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Abstract. In this paper we propose a method for the analysis of very
large graphs obtained from query logs, using query coverage inspection.
The goal is to extract semantic relations between queries and their terms.
We take a new approach to successfully and efficiently cluster these large
graphs by analyzing clique overlap and a priori induced cliques. The
clustering quality is evaluated with an extension of the modularity score.
Results obtained with real data show that the identified clusters can be
used to infer properties of the queries and interesting semantic relations
between them and their terms. The quality of the semantic relations
is evaluated both using a tf-idf based score and data from the Open
Directory Project. The proposed approach is also able to identify and
filter out multitopical URLs, a feature that is interesting in itself.

1 Introduction

Knowledge discovery is one of the main problems in data mining and information
retrieval. Human interaction through the Web generated implicit knowledge -or
the wisdom of crowds [1]- represents an important path towards improving the
discovery of interesting knowledge. Nowadays the Web is the biggest representa-
tion of human knowledge, where people contribute with content either explicitly
or implicitly. An example of an implicit contribution is searching, as people con-
tribute with their knowledge by clicking on retrieved documents. Thus, queries
submitted to search engines carry implicit knowledge and they can be seen as
equivalent to tags associated to clicked documents. An important and interesting
challenge is then to extract relevant relations from query logs, namely semantic
relations between queries and their terms.

Graphs are a natural way to view relations between queries and URLs. As
Baeza-Yates and Tiberi [2], we start with the bipartite graph of queries and
URLs, where a query q and a URL u are connected if a user clicked in the
URL u that was an answer for the query q. Then, we generate a query graph by
analyzing common URLs among queries. A more frequent approach is to define
a similarity measure among queries. However it is more difficult to understand
why queries are similar and it can add noise to data already noisy.

This paper proposes two different contributions. First, we propose a method
to efficiently cluster very large graphs using clique percolation [3] and a priori
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induced cliques. The quality of the clustering is evaluated by computing an ex-
tension of the modularity score [4, 5] for overlapping clusters. Second, we analyze
the obtained clusters and extract semantic relations, inside and among clusters,
obtaining new information about the nature of the queries and the URLs. To
evaluate our method we use a part of the query log of the Yahoo! search engine,
with 2.8 million queries with at least one clicked URL and 4.9 million different
URLs. For each query, the data includes information on which URLs were clicked
and with which frequency. The quality of the inferred semantic relations is eval-
uated both with a tf-idf (term frequency-inverse document frequency) derived
score and against data from Open Directory Project (ODP).

The rest of the paper is organized as follow. In Section 2 we discuss previous
work on query similarity and knowledge extraction from queries. In Section 3
we describe the cover graph and its properties. In Section 4 we describe the
clustering method and we present the modularity score. In Section 5 we analyze
a large graph and we evaluate our approach. We end with some final remarks
and future work.

2 Previous Work

Most of the work on query similarity is related to query expansion or query
clustering. Here we mention only the main related papers.

Wen et al [6] proposed to cluster similar queries to recommend URLs to
frequently asked queries of a search engine. They used four notions of query
distance: (1) based on keywords or phrases of the query; (2) based on string
matching of keywords; (3) based on common clicked URL’s; and (4) based on
the distance of the clicked documents in some pre-defined hierarchy. As the
average number of words in queries is small (about two) and the number of
clicks in the answer pages is also small [7], notions (1) and (2) generate distance
matrices that are very sparse. Notion (4) needs a concept taxonomy and requires
the clicked documents to be classified into the taxonomy as well, something that
cannot be done in a large scale. Although (3) is also sparse, this sparsity can be
diminished by using large query logs. Befferman and Berger [8] also proposed a
query clustering technique based on (3) and Zaiane and Strilets [9] used variants
of (1) and (3) as well as other simpler features.

Baeza-Yates et al. [10, 11] used the content of clicked Web pages to define a
term-weight vector model for a query. They consider terms in the URLs clicked
after a query. Each term is weighted according to the number of occurrences of
the query and the number of clicks of the documents in which the term appears.
Then, the similarity of two queries is equivalent to the similarity of their vector
representations, using the cosine distance function. This notion of query similar-
ity has several advantages. First, it is simple and easy to compute. On the other
hand, it makes it possible to relate queries that happen to be worded differently
but stem from the same topic. Therefore, semantic relationships among queries
are captured.



In the work by Chuang et al. [12–15] they use query logs to build a query
taxonomy to also cluster answers. However they do not use any user feedback,
like user clicks. This idea of building a taxonomy based on queries is extended
in [16], but this is not the same as building a taxonomy of the queries, which
is what we would call a query taxonomy. Later, Dupret and Mendoza [17] used
the rank of clicked URLs to define relations among queries. They recommend
better queries by generating query relations that can be associated to parts of a
query taxonomy. Recently, Baeza-Yates and Tiberi [2] used (3) and a very large
query log to define semantic relations such as equivalency or specificity based
on different set conditions among the set of clicked URLs. Using the ODP they
found a precision up to 83% on the relations discovered and also that the ones
not found were too specific to appear in ODP. Our work can be viewed as a
followup to this paper.

3 The Cover Graph

In this section we define the cover graph G that arises naturally from the bipartite
graph of queries and URLs, based on the notion of common clicked URLs [18,
19]. Let Q be the set of queries and U be the set of URLs. Given a query q ∈ Q,
the cover of q is the set of URLs clicked by q. Let µ : Q → 2U be a function that
maps each query q to its cover set µ(q) ⊆ U .

The cover graph G = (V,E) is an undirected and unweighted graph with
queries as vertices and where exists an edge between two queries whenever they
share at least one common clicked URL. Formally, V = Q and E ⊆ V × V is
such that (q1, q2) ∈ E if and only if µ(q1) ∩ µ(q2) 6= ∅.

For the part of the query log of the Yahoo! search engine analyzed in this
paper, the full cover graph is very large with more than 359 million edges (first
row of Table 1). Since many URLs are clicked with a very low frequency, this
graph is also very noisy. Hence, we will filter the edges in order to remove the
noise and reduce the graph size.

Let W : Q × U → [0, 1] be a function such that W(q, u) is the ratio with
which the URL u was clicked for the query q. Thus, given a ratio threshold w, the
filtered cover graph G = (V,E) is such that V = Q and (q1, q2) ∈ E if and only if
{u ∈ µ(q1) | W(q1, u) ≥ w}∩{u ∈ µ(q2) | W(q2, u) ≥ w} 6= ∅. Note that this type
of filtering is different from previous methods used to filter edges [2], where each
query has a frequency weight vector associated and edges are weighted according
to the cosine similarity. Both approaches are related since high frequency URLs
increase the cosine similarity and also increase the confidence we have in the
fact that queries joined by a given edge are truly related. However, with our
approach, we can easily find cliques in G as we describe in the next section.

In Table 1 we give details about the cover graph for different values of w.
For w = 0.5 we successfully reduce the size of the cover graph, since the filtered
graph has only 36% of the edges in the full graph. Higher values of w reduce
even more the size of the graph and the size of the giant connected component.
The degree distributions of studied cover graphs follow a power law behavior,



Table 1. Details of the studied cover graphs, where CC is the set of connected compo-
nents, S is the set of singleton vertices, gC is the giant component and |V | = 2, 822, 337.

w |E| 2|E|/|V | |E|/|V | log |V | |CC|/|V | |S|/|V | |gC|/|V |

0.0 359,881,327 255.023 8.584 0.556 0.499 0.348
0.5 129,915,749 92.062 3.099 0.697 0.620 0.145
0.7 70,487,699 49.949 1.681 0.785 0.718 0.063
0.8 35,324,706 25.032 0.842 0.859 0.806 0.002
1.0 30,695,828 21.752 0.732 0.890 0.847 0.002

as exemplified later in Figure 1 for the case w = 0.5 the power law has an
exponent of 1.51. We note also that an abrupt change occurs in the size of the
giant connected component, as is clear in Table 1 when w changes from 0.7 and
0.8. Another interesting fact is that for w ≥ 0.8, even for w = 1.0, the number
of edges does not decrease as much as we may expect. That happens because
there are many navigational queries, i.e., queries with just one clicked URL, and
many of them refer to the same URL. In the next section we will study the cover
graph for w = 0.5 in detail and analyze the existing semantic relations among
queries.

Given 0 ≤ w ≤ 1, the cover graph can be computed efficiently. Let N̄ and
N̂ be the average and the maximum number of URLs covered per query, re-
spectively. Let also M̄ and M̂ be the average and the maximum number of
queries that cover an URL, respectively. First, we sort the URLs for each query
in O(|Q|N̄ log N̂) time. Filtering the URLs for each query takes linear time with
respect to the number of URLs per query, i.e., takes O(|Q|N̄) time. We also need
to compute the list of queries for each URL. This can be done in O(|Q|N̄) time by
transposing the list of URLs for each query, a procedure that can be performed
while filtering. Finally, we compute the adjacency list for each query by merging
the list of queries for each URL in the URL list of the current query. Given the
list of URLs for some query and given that the lists of queries and URLs are
sorted, we can do the merge using a priority queue where we store the head
of each URL query list. Thus, the merging takes O(N̄M̂ log N̂) time per query.
Given these complexities, the cover graph can be computed in O(|Q|N̄M̂ log N̂)
where N̄ , N̂ and M̂ are small compared to |Q| and |U|. For the data we study
in this paper and for w = 0.5, N̄ is 1.370, N̂ is 4 and M̂ is 7,974.

4 Clique Analysis and Clustering

We are interested in studying overlapping clusters of G in order to identify
query relationships and extract semantic information from them. In this paper
we specifically study the cliques of G and how they overlap. Previous work has
been done on the identification of overlapping clusters from overlapping cliques
[20, 3]. In our approach, we use a clustering method similar to clique percolation
as introduced by Palla et al. [3], where clusters are formed by joining cliques
that overlap above a given threshold k.



Since computing maximal cliques is computationally hard [21], we will use
a priori induced cliques. Let µ−1 : U → 2Q be the “inverse” function of µ that
maps each u to its coverable set of queries µ−1(u) ⊆ Q. Clearly, since every
query q in the set µ−1(u) share at least the URL u, the set µ−1(u) induces a
clique in the graph G. If we are dealing with a filtered version of G, the cliques
are induced by the sets {q ∈ µ−1(u) | W(q, u) ≥ w}, where w is the frequency
threshold.

Given the induced cliques and a threshold k, the clustering method works
by merging every clique which overlaps in more than k vertices. Note that each
URL has a (filtered) list of queries that are the vertices of the induced clique.
Therefore we must intersect each URL list with all other URL lists. The running
time is O(|U|2M̄), where M̄ is the average number of queries per URL and, for
the studied graph with w = 0.5, M̄ is 0.784. Given that we are filtering by k,
the number of URLs is usually much smaller than |U|.

We compute an extension of the modularity measure for overlapping clusters
to evaluate the quality of the clustering. Given a non-overlapping clustering
C = {C1, ..., Cn} of G, the modularity Q is defined [4, 5] as

Q =
1

2|E|
∑

p,q∈V

[
Apq −

dpdq

2|E|

]
δ(cp, cq), (1)

where 1 ≤ ci ≤ n denotes the cluster where vertex i belongs, A is the adjacency
matrix of G, di is the degree of vertex i and the δ-function is such that δ(i, j) = 1
if i = j and δ(i, j) = 0 otherwise. Note that the above sum runs over all possible
pairs of vertices. Therefore each edge is summed twice. If we split the sum in
two terms,

1
2|E|

∑
p,q∈V

Apqδ(cp, cq) and
1

2|E|
∑

p,q∈V

dpdq

2|E|
δ(cp, cq), (2)

the first term is the fraction of edges that fall within the clusters and the second
term is the expected fraction of edges within the clusters, if the edges were
randomly distributed while respecting the vertices degrees. In particular, if the
edges were randomly placed as mentioned, dpdq/|E| is the probability of the
existence of an edge between vertices p and q.

Thus, modularity measures the fraction of edges that connect vertices in the
same component minus the expected value of the same quantity in a graph with
the same components but random connections between the vertices [4]. Values
near 1, the maximum value of Q, indicate strong community structure. Typically,
values for graphs underlying common networks with known community structure
are in the range from 0.3 to 0.7.

However, if C has overlapping clusters, the measure needs refinement because
it was designed for non-overlapping clusters. In this work, we extend the def-
inition of modularity by weighting edge contributions with the cluster overlap
centrality of the vertices. The cluster overlap centrality ν of a vertex q ∈ V is
the number of clusters that contain q. It is a generalization of the clique over-
lap centrality proposed by Everett and Borgatti [20]. Therefore, we extend the
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Fig. 1. Cover graph degree distribution before and after multitopical URL removal.

modularity definition as

Q =
1

2|E|
∑

p,q∈V

[
Apq −

dpdq

2|E|

]
δ(cp, cq)

νpνq
. (3)

This definition of modularity is a particular case of a more general extension
proposed recently by Nicosia et al. [22]. Notice that this definition is equivalent
to equation 1 when the clustering does not contain overlapping clusters.

5 Experimental Evaluation

We studied several cover graphs for different values of w. In this section we
present the experiments with w = 0.5, as they exemplify our approach and pro-
vide interesting insights with respect to semantic relations among queries. We
built the filtered cover graph as described in Section 3. Then, we applied the
clustering method described in Section 4 for different values of k and we com-
puted the modularity score to evaluate the quality of clustering. The clustering
obtained with k = 266 (Figure 2) has the highest modularity score, Q = 0.667,
a value that indicates the existence of well defined clusters. We found that these
clusters are induced by 67 URLs with a high number of queries, the biggest
one having 7, 974 queries. It is interesting to note that these 67 URLs are all
multitopical web pages.

Since multitopical web pages usually introduce noise as they relate very dif-
ferent queries, we generate the graph without the above 67 URLs. We note
that a previous method was proposed by Baeza-Yates and Tiberi [2] to remove
multitopical URLs. It is interesting that, although different, both approaches
reduce the number of edges to similar values. The filtered graph has less than 14
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Fig. 2. Modularity score for different values of k.

Fig. 3. Cluster intersections for queries “linux os” and “airport brussel”.

million edges and Figure 1 depicts the degree distribution before and after the
URL removal. Both distributions follow power laws with coefficients of 1.51 and
1.70, respectively. We have applied the clustering method to this new graph and
the results are rather interesting. The clustering with highest score, Q = 0.809,
was obtained with k = 2 (Figure 2). This implies that the original graph struc-
ture was almost defined by a few large cliques and, after the multitopical URL
removal, the result is a graph with a structure defined by cliques of size 3 (perco-
lation of size 2 results from the intersection of cliques with more than 3 vertices).
This clustering has 116, 044 clusters and covers 25% of the original queries. Note
that 62% of the original queries are isolated vertices and, therefore, the cluster-
ing covers 66% of non singleton queries. More interesting, this clustering covers
79% of the queries in the giant component for the filtered graph with w = 0.5.

After obtaining this clustering, we examined the relations within and among
clusters. Figure 3 contains two examples of the observed clusters and cluster
intersections. In the first example the query “linux os” appears in two contexts:
one related to the Debian distribution and the other to Unix operating systems.
In the second example we see that the technique can find related queries even
in different languages (English and Flemish). By analyzing the clusters we were
able to find different contexts for given queries. We were also able to find equiv-
alences between queries, e.g. “ge” and “general electrics”. However, it would be
interesting to have some method to classify queries and terms in the clusters and
extract relevant semantic information as in [2].



Table 2. Cluster tf-idf average, maximum and terms with tf-idf score ≥ 0.5.

C.id tf-idf Max |C| Terms

1 5.658 5.831 3 synaptics, touchpad
2 2.374 2.569 4 erricson, ericcson, ericson, ericsson
3 2.336 4.998 4 charleroi, airport, brussel, aeroport
4 1.612 5.282 6 velux, skylite, www.velux.com, skylight, windows
5 1.423 2.881 6 debian, linux, os, gnu, woody, install
6 1.369 3.588 7 zaventem, brussel, airport, luchthaven, aankomst
7 1.329 2.359 3 linux, os, xp, servers
8 1.327 2.991 3 hfs, whfs, 99.1, whfstival, 105.7, dc
9 1.099 2.691 5 slackware, linux, kernel, slackware.com, 2.6, 9.0

10 1.024 2.143 6 unix, linux, linex, system, operating, os
11 1.019 2.778 5 longhorn, windows, screenshots
12 0.899 2.359 3 linux, wine, windows
13 0.848 2.105 4 cooking, wine, recipes, good, food
14 0.757 1.616 9 longhorn, steakhouse, horn, long, steak
15 0.662 1.262 5 spirits, liquor, pa, wine, pawineandspirits.com
16 0.591 1.727 7 baseball, longhorn, texas
17 0.585 1.054 7 union, credit, federal, teachers, teacher, tfcu
18 0.464 1.994 8 scorpios, scorpio, meaning, sign
19 0.091 0.970 51 windows, xp
20 0.072 0.838 76 delta, flights
21 0.069 0.594 104 yahooligans, games, kids

For this, we have processed the clusters as follows. First we enumerated the
terms for each cluster and then we computed the tf-idf score for each term. We
ranked the clusters by tf-idf average and, for each cluster, we also ranked the
terms by tf-idf score. In Table 2 we provide tf-idf values for some clusters.

The analysis of the cluster ranking provides interesting information with re-
spect to the nature of the queries. Clusters with navigational queries appear at
the top of the ranking. Usually these queries have few terms, although very infor-
mative. The top ten clusters in Table 2 are examples of clusters with navigational
queries, e.g., “synaptics touchpad” that is one of the 3 queries in the first cluster
or “www.velux.com” that appears as term and as query in the second cluster.
But we can generalize this analysis and verify that when a user knows what to
search the queries appear in a higher ranked cluster. An example is the query
“install woody” in Figure 3 and also in the fifth cluster of Table 2. Although
this query does not refer Debian or Linux, it clearly refers to the installation of
the Debian Linux distribution named Woody. Note that navigational queries are
also an example of queries where the user knows what he wants.

The importance of a given term within a cluster can be inferred from the
ranking of terms for each cluster. In Table 2 the terms are sorted from left to
right, with the maximum tf-idf being the score of the first term. Thus, those
terms are the most relevant in each cluster and can be seen as a description of
the cluster.



Table 3. Distribution of queries with respect to ODP score.

σ ≥ 0.25 ≥ 0.33 ≥ 0.50 ≥ 0.66 ≥ 0.75 = 1.00

% 90.5 85.6 69.7 56.5 49.6 34.7

By studying the overlap of terms among clusters, we can improve the seman-
tic information obtained from cluster overlapping and we are able to identify
context and polysemy. In Table 2 we can identify clusters where a given term
appears in the same context and others where the context is different. For ex-
ample, the term “windows” appears in cluster three with the usual meaning and
it appears in the other clusters as the Microsoft operating system. The term
“wine” is an example of polysemy. It appears in cluster eleven as the Windows
api for Unix-like operating systems and in the other clusters as a beverage.

In spite of the above interesting results, evaluating the quality of semantic
relations is difficult. We would like to know if, from the user perspective, the
queries in each cluster are truly related and contain valuable semantic informa-
tion. Thus, we systematically evaluated a sample of clusters against data from
ODP3. The Open Directory is a comprehensive human-edited directory of the
Web and is constructed and maintained by a community of volunteer editors.

We randomly selected 1, 000 clusters among the 116, 044 clusters obtained.
Then, we submitted each query in these clusters to the ODP and we obtained a
set of categories matches in form of paths between directories. Note that these
categories are ordered by relevance. For instance, the query “airport brussel”
would provide the category “Regional: Europe: Belgium: Transportation” as
the most relevant. To measure the similarity between queries, we measure the
similarity between categories [2]. Thus, given two queries, we select the two most
similar categories d1 and d2 as provided by ODP. The similarity score σ is defined
as follows

σ(d1, d2) =
|π(d1, d2)|

max{|d1|, |d2|}
, (4)

where π(d1, d2) is the longest common prefix and | · | is the directory path length.
The ODP similarity for two queries is the value of equation 4 for the most similar
categories between them, i.e., the maximum among all possible pairs of categories
for those queries. For each cluster we computed the ODP score as average of ODP
similarity over all pairs of queries for which ODP provides at least one category.
Note that, for pairs with queries with 0 categories, equation 4 is undefined.

Although the similarity score has values from near 0 to 1, we get an average
of 0.7 among the 1, 000 clusters and 35% of the clusters have a score of 1.0.
We provide the ODP score distribution in Table 3. Thus, we can infer that
the clusters found reflect relevant semantic relations. We also verify that small
clusters usually have higher values, which is to be expected, given the focus of
their queries as discussed above. But, as depicted in Figure 4, the cluster ranking
3 http://www.dmoz.org/
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Fig. 4. Tf-idf and ODP scores for different cluster sizes.

is much different from the tf-idf ranking and the score decreases much slower. It
is also important to note that there are small clusters with very low tf-idf and
ODP score. This happens because these clusters usually have few queries with
many terms and usually these are more specific queries.

It is also interesting that, with the ODP score we were able to evaluate large
clusters and distinguish which ones have more relevant information, as shown
in Figure 4. Note that the score is not correlated to the cluster size and is
better than tf-idf similarity. With the tf-idf score we were unable to perform
this discrimination since larger clusters have smaller scores. In fact, if we also
had considered the best ranked terms by tf-idf in each cluster, we would have
improved the ranking of some larger clusters (although not the ODP score).

In Table 4 we provide the obtained scores for the clusters given in Table 2. We
also provide the ODP category obtained with the two or three most significant
terms for each cluster given in Table 2. Note that this is done by combining the
tf-idf score and the ODP score, thus providing an interesting categorization of
clusters.

6 Final Remarks

The efficient graph mining techniques proposed in this paper can be applied to
very large graphs obtained from query logs, and the results show that these tech-
niques are effective at obtaining semantic relations between queries. In the con-
crete case studied, the semantic relations discovered are useful and have provided
interesting insights about implicit knowledge contained in queries submitted to
a search engine.

The quality of the results can be improved by incorporating more data, i.e.,
by using larger logs, since more data will consolidate the relations obtained.



Table 4. Cluster ODP scores and relevant categories.

C.id Score |C| ODP category (most significant)

1 1.000 3 Computers: Software: Operating Systems: Linux: Hardware ...
3 1.000 4 Regional: Europe: Belgium: Transportation

11 1.000 5 Computers: Software: Operating Systems: Microsoft Windows: ...
9 1.000 5 Computers: Software: Operating Systems: Linux: Distributions: ...
4 1.000 6 Business: Construction and Maintenance: Materials and Supplies: ...

17 0.976 7 Business: Financial Services: Banking Services: Credit Unions
5 0.889 6 Computers: Software: Operating Systems: Linux: Projects: ...

13 0.722 4 Home: Cooking
16 0.722 7 Sports: Baseball: College and University: NJCAA
10 0.629 6 Computers: Software: Operating Systems: Linux
19 0.621 51 Computers: Software: Operating Systems: Microsoft Windows: ...
12 0.600 3 Computers: Emulators: Intel x86 Architecture: DOS and Windows
15 0.535 5 Recreation: Food: Drink: Liquor
21 0.477 104 Kids and Teens: Games: Online: Collections
7 0.467 3 Computers: Software: Shareware: Networking

14 0.443 9 Business: Hospitality: Restaurant Chains: Steakhouses
6 0.400 7 Regional: Europe: Belgium: Regions: Brussels: Travel ...

20 0.312 76 Recreation: Aviation: Experience Flights
8 0.056 3 Arts: Radio: Regional: North America: United States: Maryland
2 0.048 4 Regional: ...

18 0.024 8 Society: Religion and Spirituality: Divination: Astrology: ...

Further analysis of the structure of the graph will also be important to unveil
more relations. One possibility is to extend the similarity analysis to all the
clusters and use edges with w < 0.5 to find weaker relations among the clusters
to infer a possible taxonomy. The efficiency of the proposed methods makes them
applicable to much larger graphs, thus making them useful for the extraction of
semantic relations from less frequent queries.
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