273, the upper quartile at 0.5, the maximum at 1.0 and the mea3bat O

the queries, which is what we call a query taxonomy or folksoy Later, Dupret and Mendozad]
used the rank of clicked URLs to define relations among gsefibey recommend better queries by
generating query relations that can be associated to faatgquery taxonomy.

CLICK INDUCED GRAPH

Let Q be the set of queries adtibe the set of URLs. Given a quegye Q, the cover ofj is the set of
URLSs clicked byq. Let 1:Q — 2 be a function that maps each queryo its cover seju(q) C U.
Theclick induced graph G= (V, E) is an undirected graph with queries as nodes and where arists
edge between two queries whenever they share at least omeaooiicked URL. Formallyy = Q
andE C V x V is such thatqi, g2) € E if and only if x(q1) N w(d2) # 9.

In what follows we will refer to the weighted click inducedagph. Edges are weighted accordingly
to the cosine similarity of the queries they connect. Thas(dy, g2) € E, the weight is given by

zue,u(ql)ﬂ‘u(qz) p(qla U)p (Q2, U)
\/ZUEﬂ(ql) p(ql’ u)z\/zueﬂ(qz) p(qz’ u)2

wherep Q x U — 0, 1is a function such thai(q, u) is the frequency ratio with which the URL
was clicked for the query.

o(d1, 02) =

Data Set

For experimental evaluation we considered a query log pieara the Yahoo! search engine. The
data was collected in April 2005 and contains 2,822,337 igsevith at least one clicked URL and
4,927,980 different URLs. From these, only 660,910 URLsangicked for more than one query and
these are the relevant ones since we are interested in coriioked URLs. On average, each query
has 2.39 distinct clicks and each URL is clicked by 1.37 didtgueries. Both click distributions, per
query and per URL, follow a power law, with exponents 3.50 2%, respectively. Queries comprise
554,380 different terms.
The click induced graph for this data set has as many veréisegueriesi.e., 2,822,337 vertices,

and 359,881,327 edges. The degree distribution followsveeptaw with exponent 1.50 and the
weights are distributed as depicted in Figlreshowing many noisy edges. The graph has 1,568,617

Copyright(© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@011;0:1-15
Prepared usingpeauth.cls

% MINING QUERY LOG GRAPHS TOWARDS A QUERY FOLKSONOMY 5

connected components, the giant component contains 8¥drfi6es, about 34.8% of the vertices,
and 1,407,321 components are singleton vertices. The ggmmponent is very dense, with the second
smallest connected component having only 64 vertices.

Noisy Edges Detection and Removal

The main purpose of the click induced graph is to represenaeéc relations between queries and to
enable knowledge extraction. Semantic relations can hemlesve low quality introducing noise. In
what concerns the edge weights for the studied query logawe that about 75% of edges are weighted
with values below 0.5 and 50% with values below 0.273. Thusiet are many connections between
queries which are not much similar. Most of this connectimmesdue to URLSs covering dubious topics,
several topics or very general topics. These URLs are ysdeHoted as multi-topical, being examples
many e-commerce and directory sites.

An approach to remove noise is to ignore contributions frouttirtopical URLs. Baeza-Yates and
Tiberi [1] suggested that multi-topical URLs are the ones that doutiei more to edges with low
weights. Then, we regenerate the click induced graph iggesuch URLs. Although this approach
reduces the graph size removing the noise, we observed fRas Which contribute more to low
weighted edges also may contribute more to high weightedsddoreover, we also observed a strong
positive correlation between the number of queries coveyel URL and the number of contributions
to edge weights. In Figurd we plot the geometric mean of the URLs weight contributiorsus their
size for our query log data. These results are due to the higibar of queries for which a given
multi-topical URL is the only clicked URL, generating manigh weighted relations in the graph.

To solve this problem, we considered as documents the temoagthe set of queries covered by
each URL. Letu 1.2/ — 22 be the “inverse” function: that maps each URU to its coverable set of
queriesy~1(u) C Q. The set of queries ~1(u) was taken as a documetht associated to each URL
and, then, we computed the tf-idf score for each term anddfon document as usual. We observed that
multi-topical URLs have a low average tf-idf score. Thisriseteven when we select the high related
queries for which those URLs were clicked. Therefore, weppse to compute the maximum tf-idf
among the bag of terms associated to each URL and select the Wikh lowest score as multi-topical
candidates. In Figurg we depict the maximum tf-idf score against URL coverage Biz¢he query
log analyzed. As we discuss ahead, this approach effegtigduces the size of the graph keeping its
properties, such as the size of the giant component and thghtndistribution. We should note that
this is consistent with previous resultq.|

Next, we sorted the URLs by the maximum tf-idf score and wemnegate the click induced graph
ignoring 0.05% of the URLSs with lowest score, namely igngrine 330 URLs with lowest tf-idf score.
In Figure2 we provide the distribution of tf-idf scores for the analgtzpiery log and, by selecting just
0.05% of the URLs we are filtering the click induced graph iroaservative way. Note that many of
the selected URLs have a large coverage and, maybe unediyetitey are not spam URLS.

The resulting click induced graph has 23,177,430 edgesjt@d4% of the size of the full click
induced graph. Since we continue having low weighted edgesiemove 10% of the edges with
lowest score, all of them having a weight lower than 0.043usTthe filtered click induced graph
has 20,974,257 edges and 1,648,649 connected componbkatgiaht component contains 861,903
vertices and the second smallest connected component lya@4overtices. There are now 1,474,249
singleton vertices. The degree distribution follows a poles with exponent 1.65. Therefore the

Copyright(© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@011;0:1-15
Prepared usingpeauth.cls

6 A. P. FRANCISCO, R. BAEZA-YATES AND A. L. OLIVEIRA %

14 T T T T
+
12 + e
E
10 _++ .
N
=} +
3 .
= T 8]
.8 o4l
5 o
[+
§ £ 6 g
o0
4 _
2 -
0 N el
10 100 1000 10000 10 100 1000 10000

n n

Figure 2. On left, URL weight contribution geometric mean versus URleamye sizen. On right, given the set
of terms associated to the queries covered by each URL, URL maximigifrstfore versus URL coverage siae

approach to remove noise and multi-topical URLs dramdyicalduces the size of the click induced
graph, which becomes much more sparse while keeping its stareture almost unchanged. This
is an important fact since we can effectively reduce theewaighout losing much informationi].
Moreover, we can neglect the effect of this filtering teclueicpn the final clustering since, as we
discuss later, the hierarchical clustering only becomesésting for thresholds on weights abové.0

HIERARCHICAL CLUSTERING IN GRAPHS

One of the hardest problems in graph mining is detecting lgregmmunity structure or graph
clustering. The notion of community and the first formaliaas of the concept have been proposed in
the social sciences. Usually, communities are groups dicesrsuch that the number of edges within
the groups is higher than the number of edges among diffgreaps. The general aim of community
finding and graph clustering methods is to detect meanirdjfigions by inspecting the structure of
the network. This problem has recently attracted a largaast and, for a deep review on this topic,
we refer the reader to a review on complex networks by Boticateal. [17] or a more recent survey
on community finding by Fortunatd g].

In this paper we follow a two stage approach. We find a set af sets and, then, we apply a well
known local optimization method. Several methods have Ipeeposed based on the optimization of

Copyright(©) 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@011;0:1-15
Prepared usingpeauth.cls

% MINING QUERY LOG GRAPHS TOWARDS A QUERY FOLKSONOMY 7

a given scorel9, 20, 21, 22, 23], in particular to detect overlapping clusters based obalpartition
and local expansior?[l, 22]. As pointed out by several authors, the main problem is fmwehioose
seed sets. Usually, a well known spectral partitioning metts used to generate seed clusters, for
instance multilevel bisection. Although the results amnpising, such approaches inherit some of the
drawbacks of standard multilevel methods when we are lapkin overlapping communities. This
problem becomes even harder when we have weighted graplsaiVi®this problem, we propose a
core enumeration method based on a vertex similarity sedrete a core is a densely connected sub-
graph which usually occurs within communities or clusterd that, by local optimization, leads to the
full cluster.

Finding Cores

We could define the initial seed sets by taking many diffeegmiroaches. Since we are interested in
forming clusters of similar queries, a simple approachddel thresholding the edge weights. Another
approach could be find the nearest neighbors. But we knowath&tRL may induce a clique in the
graph and, in particular, it can induce a clique with highgis. If we follow the simple approach
we could join two cliques even if they are connected by a sieglgej.e., chaining effects may occur.
Thus we take a different approach where not only weights ansidered, but also vertex structural
similarity, i.e.,, how many neighbors are shared among connected verticés.thit by taking into
account the connectivity around connected vertices idstéaonsidering just edge weights, we try
to overcome known drawbacks of single-linkage approacties) as the sensibility to outliers and
chaining effects. Le6G = (V, E) be a graph and :E — IR(J)r the edge weight function. Given two
connected vertice®1, v2) € E, their structural similarity takes values inDand is given by

n(v1, v2) = avg(v1, v2) COYv1, v2),
where avgvi, v2) is the weight mean among common neighbaoes,

2 weN@)N(g) @ 01, w) + 7 (v2, W)
IN(v1) N N (v2)]
and cosgv1, v2) is a cosine similarity based score given by

avg(vy, v2) =

26(01’ 1)2) + ZwGN(Ul)ﬁN(Dz) 0_(015 lU)U (025 ll))
\/1 + ZmeN(vl) o(v1, w)z\/l + ZUJEN(DZ) o (v2, w)z

with N(») being the set of neighbors aef. The term co&1,v2) measures how similar are the
two vertices with respect to common neighbors and respegt®ights. co@®1, v2) takes value 1.0
whenever the vertices; andv, share all neighbors, even if they are connected throughsedgh
low weights. Thus, we introduced the term &g v2) to distinguish common neighbors connected
through low weighted edges from common neighbors connéhtedgh high weighted edges.

Givene > 0, we say thatvy, v2) € E is acore edgsdf n(v1,v2) > ¢. A set of verticelxC C V
isacorein G if all » € C form a connected component composed only of core edges. &ystig
different values for > 0, we can enumerate the set of cores in a graph at differeoluteEms. By
considering the edges in decreasing order with respegite obtain a hierarchy of cores. This method
takesO(|E| max(A, log|V])) time, with A the maximum vertex degre@(|E|A) time to compute the

coqv1, v2) =

Copyright(© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@011;0:1-15
Prepared usingpeauth.cls

8 A. P. FRANCISCO, R. BAEZA-YATES AND A. L. OLIVEIRA @

similarity for each edge®(|E|log|V]) time to sort the edges in decreasing order; &{{E|) time to
obtain the hierarchical clustering.

L ocal Optimization

Given a hierarchy of cores, we take each core as a seed setepeéniorm a local optimization
step based on the local partition method proposed by Ch2dig This method takes a seed set and
uses a heat kerne2§] to expand it, which is a typical random walk and that was sihdéavprovide
good results 74]. Given a graphG, the transition probability matriXV of a typical random walk
on G is defined a3V = DA, whereA is the adjacency matrix o& (sinceG is undirected and
weighted, A is symmetric and its entries are the edge weights), Bng a diagonal matrix with
D,, = ZweN(v) o (v, w). The heat kernel is then definedex$'-, whereL = | —W with | the identity
matrix. The parametet > 0 is known as the temperature and it plays an important roteebeat
diffusion coefficient. We did several experiments and, imithhe scope of this paper, different values
of alpha do not change much the results. Thus, in what follewis equal to 10. Given a preference
vector pp obtained from a seed set, we use the following discrete appetion p, = po (I — %L)k,
wherek is the number of iterations. Yangt al. [26] used this approximation in a different context
and they proposed a heuristic to find the minimum number ohfitens for a given approximation
error threshold. In particular, if the graph is connecthdntp, converges to the stationary distribution.
However, we are not interested in this limiting distributibut rather in the distributions obtained
after a small number of steps. Given a seed set, we d@gnes the uniform distribution over the
seed set and we simulate several heat kernel steps, compplimprobability distributiong,,. After
each step, we sort the vertices in descending order acgptdithe degree-normalized probabilities
re(v) = pa(v)/d(v), whered(®) = >N o (v, w). This ordering defines a collection of sets
{Ci }f:l, whereCj = {vj | 1 < j < i} and¢ is the number of vertices such that (v) # 0. We select
the setC; that minimizes the conductance, also known Cheeger ratio,

a(C)

®(C) = min(Vol(C), Vol(V \ C))’

where the volumé&/ ol(C) and the cut sizé(C) are given by

VIC)=>" > o@,w) and aC)=> > o@ w),

veC weN() veC weN@®)\C

respectively. Note that conductance measures the facfidneoweight of the edges incident on a
clusterC that are connected to vertices outsidedgfbeing trivially minimized ifC is V. Although
conductance may not be enough for evaluating a completeeding (usually we need other measures
such as the sum of inter-cluster weigh&]), it has been shown to work well for single cluster
evaluation and local clustering optimization on scalefnetworks 24, 28], as is the case with the
click induced graph. Usually we are interested in a readeretpansion of the seed set. In this paper
we stop after finding the first local minimum. The cut sizes #m& volumes for all set€; can be
computed inO(Vol (C;)) time, by determining the change®@ due to the addition of vertex 1. This
process is referred to asaee(d 28].

Copyright(© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@011;0:1-15
Prepared usingpeauth.cls

% MINING QUERY LOG GRAPHS TOWARDS A QUERY FOLKSONOMY 9

) o e

=

3
S -
gl

saaoue

Ciglish
8 T college %,
ap s EF WY

X7

7
AN
Ion
lte
2
i@“\
S

Inforpg;

®

Py
webs

W dpes &.—’ga
W9 B
552
2] 2

{

9 TY 4
Sy, o Jobs
0/70"? Univer'sit;y i

("] & N
SO ‘\\“Q Z
c:% Windppyg %‘b‘.\ & & et =
g el g TS 4
S = %

=

Figure 3. Tag cloud for the giant component of the studied click induceghg The font size is proportional to
the tf-idf score for each term. This image was created with the help of //8rd

INDUCED QUERY FOLKSONOMY

A folksonomy is usually taken as content classification tiglotag annotation. Given a hierarchical
clustering on a graph, we show here how we obtain a folksonoyrgssociating to each node in the
hierarchy the most relevant terms,, the tags. Given a node in the hierarchical clustering seeh
association takes into account the queries in the leafseofiiderlying subtree. We identify the most
relevant terms for each internal node in the clusteringase®llows. We identify the level of the tree
for the given node and we compute the set of queries assd¢@memach node at that level by grouping
together all queries in the respective subtree. Moreoverjdentify the set of terms for each node
simply by inspecting the set of queries. Those sets of temusine our documents and we infer the
most relevant terms for each node by computing the tf-idfeséar each term in each document. Those
terms become the tags associated to the queries on that node.

Let Q be the set of queries an€;, ..., Cx}, with k € IN, a clustering ofQ for a given cut of the
hierarchical clustering. Formally, given a clus@rof closely related queries, we compute the tf-idf
score for each termwithin a clusterC, taking each cluster as a document. Then, for epehC, the
most relevant terms become their tags. Note that in paatidhis approach provides a tag cloud for
each cluste€. In Figure3, we can see the tag cloud for the biggest cluster we obtaireedior the
giant component of the click induced graph described befdkeare able to distinguish the meaning
of queries by identifying clusters at different levels,, cuts of the hierarchical clustering.

The folksonomy labels are selected by sorting the terms loyedsing relevance. We can either
select the first terms or just the ones scored above a giveshbid. The later approach may conduce
to unlabeled nodes, which we may prefer instead of bad guabtls. In particular, since click induced
graphs are scale-free and have a giant component, intexdesicorresponding to the giant component,

Copyright(© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@011;0:1-15
Prepared usingpeauth.cls

10 A. P. FRANCISCO, R. BAEZA-YATES AND A. L. OLIVEIRA @

Table I. Clustering statistics for different valuessgfwhereC is the set of non-singleton clustet$,is the set of

singleton clustersC denotes non-singleton clustefisjs the clustering average conductantgreis the number

of core verticeshnon.-singiS the number of queries in non-singleton clusters aydyapis the number of queries

in more than one cluster. The percentages refer to the increasing inrttieenaof non-singleton queries and to the

number of vertices in more than one cluster after optimization, resplctivee hierarchical clustering contains
1,348,088 distinct queries.

Ic| |avgiCl|max|CI| S| | ® | ncore | Mon-sing % |Noverlap %

0.0/174,400 7.73 861,903 0]0.00| 1,348,088 1,348,088 0.0 0 0.00
0.1|213,557 6.73 | 768,174 27,524/ 0.04(1,225,791 1,320,564 7.73114,723 8.68
0.2|228,550 6.38 (629,416 81,621/ 0.07|1,104,657 1,266,467 14.65181,833 14.36
0.3|224,683 5,58 |245,050 213,357 0.09| 962,193 1,134,731 17.98112,549 9.92
0.4/210,532 4.94 9,421) 346,550 0.08| 815,791 1,001,538 22.7Y 34,108 3.41
0.5/180,812 4.84 1,385 496,583 0.08| 656,720 851,505 29.6¢6 21,020 2.47
0.6|147,228 4.50 1,331 696,712 0.07| 507,507 651,376 28.3% 9,342 1.43
0.7|103,553 4.27 1,174| 909,602 0.05| 353,592 438,486 24.00 2,958 0.67
0.8| 82,701 3.62 235|1,049,4330.03| 254,514 298,655 17.3 619 0.21
0.9| 61,792 2.92 113/1,167,5210.01| 168,320 180,567 7.2 30 0.01
1.0| 48,547 2.29 14/1,237,0950.00, 110,993 110,993 0.0 0 0.00

or even to part of it, have bad quality labels which do not d¢pielevant semantic information - see
ahead.

EXPERIMENTAL EVALUATION

We applied the hierarchical clustering method describem/@tio the filtered click induced graph.
Given the results achieved on several experiments, as onegtibefore, the most relevant parameter
is the core threshold, which provides different cuts on the hierarchical clusigiand that we discuss
next. In Tabld we provide several statistics for different snapshots etilerarchical clustering. Since
we removed the singleton vertices from the graph, we areiderisg 1,348,088 vertices. The degree
distribution follows a degree power law and the graph costaigiant component, thus the giant cluster
for ¢ = 0 was expected and it coincides with the giant componentattiqular fore = 0, the clusters
are precisely the non-singleton connected componentgiartginal graph. Moreover, we can see that
the method effectively clusters the giant component. Fstaimce, withe = 0.4 the biggest cluster
is much smaller, about 1.1% of the original giant componBlatte also the low values for average
conductanceb, that core vertices are contained in non-singleton clasaed that the cores do not
overlap initially.

Semantic Contextualization

Although the clustering is effective, we obtain many smalisters at each level. These correspond
to loosely connected clusters that could appear connefcteel consider larger query logs. Many are

Copyright(© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@011;0:1-15
Prepared usingpeauth.cls

% MINING QUERY LOG GRAPHS TOWARDS A QUERY FOLKSONOMY 11

certification nasm

. - air and museum space
athletic trainer

air and dc museum national space washington

nasm

air dc museum national space washington

academy medicine national of sports
air and museum smithsonian space

air and museum national space

air museum smithsanian space washington

/.
K2 = &.
nas - Ny
%, =1 &
‘///;ﬁ' é’(t)?pé 2. o = USeUm
hl 'q;}/é % %‘é’/@@@ 7 . \@?Q
athletic Xoon &S

Figure 4. Two overlapping clusters in the hierarchical clustering aftexl loptimization and in a snapshot for
¢ = 0.5. Below we have the tag clouds for the full cluster (center) and for eatite overlapping clusters.

highly specific queries, such as “53545 clinic in janesvilerview wisconsin”, for which the search
engine returns a low number of results and where the useiclkemws what he wants. Navigational
queries also fall in this category, examples being “java@onvw” or “slashdot.org”.

From the overlaps we can infer relevant information abowrigs, namely about their ambiguity,
context, topics and term polysemy. As an example, let usidenthe overlap in Figuré. We see that
“nasm” appears in two different contexts, namely it is aroagm to both the National Air and Space
Museum and the National Academy of Sports Medicine.

The obtained clusters provided also interesting insighth vespect to web slang, namely term
polysemy and semantic relations. By just looking at theteluim Figure4, we can infer that NASM
has two possible meanings and that one of them should cotdedaf certification. By considering
terms within clusters, we can detect that for example “wimgslp “mouse” and “wine” are polysemic
terms. For instance, the term “wine” appears in severatetagogether with terms such as “napa”,
“food”, “magazine”, and “noir” relating it to beverages. Wever, we find at least one cluster where

Copyright(© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@011;0:1-15
Prepared usingpeauth.cls

12 A. P. FRANCISCO, R. BAEZA-YATES AND A. L. OLIVEIRA @

fights street video — iraqg war pictures

fights street video — iraqg helicopter civilian

fights street video — intelligence network homnel andsecurity
fights street video — tape caught fights

free — virus airlines anti — slow conputer virus
free — virus airlines anti — airlines airlines.com
free — virus airlines anti — virus anti free

tires goodyear bridgestone — firestone bridgestone tire
tires goodyear bridgestone — tires cooper dunlop

tires goodyear bridgestone — goodyear genini car

tires goodyear bridgestone — goodyear tires tire

tires goodyear bridgestone — tires bridgestone truck

Figure 5. Examples of label specialization for clusters which providetatsefinement for the query folksonomy.

it appears with terms such as “linux” and “windows”, clearyjating it to the Wine translation layer
for Unix like operating systems. An approach to identifymepolysemy is to compare the bag of
terms among overlapping clusters. Clearly, if a query isvia tlusters but they share few terms, then
the query shall be polysemic. Similarly, by analyzing sanilvords in the same cluster we can detect
misspellings.

Given the hierarchical clustering described above, wedhthié induced query folksonomy. Note
that the folksonomy we discuss here is entirely based onintaction through a search engine. We
do not add any other source of data in order to filter or impribvAs mentioned before, the click
induced graph is scale-free and has a giant component. Weuteththe tf-idf score for all clusters at
each level and the scores become meaningful only for 0.3. Fore < 0.3, the tf-idf score for the
giant component takes values between 0.05 and 0.07, andos$te@evant term is “free”. Thus, in our
discussion we focus on the categories with more queries addsters fore > 0.3, since they have
higher tf-idf scores and are more informative.

The folksonomy is rather different from usual taxonomiesthibecause of the click induced graph
structure and because of the type of categories found. Nemielreat in traditional taxonomies the topics
are selected beforehand, while we do not have any topicpeeifged. We observed that category paths
correspond most of the times to keywords meaningful forgysarch as trademarks. It is interesting
that, although we consider the undirected version of thekéhiduced graph, we are able to detect
query specialization through the hierarchical cluste(sae Figure).

Nevertheless, some of the categories are somewhat strBngénstance, the second group of
categories in Figuré joins anti-virus on computers with anti-virus on airlinde term virus makes
sense in both contexts, as it is usual to run such softwarempueters and biological virus are also
a current trend within flights and travels. However, suclegatization seems to be wrong and it may
occur because of some URL badly clicked.

Copyright(© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@011;0:1-15
Prepared usingpeauth.cls

% MINING QUERY LOG GRAPHS TOWARDS A QUERY FOLKSONOMY 13

Table II. Query distribution over the ODP top categories. In this table weenap of the 2,822,337 queries to a
single category, the category with highest score.

Category Queries % \ Category Queries %
Adult 105,123 3.72 News 7,672 0.27
Arts 367,702 13.03 Recreation 99,224 3.52
Business 141,512 5.01 Reference 56,112 1.99
Computers 157,313 5.57 Regional 605,483 21.45
Games 69,830 2.47 Science 83,100 2.94
Health 74,261 2.63 Shopping 86,758 3.07
Home 70,152 2.49 Society 187,106 6.63
Kids and Teens 50,539 1.79 Sports 80,522 2.85
World 282,110 10.00

Comparison with ODP

Evaluating the query classification is difficult since it iery different from traditional directories.
Nevertheless, human curated URL directories such as ODPpaaride good insights on query
classification. Note that URLs in these directories have@ated curated descriptions, based on
user interests, and that allow us to contextualize queriés some confidence. By querying these
descriptions, we are able to identify common categoriedifterent queries, reflecting query similarity
even when such queries do not share any term. Thus, in thi®sewe try to compare the query
classification with ODP categories in order to understand liferent are these two ways of
expressing knowledge. We map all queries over the ODP cagsgobtaining several category paths
for each query. Then we compare the ODP paths with the indiotlesbnomy.

Since we had millions of queries, we had to perform such nmappifline. We downloaded the ODP
data, available at http://www.dmoz.org, and we fed it tocalanstallation of the Lucene search engine,
available at http://lucene.apache.org. The ODP data stusof a large set of URL entries, each one
with a category, a title and a description. The ODP data setamsidered for this paper contains
4,595,111 URL entries and 763,535 distinct categories. Wk each URL entry as a document and
we indexed all fields,e., URL, category, title and description snippet. Lucene wadigured to search
over all fields and, for each query, to return several categoanked by relevance. We used the default
Lucene scoring function, which combines the Vector SpacddéViand the Boolean Model to determine
the relevance of document8d. Note that we did not obtain categories to all queries. Bypatting
Tablell, we see that 297,818 queries, 10.55%, were not mapped. Ibmpare with the click induced
graph, we have that 67% of these queries are singleton gudi@eover, 68% of the queries with a
score lower than 1.0 as reported by Lucene are also singigteries in the click induced graph. This
is consistent with our observations about the singletomigsiethat many of them are ambiguous and
uninformative.

Copyright(© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@011;0:1-15
Prepared usingpeauth.cls

14 A. P. FRANCISCO, R. BAEZA-YATES AND A. L. OLIVEIRA @

0.8 i

0.6 +| 1

[T+]
[T+ 1]
[T+]
I E
I CE
[T+ 1]

02 i

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 T

Figure 6. ODP score statistics for the 1000 biggest clusters at diffenapishot levels,e., different values of.
For each snapshot, the box plot detailsdhg, minimum (), the lower, median, and upper quartile, the maximum
(*) and the mean).

The folksonomy labels are not comparable to the categaritteei ODP mapping since they are not
topic based. Thus, we evaluate the clusters by comparingdahenon ODP path prefix among the
queries. Given two querieg andqy, we select the two most similar ODP category pathsnd p2,
i.e., the ones which share the longest common prefix, p2). Then we compute the score

|7 (p1, P2)|
max{| pal, | p2l}’

where| - | denotes the path length. The ODP score for a given clustaeiaverage of the scomggp
for all pairs of queries in that cluster.

For all snapshots of the hierarchical clustering at difiek@lues of:, more than 50% of the clusters
have an ODP score higher than 0.5. Since we do not obtain OBarées for all queries, many
clusters have an ODP score of 0.0. In our experiments, dépgod the value of, we have 16% to
30% of clusters with an ODP score equal to 0.0. We also havet8®%% of the clusters with an ODP
score equal to 1.0. It is interesting that these clustersml in the number of queries and that they
appear independently ef Thus, we may infer that either these clusters are well deforehey are
meaningless. It is interesting that this fact supports eevipus observation that these clusters usually
consist of either navigational queries or ambiguous andfarnative queries.

oodp(P1, P2) =

Copyright(© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@011;0:1-15
Prepared usingpeauth.cls

% MINING QUERY LOG GRAPHS TOWARDS A QUERY FOLKSONOMY 15

In order to analyze the remaining clusters, we select th® Hifgest clusters at different depths,
i.e, for different values ok. Note that, fore < 0.9, the number of clusters with an ODP score of
either 0.0 or 1.0 among the 1000 selected is 0%. Figutepicts the ODP score values for the 1000
biggest clusters at different snapshot levels. Note alabttie first snapshots have a higher average
score, because far < 0.3 exists a giant component and the remaining clusters dnerramall. As
we mentioned before, the giant component vanishes: for 0.3. Thus, after we cluster the giant
component, the score increases with the hierarchicalezingt depth, revealing that clusters at higher
depths have better quality. This is also supported by tiaf geores.

FINAL REMARKS

Queries submitted to search engines can be viewed as arssxpref the knowledge of the users.
In this paper we discuss how to infer a query folksonomy tglothe efficient analysis of large query
logs and, in particular, of click induced graphs. First wecdissed how to filter out noise caused, for
instance, by multi-topical URLSs, proposing a new methoddtedt such URLs based on the analysis
of the queries for which URLs were clicked. Second we devasdiapplied a hierarchical clustering
method for weighted graphs. This method was shown to betie#eand the results revealed effective
semantic relations between queries. By building an indfimédonomy, we were able to identify query
contextualization and specialization. Another interegtiesult is the fact that our approach, based only
on click-through data generated by the users, provides g glessification much different from the
one expected by traditional directories. This points out hard is query classification and how highly
relevant is the implicit knowledge found in query logs.

Although it was not the main aim of this paper, the resultsdesed can be used to improve real-
time query recommendation and query contextualizatioo,jimportant practical problems that current
search engines have to deal with. Using our approach, geegmmendation on a search engine can
be improved by providing better contextualization of recoemdations, avoiding the bias to common
terms and allowing the suggestion of relevant but less gagterms. The hierarchical clustering takes
here an important role since it enables the system to refmeltistering around a given query and,
because of the chosen local optimization, it can providealamtzed clusters revealing less frequent
contexts. Given a query, we can apply the local optimizasiep starting with it (or with a suitable set
of queries) and, thus, detect a local cluster. Then, we campate a tag cloud as in FiguBsor just the
tags ranking and select the most relevant ones. Neverthelescan reach a situation as in Figdre
where the query “nasm” belongs to two clusters and, cleadimple local optimization will be not able
to detect them. Note that distinguishing different clust@rthese cases is of great importance, since
they provide a richer contextualization. As we discusseithis paper, this problem can be addressed
through core enumeration, which combined with local optation provides a solution. In this context,
it is important to recall that the proposed hierarchicastduing method take® (|E| max(A, log|V|))
time, with A the maximum vertex degreee., O(|E|A) time to compute the structural similarity for
all pairs of connected vertice®(|E|log|V]) time to sort the edges in decreasing order, &{(E|)
time to obtain the hierarchical clustering. The local ojtation of each cor€ takesO (Vol(C)) time.
Thus, given that the click induced graph is scale-free, tlegage time for computing the structural
similarity is much less tha® (|E|A) and the method is usually much faster. With respect to space
requirements, we just need to store the graph and the weightsan be efficiently done using succinct

Copyright(© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@011;0:1-15
Prepared usingpeauth.cls

16 A. P. FRANCISCO, R. BAEZA-YATES AND A. L. OLIVEIRA @

data structures3[]. We should also note that, for the log piece analyzed, sisteere run in a common
laptop in a few hours. Since the methods are easily pawlale, we are able to analyze much larger
logs on high-end systems.

The query log studied here is just a case study and the gudlitiie results can be improved
by incorporating more data.e., by using larger logs, since more data will consolidate #lations
obtained. The efficiency of the proposed methods makes tippiicable to much larger graphs, thus
making them suitable for the analysis of larger logs andtieraxtraction of semantic relations from
less frequent queries. Keeping applications on sight, iinjgortant to note that both the edges and
the queries have probabilities associated and providetdépierarchical clustering algorithm. Thus,
we have confidence measures that are crucial to rank théoredaamong queries and their cluster
membership.

REFERENCES

1. Baeza-Yates RA, Tiberi A. Extracting semantic relationsf query logsSIGKDD, ACM, 2007; 76-85.
2. Francisco AP, Baeza-Yates R, Oliveira AL. Clique analysfi query log graphsSPIRE’08 LNCS vol. 5280, Springer,
2008; 188-199.
3. Francisco AP, Baeza-Yates R, Oliveira AL. Mining largeeguinduced graphs towards a hierarchical query folksonomy.
String Processing and Information Retrieyaécture Notes in Computer Scieneel. 6393, Springer, 2010; 238-243.
4. Wen J, Mie J, Zhang H. Clustering user queries of a seargmerProc. of the 10th International World Wide Web
ConferenceW3C, 2001.
5. Baeza-Yates R. Applications of web query miniegropean Conference on Information Retrieval (ECIR;@3CS vol.
3408, Springer, 2005; 7-22.
6. Beeferman D, Berger A. Agglomerative clustering of a seargine query logSIGKDD, ACM, 1999.
7. Zaiane OR, Strilets A. Finding similar queries to satiggrehes based on query tradefficient Web-Based Information
Systems (EWIS2002.
8. Baeza-Yates R, Hurtado C, Mendoza M. Query clusteringpéasting web page rankingdvances in Web Intelligence
(AWIC’04), LNCS vol. 3034, Springer, 2004; 164-175.
9. Baeza-Yates R, Hurtado C, Mendoza M. Query recommendasiog guery logs in a search engieDBT Workshops
LNCS vol. 3268, Springer, 2004; 588-596.
10. Shen D, Qin M, Chen W, Yang Q, Chen Z. Mining Web Query Higrges from Clickthrough Dat&AAAI'07, AAAI Press,
2007; 341-346.
11. Chuang SL, Chien LF. Towards automatic generation ofyqaeonomy: A hierarchical query clustering approa&tE
International Conference on Data MinintEEE, 2002.
12. Chuang SL, Chien LF. Automatic query taxonomy generatonnformation retrieval application©nline Information
Review2003;27(5).
13. Chuang SL, Chien LF. Enriching web taxonomies througlesticategorization of query terms from search engine logs.
Decision Support Syste?003;30(1).
14. PuHT, Chuang SL, Yang C. Subject categorization of qtezryis for exploring web users’ search intere3#SIST2002;
53(8).
15. Cheng PJ, Tsai CH, Hung CM, Chien LF. Query taxonomy gé¢inertor web search (posterIKM, 2006.
16. Dupret G, Mendoza M. Automatic query recommendation usliog-through datalFIP World Computer Congress
(WCC’'06) Springer, 2006.
17. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU. Coexphetworks: structure and dynamiéxysics Reports
2006;424(4-5):175-308.
18. Fortunato S. Community detection in grapPbysics Report8010;486:75-174.
19. Baumes J, Goldberg M, Magdon-Ismail M. Efficient identifima of overlapping communitiedEEE International
Conference on Intelligence and Security Informatics (I3005; 27—-36.
20. Lancichinetti A, Fortunato S, Ké&sz J. Detecting the overlapping and hierarchical communitictsire in complex
networks.New J. Phys2009;11.
21. Leskovec J, Lang KJ, Dasgupta A, Mahoney MW. Communitycaire in large networks: Natural cluster sizes and the
absence of large well-define clustergernet Mathematic2009;6(1):29-123.

Copyright(© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@011;0:1-15
Prepared usingpeauth.cls

@ MINING QUERY LOG GRAPHS TOWARDS A QUERY FOLKSONOMY 17

22. Wei F, Qian W, Wang C, Zhou A. Detecting Overlapping ComrtyuSiructures in Networksworld Wide Wel2009;
12(2):235-261.

23. Zhang S, Wang RS, Zhang XS. Identification of overlapgiommunity structure in complex networks using fuzzy c-
means clustering?hysica A: Statistical Mechanics and its Applicati@®07;374(1):483—-490.

24. Chung F. The heat kernel as the pagerank of a grBpoceedings of the National Academy of Scieng2é87;
104(50):19 735.

25. Chung FRK, Yau ST. Coverings, heat kernels and spanreeg Electr. J. Comb1999;6.

26. Yang H, King I, Lyu MR. Diffusionrank: a possible peniiilfor web spammingSIGIR’07, ACM, 2007; 431-438.

27. Kannan R, Vempala S, Vetta A. On clusterings: Good, badspadtralJournal of the ACM2004;51(3):497-515.

28. Andersen R, Lang KJ. Communities from seed $¥tsld Wide Web (WWW’'0GACM, 2006; 223-232.

29. Gospodnetic O, Hatcher E, McCandlesslMcene in Actionsecond edn., Manning Publications, 2009.

30. Boldi P, Vigna S. The webgraph framework |: compressiohngpiesWorld Wide Web (WWW’04ACM, 2004; 595-602.

Copyright(© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp@011;0:1-15
Prepared usingpeauth.cls

