
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper.2011;0:1–15 Prepared usingcpeauth.cls [Version: 2002/09/19 v2.02]

Mining query log graphs
towards a query folksonomy

A. P. Francisco1,†,∗, R. Baeza-Yates2 and A. L. Oliveira1

1 INESC-ID
/

CSE Dept, IST, Tech Univ of Lisbon, Portugal
2 Yahoo! Research Barcelona, Spain & Santiago, Chile

SUMMARY

The human interaction through the web generates both implicit and explicit knowledge. An example of
an implicit contribution is searching, as people contribute with their knowledge by clicking on retrieved
documents. When this information is available, an important and interesting challenge is to extract relations
from query logs, and, in particular, semantic relations between queries and their terms. In this paper we
present and discuss results on query contextualization through the association of tags to queries, i.e., query
folksonomies. Note that tags may not even occur within the query. Our results rely on the analysis of large
query log induced graphs, namely click induced graphs. Results obtained with real data show that the
inferred query folksonomy provide interesting insights both on semantic relations among queries and on
web users intent.

KEY WORDS: query folksonomies; query log analysis; graph mining; knowledge discovery

INTRODUCTION

Nowadays the Web is the biggest representation of human knowledge, where people contribute with
content either explicitly or implicitly. An example of an implicit contribution is searching, as people
contribute with their knowledge by clicking on retrieved documents. Thus, queries submitted to search
engines carry implicit knowledge and they can be seen as equivalent to tags associated to clicked
documents. An interesting challenge is then to extract relevant semantic relations from query logs,
which have several interesting applications. For instance, ranking algorithms, query recommendation
systems and advertisement systems integrate such semanticinformation to improve their results.

In this paper we discuss query classification, tagging and meaning. Queries have usually less than
three words, which may have several different meanings. Themain problem is then how to identify and
distinguish the different meanings of a given query, which we address here through a query folksonomy.
A folksonomy is usually taken as content classification within a given domain through collaborative tag

∗Correspondence to: INESC-ID, Rua Alves Redol 9, 1000-029 Lisboa, PORTUGAL
/

E-mail: aplf@ist.utl.pt
†Work done while visiting Yahoo! Research Barcelona.

Copyright c© 2011 John Wiley & Sons, Ltd.

2 A. P. FRANCISCO, R. BAEZA-YATES AND A. L. OLIVEIRA

annotation. Folksonomies become widespread in recent years as part of many social Web applications,
where users can collectively classify and annotate resources. It turns out that users implicitly provide
tags while searching, namely URL tags that lead to an implicit URL folksonomy. In this context we
take a step further and obtain a query folksonomy,i.e., we associate tags to queries based on common
clicked URLs. Note that in our work, although we use common clicked URLs, we only use terms from
queries as tags. Note that this is rather different from URL tagging or URL folksonomies. We use click-
data to infer relationships and similarities among queries. Then, by finding closely related queries and
relevant terms, we are able to define a hierarchical query folksonomy by associating tags to queries.
As we should see, this approach may associate a tag to a query even if that tag does not make part of
the query, leading to query contextualization, an important feature for query recommendation systems.
Moreover, by providing a hierarchical query folksonomy, wehave a fine-grained query categorization,
being able to distinguish queries at different category levels and to identify query specializations.

Our approach relies on graphs to represent relations both among queries and between queries and
URLs. We start with the bipartite graph of queries and URLs, where a queryq and an URLu are
connected if a user clicked in the URLu that was an answer for the queryq. We also know how many
times a given URLu was clicked for each query and, thus, we weight each edge accordingly to click
frequency. A second graph has queries as nodes and we add an edge between two queries whenever
they share at least a common clicked URL. Each edge is also weighted by computing a similarity score
between queries, such as a vector representation of the queries in the high dimensional space of all
unique URLs. A more frequent approach is to define a similarity measure among queries ignoring the
common clicked URLs. However it is more difficult to understand why queries are similar and it can
add noise to data already noisy.

Within this line of work, graph mining techniques are crucial to uncover relations in query graphs.
According to SearchEngineWatch.com, the number of queriesof large search engines per day is of the
order of hundreds of millions. By considering just a one day query log, the query graph would have
tens of billion edges. Thus, analyzing such huge graphs is a hard task, that becomes even harder if we
take into account similarity weights on the edges. On the other hand, the number of potential relations
and their applications is huge.

Our study follows recent works on the analysis of query graphs [1, 2], which introduce the notion of
click induced graph and present several results concerningsemantic relations among queries. Here we
propose three main contributions. First, given the existence of noisy relations among queries mostly
caused by multi-topical URLs, we start by discussing how to detect such URLs, proposing a new
heuristic. Second, we study how recent results on graph clustering can improve the extraction of
semantic relations from query graphs and contribute to query classification. We tackle the problem
of clustering click induced graphs, namely we discuss an efficient hierarchical clustering method for
these large weighted graphs. We use a well known local optimization approach applied to seed sets,
that may however fail if we choose the wrong seeds. Thus, we propose a suitable core enumeration
procedure to select seed sets. Third, given a hierarchical clustering, we discuss the inferred semantic
relations among queries and how the clustering can induce a query folksonomy. Note that although
folksonomies are not usually hierarchical, in our case label specialization allows the creation of a
hierarchical folksonomy. To evaluate our approach we use a sample of a query log of Yahoo! search
engine and we compare our results with a query classificationobtained by mapping queries over the
Open Directory Project (ODP) categories. The idea is to analyze how much of the knowledge expressed
in queries is different from traditional topic classification.

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.2011;0:1–15
Prepared usingcpeauth.cls

MINING QUERY LOG GRAPHS TOWARDS A QUERY FOLKSONOMY 3

This is an extended and revised version of a preliminary workalready published [3].

RELATED WORK

Query logs record all the interactions of users with a searchengine and, thus, they constitute an
invaluable resource of information about users behaviour and wisdom. In the recent years there has
been an increasing amount of literature on studying properties, models, and algorithms for query-log
data analysis. In this context, query similarity analysis has been shown to be extremely effective for
unveiling user querying patterns and interests, with several applications such as query recommendation
systems and other real time applications. Most of the work onquery similarity is related to query
expansion or query clustering. Here we mention only the mostclosely related papers to our work.

Clustering similar queries is a common task in many applications such as query recommendation
systems. Wenet al [4] proposed to cluster similar queries using four notions of query distance: (1)
based on keywords or phrases of the query; (2) based on stringmatching of keywords; (3) based on
common clicked URLs; and (4) based on the distance of the clicked documents in some predefined
hierarchy. As the average number of words in queries is smalland the number of clicks in the answer
pages is also small [5], notions (1) and (2) generate distance matrices that are very sparse. For notion
(4) we need a concept taxonomy and the clicked documents mustbe classified into that taxonomy as
well, something that usually requires direct human intervention and that cannot be done in a large scale.
Although notion (3) can generate also sparse distance matrices, the sparsity can be greatly reduced by
using large query logs. Previous works have used notion (3),such as Befferman and Berger [6], or even
variants combining (1) and (3) as well as other simpler features such as in Zaiane and Strilets [7].

Baeza-Yateset al. [8, 9] used the content of clicked Web pages to define a term-weightvector model
for a query. They consider terms in the URLs clicked after a query. Each term is weighted according to
the number of occurrences of the query and the number of clicks of the documents in which the term
appears. Then, the similarity of two queries is equivalent to the similarity of their vector representations,
using the cosine distance function. This notion of query similarity is based on common clicked URLs
as (3) and has several advantages. First, it is simple and easy to compute. On the other hand, it makes it
possible to relate queries that happen to be worded differently but stem from the same topic. Therefore,
semantic relationships among queries are captured. More recently, Shenet al. [10] also used the notion
(3) to cluster similar queries and build a query taxonomy. AsBaeza-Yateset al., they also consider the
terms in the clicked documents instead of the terms in the queries. In this paper we represent each query
in a high dimensional space, where each dimension corresponds to a unique URL, and the weights are
defined accordingly to click frequency. This notion of similarity uses common clicked URLs and it
was introduced by Baeza-Yates and Tiberi [1] to analyze a very large query log. They define semantic
relations such as equivalence or specificity based on different set conditions among the set of clicked
URLs. Using the ODP they found a precision up to 83% on the relations discovered and also that the
ones not found were too specific to appear in ODP. More recently, we [2] have further studied the query
graph generated by such similarity relations and we found that even a simple clustering approach can
produce interesting results. In the present paper we further improve these results.

The work by Chuanget al. [11, 12, 13, 14] also uses query logs to build a query taxonomy to also
cluster answers. However they do not use any user feedback, like user clicks. This idea of building
a taxonomy based on queries is extended in [15], but this is not the same as building a taxonomy of

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.2011;0:1–15
Prepared usingcpeauth.cls

4 A. P. FRANCISCO, R. BAEZA-YATES AND A. L. OLIVEIRA

Figure 1. Edge weight statistics. The box plot details the minimum at 0.0, the lower quartile at 0.132, the median
at 0.273, the upper quartile at 0.5, the maximum at 1.0 and the mean at 0.352.

the queries, which is what we call a query taxonomy or folksonomy. Later, Dupret and Mendoza [16]
used the rank of clicked URLs to define relations among queries. They recommend better queries by
generating query relations that can be associated to parts of a query taxonomy.

CLICK INDUCED GRAPH

LetQ be the set of queries andU be the set of URLs. Given a queryq ∈ Q, the cover ofq is the set of
URLs clicked byq. Let µ:Q → 2U be a function that maps each queryq to its cover setµ(q) ⊆ U .
Theclick induced graph G= (V, E) is an undirected graph with queries as nodes and where existsan
edge between two queries whenever they share at least one common clicked URL. Formally,V = Q

andE ⊆ V × V is such that(q1, q2) ∈ E if and only if µ(q1) ∩ µ(q2) 6= ∅.
In what follows we will refer to the weighted click induced graph. Edges are weighted accordingly

to the cosine similarity of the queries they connect. Thus, for (q1, q2) ∈ E, the weight is given by

σ(q1, q2) =

∑

u∈µ(q1)∩µ(q2)
ρ(q1, u)ρ(q2, u)

√

∑

u∈µ(q1)
ρ(q1, u)2

√

∑

u∈µ(q2)
ρ(q2, u)2

,

whereρ Q × U → 0, 1 is a function such thatρ(q, u) is the frequency ratio with which the URLu
was clicked for the queryq.

Data Set

For experimental evaluation we considered a query log piecefrom the Yahoo! search engine. The
data was collected in April 2005 and contains 2,822,337 queries with at least one clicked URL and
4,927,980 different URLs. From these, only 660,910 URLs were clicked for more than one query and
these are the relevant ones since we are interested in commonclicked URLs. On average, each query
has 2.39 distinct clicks and each URL is clicked by 1.37 distinct queries. Both click distributions, per
query and per URL, follow a power law, with exponents 3.50 and2.59, respectively. Queries comprise
554,380 different terms.

The click induced graph for this data set has as many verticesas queries,i.e., 2,822,337 vertices,
and 359,881,327 edges. The degree distribution follows a power law with exponent 1.50 and the
weights are distributed as depicted in Figure1, showing many noisy edges. The graph has 1,568,617

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.2011;0:1–15
Prepared usingcpeauth.cls

MINING QUERY LOG GRAPHS TOWARDS A QUERY FOLKSONOMY 5

connected components, the giant component contains 81,156vertices, about 34.8% of the vertices,
and 1,407,321 components are singleton vertices. The giantcomponent is very dense, with the second
smallest connected component having only 64 vertices.

Noisy Edges Detection and Removal

The main purpose of the click induced graph is to represent semantic relations between queries and to
enable knowledge extraction. Semantic relations can however have low quality introducing noise. In
what concerns the edge weights for the studied query log, we have that about 75% of edges are weighted
with values below 0.5 and 50% with values below 0.273. Thus, there are many connections between
queries which are not much similar. Most of this connectionsare due to URLs covering dubious topics,
several topics or very general topics. These URLs are usually denoted as multi-topical, being examples
many e-commerce and directory sites.

An approach to remove noise is to ignore contributions from multi-topical URLs. Baeza-Yates and
Tiberi [1] suggested that multi-topical URLs are the ones that contribute more to edges with low
weights. Then, we regenerate the click induced graph ignoring such URLs. Although this approach
reduces the graph size removing the noise, we observed that URLs which contribute more to low
weighted edges also may contribute more to high weighted edges. Moreover, we also observed a strong
positive correlation between the number of queries coveredby a URL and the number of contributions
to edge weights. In Figure2 we plot the geometric mean of the URLs weight contribution versus their
size for our query log data. These results are due to the high number of queries for which a given
multi-topical URL is the only clicked URL, generating many high weighted relations in the graph.

To solve this problem, we considered as documents the terms among the set of queries covered by
each URL. Letµ−1:U → 2Q be the “inverse” functionµ that maps each URLu to its coverable set of
queriesµ−1(u) ⊆ Q. The set of queriesµ−1(u) was taken as a documentdu associated to each URLu
and, then, we computed the tf-idf score for each term and for each document as usual. We observed that
multi-topical URLs have a low average tf-idf score. This is true even when we select the high related
queries for which those URLs were clicked. Therefore, we propose to compute the maximum tf-idf
among the bag of terms associated to each URL and select the URLs with lowest score as multi-topical
candidates. In Figure2 we depict the maximum tf-idf score against URL coverage sizefor the query
log analyzed. As we discuss ahead, this approach effectively reduces the size of the graph keeping its
properties, such as the size of the giant component and the weight distribution. We should note that
this is consistent with previous results [1].

Next, we sorted the URLs by the maximum tf-idf score and we regenerate the click induced graph
ignoring 0.05% of the URLs with lowest score, namely ignoring the 330 URLs with lowest tf-idf score.
In Figure2 we provide the distribution of tf-idf scores for the analyzed query log and, by selecting just
0.05% of the URLs we are filtering the click induced graph in a conservative way. Note that many of
the selected URLs have a large coverage and, maybe unexpectedly, they are not spam URLs.

The resulting click induced graph has 23,177,430 edges, about 6.44% of the size of the full click
induced graph. Since we continue having low weighted edges,we remove 10% of the edges with
lowest score, all of them having a weight lower than 0.043. Thus, the filtered click induced graph
has 20,974,257 edges and 1,648,649 connected components. The giant component contains 861,903
vertices and the second smallest connected component has only 64 vertices. There are now 1,474,249
singleton vertices. The degree distribution follows a power law with exponent 1.65. Therefore the

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.2011;0:1–15
Prepared usingcpeauth.cls

6 A. P. FRANCISCO, R. BAEZA-YATES AND A. L. OLIVEIRA

Figure 2. On left, URL weight contribution geometric mean versus URL coverage sizen. On right, given the set
of terms associated to the queries covered by each URL, URL maximum tf-idf score versus URL coverage sizen.

approach to remove noise and multi-topical URLs dramatically reduces the size of the click induced
graph, which becomes much more sparse while keeping its corestructure almost unchanged. This
is an important fact since we can effectively reduce the noise without losing much information [1].
Moreover, we can neglect the effect of this filtering technique on the final clustering since, as we
discuss later, the hierarchical clustering only becomes interesting for thresholds on weights above 0.1.

HIERARCHICAL CLUSTERING IN GRAPHS

One of the hardest problems in graph mining is detecting graph community structure or graph
clustering. The notion of community and the first formalizations of the concept have been proposed in
the social sciences. Usually, communities are groups of vertices such that the number of edges within
the groups is higher than the number of edges among differentgroups. The general aim of community
finding and graph clustering methods is to detect meaningfuldivisions by inspecting the structure of
the network. This problem has recently attracted a large interest and, for a deep review on this topic,
we refer the reader to a review on complex networks by Boccaletti et al. [17] or a more recent survey
on community finding by Fortunato [18].

In this paper we follow a two stage approach. We find a set of seed sets and, then, we apply a well
known local optimization method. Several methods have beenproposed based on the optimization of

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.2011;0:1–15
Prepared usingcpeauth.cls

MINING QUERY LOG GRAPHS TOWARDS A QUERY FOLKSONOMY 7

a given score [19, 20, 21, 22, 23], in particular to detect overlapping clusters based on global partition
and local expansion [21, 22]. As pointed out by several authors, the main problem is how to choose
seed sets. Usually, a well known spectral partitioning method is used to generate seed clusters, for
instance multilevel bisection. Although the results are promising, such approaches inherit some of the
drawbacks of standard multilevel methods when we are looking for overlapping communities. This
problem becomes even harder when we have weighted graphs. Tosolve this problem, we propose a
core enumeration method based on a vertex similarity score,where a core is a densely connected sub-
graph which usually occurs within communities or clusters and that, by local optimization, leads to the
full cluster.

Finding Cores

We could define the initial seed sets by taking many differentapproaches. Since we are interested in
forming clusters of similar queries, a simple approach could be thresholding the edge weights. Another
approach could be find the nearest neighbors. But we know thatan URL may induce a clique in the
graph and, in particular, it can induce a clique with high weights. If we follow the simple approach
we could join two cliques even if they are connected by a single edge,i.e., chaining effects may occur.
Thus we take a different approach where not only weights are considered, but also vertex structural
similarity, i.e., how many neighbors are shared among connected vertices. Note that by taking into
account the connectivity around connected vertices instead of considering just edge weights, we try
to overcome known drawbacks of single-linkage approaches,such as the sensibility to outliers and
chaining effects. LetG = (V, E) be a graph andσ :E −→ IR+

0 the edge weight function. Given two
connected vertices(v1, v2) ∈ E, their structural similarity takes values in 0, 1 and is given by

η(v1, v2) = avg(v1, v2) cos(v1, v2),

where avg(v1, v2) is the weight mean among common neighbors,i.e.,

avg(v1, v2) =

∑

w∈N(v1)∩N(v2)
σ(v1, w) + σ(v2, w)

|N(v1) ∩ N(v2)|

and cos(v1, v2) is a cosine similarity based score given by

cos(v1, v2) =
2σ(v1, v2) +

∑

w∈N(v1)∩N(v2)
σ(v1, w)σ (v2, w)

√

1 +
∑

w∈N(v1)
σ(v1, w)2

√

1 +
∑

w∈N(v2)
σ(v2, w)2

,

with N(v) being the set of neighbors ofv. The term cos(v1, v2) measures how similar are the
two vertices with respect to common neighbors and respective weights. cos(v1, v2) takes value 1.0
whenever the verticesv1 andv2 share all neighbors, even if they are connected through edges with
low weights. Thus, we introduced the term avg(v1, v2) to distinguish common neighbors connected
through low weighted edges from common neighbors connectedthrough high weighted edges.

Given ε > 0, we say that(v1, v2) ∈ E is a core edgeif η(v1, v2) ≥ ε. A set of verticesC ⊆ V
is acore in G if all v ∈ C form a connected component composed only of core edges. By choosing
different values forε > 0, we can enumerate the set of cores in a graph at different resolutions. By
considering the edges in decreasing order with respect toη, we obtain a hierarchy of cores. This method
takesO(|E| max(1, log |V |)) time, with1 the maximum vertex degree:O(|E|1) time to compute the

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.2011;0:1–15
Prepared usingcpeauth.cls

8 A. P. FRANCISCO, R. BAEZA-YATES AND A. L. OLIVEIRA

similarity for each edge;O(|E| log |V |) time to sort the edges in decreasing order; andO(|E|) time to
obtain the hierarchical clustering.

Local Optimization

Given a hierarchy of cores, we take each core as a seed set and we perform a local optimization
step based on the local partition method proposed by Chung [24]. This method takes a seed set and
uses a heat kernel [25] to expand it, which is a typical random walk and that was shown to provide
good results [24]. Given a graphG, the transition probability matrixW of a typical random walk
on G is defined asW = D−1A, whereA is the adjacency matrix ofG (sinceG is undirected and
weighted, A is symmetric and its entries are the edge weights), andD is a diagonal matrix with
Dvv =

∑

w∈N(v) σ(v,w). The heat kernel is then defined ase−αL , whereL = I −W with I the identity
matrix. The parameterα > 0 is known as the temperature and it plays an important role asthe heat
diffusion coefficient. We did several experiments and, within the scope of this paper, different values
of alpha do not change much the results. Thus, in what follows, α is equal to 1.0. Given a preference
vector p0 obtained from a seed set, we use the following discrete approximation pα = p0

(

I − α
k L

)k,
wherek is the number of iterations. Yanget al. [26] used this approximation in a different context
and they proposed a heuristic to find the minimum number of iterations for a given approximation
error threshold. In particular, if the graph is connected, thenpα converges to the stationary distribution.
However, we are not interested in this limiting distribution but rather in the distributions obtained
after a small number of steps. Given a seed set, we definep0 as the uniform distribution over the
seed set and we simulate several heat kernel steps, computing the probability distributionspα. After
each step, we sort the vertices in descending order according to the degree-normalized probabilities
rα(v) = pα(v)/d(v), whered(v) =

∑

w∈N(v) σ(v,w). This ordering defines a collection of sets

{Ci }
ℓ
i=1, whereCi = {v j | 1 ≤ j ≤ i } andℓ is the number of verticesv such thatr (v) 6= 0. We select

the setCi that minimizes the conductance, also known Cheeger ratio,

8(C) =
∂(C)

min(Vol(C), Vol(V \ C))
,

where the volumeV ol(C) and the cut size∂(C) are given by

Vol(C) =
∑

v∈C

∑

w∈N(v)

σ(v,w) and ∂(C) =
∑

v∈C

∑

w∈N(v)\C

σ(v,w),

respectively. Note that conductance measures the faction of the weight of the edges incident on a
clusterC that are connected to vertices outside ofC, being trivially minimized ifC is V . Although
conductance may not be enough for evaluating a complete clustering (usually we need other measures
such as the sum of inter-cluster weights [27]), it has been shown to work well for single cluster
evaluation and local clustering optimization on scale-free networks [24, 28], as is the case with the
click induced graph. Usually we are interested in a reasonable expansion of the seed set. In this paper
we stop after finding the first local minimum. The cut sizes andthe volumes for all setsCi can be
computed inO(Vol(Ci)) time, by determining the change toCi due to the addition of vertexvi+1. This
process is referred to as asweep[28].

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.2011;0:1–15
Prepared usingcpeauth.cls

MINING QUERY LOG GRAPHS TOWARDS A QUERY FOLKSONOMY 9

Figure 3. Tag cloud for the giant component of the studied click induced graph. The font size is proportional to
the tf-idf score for each term. This image was created with the help of WordleTM .

INDUCED QUERY FOLKSONOMY

A folksonomy is usually taken as content classification through tag annotation. Given a hierarchical
clustering on a graph, we show here how we obtain a folksonomyby associating to each node in the
hierarchy the most relevant terms,i.e., the tags. Given a node in the hierarchical clustering tree,such
association takes into account the queries in the leafs of the underlying subtree. We identify the most
relevant terms for each internal node in the clustering treeas follows. We identify the level of the tree
for the given node and we compute the set of queries associated to each node at that level by grouping
together all queries in the respective subtree. Moreover, we identify the set of terms for each node
simply by inspecting the set of queries. Those sets of terms become our documents and we infer the
most relevant terms for each node by computing the tf-idf score for each term in each document. Those
terms become the tags associated to the queries on that node.

Let Q be the set of queries and{C1, ..., Ck}, with k ∈ IN , a clustering ofQ for a given cut of the
hierarchical clustering. Formally, given a clusterC of closely related queries, we compute the tf-idf
score for each termt within a clusterC, taking each cluster as a document. Then, for eachq ∈ C, the
most relevant terms become their tags. Note that in particular this approach provides a tag cloud for
each clusterC. In Figure3, we can see the tag cloud for the biggest cluster we obtained,i.e., for the
giant component of the click induced graph described before. We are able to distinguish the meaning
of queries by identifying clusters at different levels,i.e., cuts of the hierarchical clustering.

The folksonomy labels are selected by sorting the terms by decreasing relevance. We can either
select the first terms or just the ones scored above a given threshold. The later approach may conduce
to unlabeled nodes, which we may prefer instead of bad quality labels. In particular, since click induced
graphs are scale-free and have a giant component, internal nodes corresponding to the giant component,

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.2011;0:1–15
Prepared usingcpeauth.cls

10 A. P. FRANCISCO, R. BAEZA-YATES AND A. L. OLIVEIRA

Table I. Clustering statistics for different values ofε, whereC is the set of non-singleton clusters,S is the set of
singleton clusters,C denotes non-singleton clusters,8̂ is the clustering average conductance,ncore is the number
of core vertices,nnon-singis the number of queries in non-singleton clusters andnoverlap is the number of queries
in more than one cluster. The percentages refer to the increasing in the number of non-singleton queries and to the
number of vertices in more than one cluster after optimization, respectively. The hierarchical clustering contains

1,348,088 distinct queries.

ε |C| avg|C| max|C| |S| 8̂ ncore nnon-sing % noverlap %

0.0 174,400 7.73 861,903 0 0.00 1,348,088 1,348,088 0.00 0 0.00
0.1 213,557 6.73 768,174 27,524 0.04 1,225,791 1,320,564 7.73114,723 8.68
0.2 228,550 6.38 629,416 81,621 0.07 1,104,657 1,266,467 14.65181,833 14.36
0.3 224,683 5,58 245,050 213,357 0.09 962,193 1,134,731 17.93112,549 9.92
0.4 210,532 4.94 9,421 346,550 0.08 815,791 1,001,538 22.77 34,108 3.41
0.5 180,812 4.84 1,385 496,583 0.08 656,720 851,505 29.66 21,020 2.47
0.6 147,228 4.50 1,331 696,712 0.07 507,507 651,376 28.35 9,342 1.43
0.7 103,553 4.27 1,174 909,602 0.05 353,592 438,486 24.00 2,958 0.67
0.8 82,701 3.62 235 1,049,433 0.03 254,514 298,655 17.34 619 0.21
0.9 61,792 2.92 113 1,167,521 0.01 168,320 180,567 7.28 30 0.01
1.0 48,547 2.29 14 1,237,095 0.00 110,993 110,993 0.00 0 0.00

or even to part of it, have bad quality labels which do not bring relevant semantic information - see
ahead.

EXPERIMENTAL EVALUATION

We applied the hierarchical clustering method described above to the filtered click induced graph.
Given the results achieved on several experiments, as mentioned before, the most relevant parameter
is the core thresholdε, which provides different cuts on the hierarchical clustering and that we discuss
next. In TableI we provide several statistics for different snapshots of the hierarchical clustering. Since
we removed the singleton vertices from the graph, we are considering 1,348,088 vertices. The degree
distribution follows a degree power law and the graph contains a giant component, thus the giant cluster
for ε = 0 was expected and it coincides with the giant component. In particular forε = 0, the clusters
are precisely the non-singleton connected components in the original graph. Moreover, we can see that
the method effectively clusters the giant component. For instance, withε = 0.4 the biggest cluster
is much smaller, about 1.1% of the original giant component.Note also the low values for average
conductance8, that core vertices are contained in non-singleton clusters and that the cores do not
overlap initially.

Semantic Contextualization

Although the clustering is effective, we obtain many small clusters at each level. These correspond
to loosely connected clusters that could appear connected if we consider larger query logs. Many are

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.2011;0:1–15
Prepared usingcpeauth.cls

MINING QUERY LOG GRAPHS TOWARDS A QUERY FOLKSONOMY 11

Figure 4. Two overlapping clusters in the hierarchical clustering after local optimization and in a snapshot for
ε = 0.5. Below we have the tag clouds for the full cluster (center) and for eachof the overlapping clusters.

highly specific queries, such as “53545 clinic in janesvilleriverview wisconsin”, for which the search
engine returns a low number of results and where the user clearly knows what he wants. Navigational
queries also fall in this category, examples being “java.com www” or “slashdot.org”.

From the overlaps we can infer relevant information about queries, namely about their ambiguity,
context, topics and term polysemy. As an example, let us consider the overlap in Figure4. We see that
“nasm” appears in two different contexts, namely it is an acronym to both the National Air and Space
Museum and the National Academy of Sports Medicine.

The obtained clusters provided also interesting insights with respect to web slang, namely term
polysemy and semantic relations. By just looking at the cluster in Figure4, we can infer that NASM
has two possible meanings and that one of them should confer akind of certification. By considering
terms within clusters, we can detect that for example “windows”, “mouse” and “wine” are polysemic
terms. For instance, the term “wine” appears in several clusters together with terms such as “napa”,
“food”, “magazine”, and “noir” relating it to beverages. However, we find at least one cluster where

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.2011;0:1–15
Prepared usingcpeauth.cls

12 A. P. FRANCISCO, R. BAEZA-YATES AND A. L. OLIVEIRA

...
fights street video → iraq war pictures
fights street video → iraq helicopter civilian
fights street video → intelligence network homelandsecurity
fights street video → tape caught fights
...
free → virus airlines anti → slow computer virus
free → virus airlines anti → airlines airlines.com
free → virus airlines anti → virus anti free
...
tires goodyear bridgestone → firestone bridgestone tire
tires goodyear bridgestone → tires cooper dunlop
tires goodyear bridgestone → goodyear gemini car
tires goodyear bridgestone → goodyear tires tire
tires goodyear bridgestone → tires bridgestone truck
...

Figure 5. Examples of label specialization for clusters which provide alsotag refinement for the query folksonomy.

it appears with terms such as “linux” and “windows”, clearlyrelating it to the Wine translation layer
for Unix like operating systems. An approach to identify term polysemy is to compare the bag of
terms among overlapping clusters. Clearly, if a query is in two clusters but they share few terms, then
the query shall be polysemic. Similarly, by analyzing similar words in the same cluster we can detect
misspellings.

Given the hierarchical clustering described above, we build the induced query folksonomy. Note
that the folksonomy we discuss here is entirely based on userinteraction through a search engine. We
do not add any other source of data in order to filter or improveit. As mentioned before, the click
induced graph is scale-free and has a giant component. We computed the tf-idf score for all clusters at
each level and the scores become meaningful only forε > 0.3. Forε ≤ 0.3, the tf-idf score for the
giant component takes values between 0.05 and 0.07, and the most relevant term is “free”. Thus, in our
discussion we focus on the categories with more queries and at clusters forε > 0.3, since they have
higher tf-idf scores and are more informative.

The folksonomy is rather different from usual taxonomies, both because of the click induced graph
structure and because of the type of categories found. Note also that in traditional taxonomies the topics
are selected beforehand, while we do not have any topic pre-specified. We observed that category paths
correspond most of the times to keywords meaningful for users, such as trademarks. It is interesting
that, although we consider the undirected version of the click induced graph, we are able to detect
query specialization through the hierarchical clustering(see Figure5).

Nevertheless, some of the categories are somewhat strange.For instance, the second group of
categories in Figure5 joins anti-virus on computers with anti-virus on airlines.The term virus makes
sense in both contexts, as it is usual to run such software on computers and biological virus are also
a current trend within flights and travels. However, such categorization seems to be wrong and it may
occur because of some URL badly clicked.

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.2011;0:1–15
Prepared usingcpeauth.cls

MINING QUERY LOG GRAPHS TOWARDS A QUERY FOLKSONOMY 13

Table II. Query distribution over the ODP top categories. In this table we mapeach of the 2,822,337 queries to a
single category, the category with highest score.

Category Queries % Category Queries %

Adult 105,123 3.72 News 7,672 0.27
Arts 367,702 13.03 Recreation 99,224 3.52
Business 141,512 5.01 Reference 56,112 1.99
Computers 157,313 5.57 Regional 605,483 21.45
Games 69,830 2.47 Science 83,100 2.94
Health 74,261 2.63 Shopping 86,758 3.07
Home 70,152 2.49 Society 187,106 6.63
Kids and Teens 50,539 1.79 Sports 80,522 2.85

World 282,110 10.00

Comparison with ODP

Evaluating the query classification is difficult since it is very different from traditional directories.
Nevertheless, human curated URL directories such as ODP canprovide good insights on query
classification. Note that URLs in these directories have associated curated descriptions, based on
user interests, and that allow us to contextualize queries with some confidence. By querying these
descriptions, we are able to identify common categories fordifferent queries, reflecting query similarity
even when such queries do not share any term. Thus, in this section, we try to compare the query
classification with ODP categories in order to understand how different are these two ways of
expressing knowledge. We map all queries over the ODP categories, obtaining several category paths
for each query. Then we compare the ODP paths with the inducedfolksonomy.

Since we had millions of queries, we had to perform such mapping offline. We downloaded the ODP
data, available at http://www.dmoz.org, and we fed it to a local installation of the Lucene search engine,
available at http://lucene.apache.org. The ODP data consisted of a large set of URL entries, each one
with a category, a title and a description. The ODP data set weconsidered for this paper contains
4,595,111 URL entries and 763,535 distinct categories. We took each URL entry as a document and
we indexed all fields,i.e., URL, category, title and description snippet. Lucene was configured to search
over all fields and, for each query, to return several categories ranked by relevance. We used the default
Lucene scoring function, which combines the Vector Space Model and the Boolean Model to determine
the relevance of documents [29]. Note that we did not obtain categories to all queries. By inspecting
TableII , we see that 297,818 queries, 10.55%, were not mapped. If we compare with the click induced
graph, we have that 67% of these queries are singleton queries. Moreover, 68% of the queries with a
score lower than 1.0 as reported by Lucene are also singletonqueries in the click induced graph. This
is consistent with our observations about the singleton queries, that many of them are ambiguous and
uninformative.

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.2011;0:1–15
Prepared usingcpeauth.cls

14 A. P. FRANCISCO, R. BAEZA-YATES AND A. L. OLIVEIRA

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 τ

η

Figure 6. ODP score statistics for the 1000 biggest clusters at differentsnapshot levels,i.e., different values ofε.
For each snapshot, the box plot details theσodp minimum (∗), the lower, median, and upper quartile, the maximum

(∗) and the mean (+).

The folksonomy labels are not comparable to the categories in the ODP mapping since they are not
topic based. Thus, we evaluate the clusters by comparing thecommon ODP path prefix among the
queries. Given two queriesq1 andq2, we select the two most similar ODP category pathsp1 and p2,
i.e., the ones which share the longest common prefixπ(p1, p2). Then we compute the score

σodp(p1, p2) =
|π(p1, p2)|

max{|p1|, |p2|}
,

where| · | denotes the path length. The ODP score for a given cluster is the average of the scoreσodp
for all pairs of queries in that cluster.

For all snapshots of the hierarchical clustering at different values ofε, more than 50% of the clusters
have an ODP score higher than 0.5. Since we do not obtain ODP categories for all queries, many
clusters have an ODP score of 0.0. In our experiments, depending on the value ofε, we have 16% to
30% of clusters with an ODP score equal to 0.0. We also have 30%to 39% of the clusters with an ODP
score equal to 1.0. It is interesting that these clusters aresmall in the number of queries and that they
appear independently ofε. Thus, we may infer that either these clusters are well defined or they are
meaningless. It is interesting that this fact supports our previous observation that these clusters usually
consist of either navigational queries or ambiguous and uninformative queries.

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.2011;0:1–15
Prepared usingcpeauth.cls

MINING QUERY LOG GRAPHS TOWARDS A QUERY FOLKSONOMY 15

In order to analyze the remaining clusters, we select the 1000 biggest clusters at different depths,
i.e., for different values ofε. Note that, forε ≤ 0.9, the number of clusters with an ODP score of
either 0.0 or 1.0 among the 1000 selected is 0%. Figure6 depicts the ODP score values for the 1000
biggest clusters at different snapshot levels. Note also that the first snapshots have a higher average
score, because forε ≤ 0.3 exists a giant component and the remaining clusters are rather small. As
we mentioned before, the giant component vanishes forε > 0.3. Thus, after we cluster the giant
component, the score increases with the hierarchical clustering depth, revealing that clusters at higher
depths have better quality. This is also supported by the tf-idf scores.

FINAL REMARKS

Queries submitted to search engines can be viewed as an expression of the knowledge of the users.
In this paper we discuss how to infer a query folksonomy through the efficient analysis of large query
logs and, in particular, of click induced graphs. First we discussed how to filter out noise caused, for
instance, by multi-topical URLs, proposing a new method to detect such URLs based on the analysis
of the queries for which URLs were clicked. Second we devisedand applied a hierarchical clustering
method for weighted graphs. This method was shown to be effective and the results revealed effective
semantic relations between queries. By building an inducedfolksonomy, we were able to identify query
contextualization and specialization. Another interesting result is the fact that our approach, based only
on click-through data generated by the users, provides a query classification much different from the
one expected by traditional directories. This points out how hard is query classification and how highly
relevant is the implicit knowledge found in query logs.

Although it was not the main aim of this paper, the results described can be used to improve real-
time query recommendation and query contextualization, two important practical problems that current
search engines have to deal with. Using our approach, query recommendation on a search engine can
be improved by providing better contextualization of recommendations, avoiding the bias to common
terms and allowing the suggestion of relevant but less frequent terms. The hierarchical clustering takes
here an important role since it enables the system to refine the clustering around a given query and,
because of the chosen local optimization, it can provide unbalanced clusters revealing less frequent
contexts. Given a query, we can apply the local optimizationstep starting with it (or with a suitable set
of queries) and, thus, detect a local cluster. Then, we can compute a tag cloud as in Figure3 or just the
tags ranking and select the most relevant ones. Nevertheless, we can reach a situation as in Figure4,
where the query “nasm” belongs to two clusters and, clearly,a simple local optimization will be not able
to detect them. Note that distinguishing different clusters in these cases is of great importance, since
they provide a richer contextualization. As we discussed inthis paper, this problem can be addressed
through core enumeration, which combined with local optimization provides a solution. In this context,
it is important to recall that the proposed hierarchical clustering method takesO(|E| max(1, log |V |))

time, with1 the maximum vertex degree,i.e., O(|E|1) time to compute the structural similarity for
all pairs of connected vertices,O(|E| log |V |) time to sort the edges in decreasing order, andO(|E|)

time to obtain the hierarchical clustering. The local optimization of each coreC takesO(Vol(C)) time.
Thus, given that the click induced graph is scale-free, the average time for computing the structural
similarity is much less thanO(|E|1) and the method is usually much faster. With respect to space
requirements, we just need to store the graph and the weights, that can be efficiently done using succinct

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.2011;0:1–15
Prepared usingcpeauth.cls

16 A. P. FRANCISCO, R. BAEZA-YATES AND A. L. OLIVEIRA

data structures [30]. We should also note that, for the log piece analyzed, all tests were run in a common
laptop in a few hours. Since the methods are easily parallelizable, we are able to analyze much larger
logs on high-end systems.

The query log studied here is just a case study and the qualityof the results can be improved
by incorporating more data,i.e., by using larger logs, since more data will consolidate the relations
obtained. The efficiency of the proposed methods makes them applicable to much larger graphs, thus
making them suitable for the analysis of larger logs and for the extraction of semantic relations from
less frequent queries. Keeping applications on sight, it isimportant to note that both the edges and
the queries have probabilities associated and provided by the hierarchical clustering algorithm. Thus,
we have confidence measures that are crucial to rank the relations among queries and their cluster
membership.

REFERENCES

1. Baeza-Yates RA, Tiberi A. Extracting semantic relations from query logs.SIGKDD, ACM, 2007; 76–85.
2. Francisco AP, Baeza-Yates R, Oliveira AL. Clique analysis of query log graphs.SPIRE’08, LNCS, vol. 5280, Springer,

2008; 188–199.
3. Francisco AP, Baeza-Yates R, Oliveira AL. Mining large query induced graphs towards a hierarchical query folksonomy.

String Processing and Information Retrieval, Lecture Notes in Computer Science, vol. 6393, Springer, 2010; 238–243.
4. Wen J, Mie J, Zhang H. Clustering user queries of a search engine. Proc. of the 10th International World Wide Web

Conference, W3C, 2001.
5. Baeza-Yates R. Applications of web query mining.European Conference on Information Retrieval (ECIR’05), LNCS, vol.

3408, Springer, 2005; 7–22.
6. Beeferman D, Berger A. Agglomerative clustering of a searchengine query log.SIGKDD, ACM, 1999.
7. Zaiane OR, Strilets A. Finding similar queries to satisfy searches based on query traces.Efficient Web-Based Information

Systems (EWIS), 2002.
8. Baeza-Yates R, Hurtado C, Mendoza M. Query clustering forboosting web page ranking.Advances in Web Intelligence

(AWIC’04), LNCS, vol. 3034, Springer, 2004; 164–175.
9. Baeza-Yates R, Hurtado C, Mendoza M. Query recommendation using query logs in a search engine.EDBT Workshops,

LNCS, vol. 3268, Springer, 2004; 588–596.
10. Shen D, Qin M, Chen W, Yang Q, Chen Z. Mining Web Query Hierarchies from Clickthrough Data.AAAI’07, AAAI Press,

2007; 341–346.
11. Chuang SL, Chien LF. Towards automatic generation of query taxonomy: A hierarchical query clustering approach.IEEE

International Conference on Data Mining, IEEE, 2002.
12. Chuang SL, Chien LF. Automatic query taxonomy generation for information retrieval applications.Online Information

Review2003;27(5).
13. Chuang SL, Chien LF. Enriching web taxonomies through subject categorization of query terms from search engine logs.

Decision Support System2003;30(1).
14. Pu HT, Chuang SL, Yang C. Subject categorization of queryterms for exploring web users’ search interests.JASIST2002;

53(8).
15. Cheng PJ, Tsai CH, Hung CM, Chien LF. Query taxonomy generation for web search (poster).CIKM, 2006.
16. Dupret G, Mendoza M. Automatic query recommendation using click-through data.IFIP World Computer Congress

(WCC’06), Springer, 2006.
17. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU. Complex networks: structure and dynamics.Physics Reports

2006;424(4-5):175–308.
18. Fortunato S. Community detection in graphs.Physics Reports2010;486:75–174.
19. Baumes J, Goldberg M, Magdon-Ismail M. Efficient identification of overlapping communities.IEEE International

Conference on Intelligence and Security Informatics (ISI), 2005; 27–36.
20. Lancichinetti A, Fortunato S, Kertész J. Detecting the overlapping and hierarchical community structure in complex

networks.New J. Phys.2009;11.
21. Leskovec J, Lang KJ, Dasgupta A, Mahoney MW. Community structure in large networks: Natural cluster sizes and the

absence of large well-define clusters.Internet Mathematics2009;6(1):29–123.

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.2011;0:1–15
Prepared usingcpeauth.cls

MINING QUERY LOG GRAPHS TOWARDS A QUERY FOLKSONOMY 17

22. Wei F, Qian W, Wang C, Zhou A. Detecting Overlapping Community Structures in Networks.World Wide Web2009;
12(2):235–261.

23. Zhang S, Wang RS, Zhang XS. Identification of overlappingcommunity structure in complex networks using fuzzy c-
means clustering.Physica A: Statistical Mechanics and its Applications2007;374(1):483–490.

24. Chung F. The heat kernel as the pagerank of a graph.Proceedings of the National Academy of Sciences2007;
104(50):19 735.

25. Chung FRK, Yau ST. Coverings, heat kernels and spanning trees.Electr. J. Comb.1999;6.
26. Yang H, King I, Lyu MR. Diffusionrank: a possible penicillin for web spamming.SIGIR’07, ACM, 2007; 431–438.
27. Kannan R, Vempala S, Vetta A. On clusterings: Good, bad andspectral.Journal of the ACM2004;51(3):497–515.
28. Andersen R, Lang KJ. Communities from seed sets.World Wide Web (WWW’06), ACM, 2006; 223–232.
29. Gospodnetic O, Hatcher E, McCandless M.Lucene in Action. second edn., Manning Publications, 2009.
30. Boldi P, Vigna S. The webgraph framework I: compression techniques.World Wide Web (WWW’04), ACM, 2004; 595–602.

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.2011;0:1–15
Prepared usingcpeauth.cls

