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Abstract. Many algorithms have been proposed to date for the problem
of finding biologically significant motifs in promoter regions. They can be
classified into two large families: combinatorial methods and probabilistic
methods. Probabilistic methods have been used more extensively, since
their output is easier to interpret. Combinatorial methods have the po-
tential to identify hard to detect motifs, but their output is much harder
to interpret, since it may consist of hundreds or thousands of motifs.
In this work, we propose a method that processes the output of com-
binatorial motif finders in order to find groups of motifs that represent
variations of the same motif, thus reducing the output to a manageable
size. This processing is done by building a graph that represents the co-
occurrences of motifs, and finding communities in this graph. We show
that this innovative approach leads to a method that is as easy to use
as a probabilistic motif finder, and as sensitive to low quorum motifs
as a combinatorial motif finder. The method was integrated with two
combinatorial motif finders, and made available on the Web.

1 Introduction

An important open problem in computational biology is related with the accu-
rate identification of biologically meaningful nucleotide sequences in promoter
regions, that correspond to loci of attachment of transcription factors. These
well conserved regions are usually referred to as consensus sequences or motifs.
Motif finding is the problem of discovering these motifs without prior knowledge
of their characteristics. Motif finding has been the subject of intense research
and literally hundreds of papers have been published on this topic [1].

Currently available methods for motif finding can roughly be classified in two
main classes: probabilistic and combinatorial.

Probabilistic methods have been extensively used, and they identify very well
the strong signals present in the data, i.e., motifs that occur in a large fraction of
the sequences. They have difficulties identifying weaker signals, that correspond
to motifs that are present only in a subset of sequences, possibly superimposed
with stronger signals.

Combinatorial methods, on the other hand, when executed with the right
parameters, can identify both strong and weak signals. They suffer, however,



from a significant drawback. When executed with parameters that allow them
to identify motifs that are present in only a small fraction of the sequences,
they will deluge the user with a large, possibly huge, number of motifs, that
correspond to many variations of the motifs of interest. In fact, since motifs are
not perfectly conserved, many variations of the most common motifs will be
reported by a combinatorial motif finder, since these variations will appear in a
significant fraction of the sequences.

In this work, we propose a method for the identification of motifs that com-
bines the advantages of probabilistic motif finders (easy to use, no parameters
required) and combinatorial motif finders (ability to identify even the weaker
signals) while avoiding the disadvantages of both.

We achieve this by post-processing the results of combinatorial motif finders,
and identifying the motifs that are variations of the same signal. These motifs
are then combined into a composed representation, and a position weight matrix
(PWM) is generated for that set of motifs. The identification of the motifs that
are, in reality, variations of the same motif, is done by computing the modules
(or communities) in a graph. This graph has one node for each motif found, and
one edge between two motifs if they have significant occurrence overlap.

2 Basic concepts and related work

2.1 Motif finders

The most used probabilistic algorithms for motif finding are based on the applica-
tion of the Expectation-Maximization [2] method (EM) like PROJECTION [3]
and MEME [4] or its stochastic counterpart, Gibbs sampling [5]used by Alig-
nACE [6], BioProspector [7] and GibbsDNA [5]. These methods use a two-
phase iterative procedure where, in the first step the likeliest occurrences of the
motif are identified, based on a model computed in the previous iteration. The
second step adjusts the model for the motif (usually a position weight matrix)
based on the occurrences determined in the previous step. In the first iteration
the parameters of the initial model are usually set randomly. This iterative pro-
cedure converges usually in a rapid way to motifs that are present, possibly with
mutations, in a large fraction of input sequences. They report their results in
the form of PWMs, that represent directly the obtained model.

Combinatorial methods, which extract motifs consisting of plain nucleotide
sequences work by enumerating the possible patterns, either explicitly or implic-
itly [8, 9],and counting their quorum. Consider a set of sequences under analysis,
S = {S1, S2, . . . , St}. The objective is to find motifs within a range of lengths
lmin, . . . , lmax, which occur on q ≤ t of the sequences in S with at most e mis-
matches, i.e., having at most e nucleotide substitutions. Algorithms that look
for complex motifs have also been proposed [10, 11]. Complex motifs are built
of two or more simple motifs, spaced by a number of bases that falls within a
specific range.

For this work we selected the combinatorial motif finders MUSA [12] and
RISO [10]. MUSA is an algorithm that does not require the user to specify



parameters (such as box lengths and distances between boxes) in order to extract
motifs. This method relies on a biclustering algorithm that operates on a matrix
of co-occurrences of small motifs. Requiring as input a list of gene promoter
sequences, MUSA returns the list of structured or simple motifs found, ordered
by their p-value, and their quorum. RISO is a complex motif extraction tool.
It searches for complex motifs with certain characteristics specified by the user,
through the assignment of a set of parameters such as the number and sizes
of the boxes that form the structured motif, the distances between them and
the minimum quorum expected. RISO returns the list of motifs found and their
corresponding quorums.

2.2 Motif clustering

The idea of finding groups, or clusters, of motifs, in order to simplify the binding
site studies and reduce the redundancy of the patterns found by motif finders is
not new, and, indeed, has been proposed independently. Examples of tools that
perform this clustering are MatAlign [13] and Stamp [14].

Although there are differences in the implementation, these and other existing
methods work by defining a distance between two motifs and applying standard
clustering methods to find motifs with similar patterns. The distance is typically
obtained using dynamic programming to compute the best alignment between
two motifs.

While this approach works well in some cases, it has some strong limitations.
In particular, this approach is not able to identify that two motifs are part of the
same pattern if they are poorly aligned, even if they represent different parts of
the same, larger, motif. For instance, motifs ACCGTG and TGATTT may be
frequent because the larger motif ACCGTGATTT is frequent, but no significant
alignment will be found between motifs ACCGTG and TGATTT, specially if,
for some reason, the larger motif is not identified.

The approach we propose avoids this difficulty by ignoring the actual pattern
of the motifs, and considering only the sequences and positions where they occur.
A significant amount of co-occurrence means that two motifs are linked, even
though they may not be very similar.

For this, we need a method that finds communities in graphs of motifs, i.e.,
groups of motifs that are tightly linked by many co-occurrences.

2.3 Finding communities in graphs

Many algorithms have been developed to tackle the problem of finding commu-
nities in graphs [15–18].Probably the best-known is the one proposed by Girvan
and Newman [15] based on the betweenness centrality measure which runs in
O(|E|2|V |) time, or O(|V |3) time for sparse graphs. However, it is no longer the
most efficient and effective clustering algorithm. More recently Newman [17] has
proposed a faster algorithm based on the greedy optimization of the modularity
[16] which is substantially faster. It runs in O((|E| + |V |)|V |), or O(|V |2) on
sparse graphs. However, the running time of this algorithm can be improved by



exploiting some properties of the optimization problem and using more sophis-
ticated data structures. Thus, Clauset et al. [18] proposed a greedy algorithm
which runs in O(|E|d log |V |), where d is the depth of the “dendrogram” which
describes the community structure. On sparse graphs with a hierarchical com-
munity structure this algorithm runs on average in O(|V | log2 |V |) time. In what
follows, we name this algorithm as CNM (Clauset-Newman-Moore) algorithm.

The concept of modularity is central to this problem [16]. Modularity is a
property of the graph and of a specific division of the graph into communities.
It measures the quality of the division by evaluating the number of edges within
communities and the number of edges that connect vertices in different commu-
nities. Suppose the vertices are divided into k communities and let 1 ≤ cm ≤ k
denote the community where vertex m ∈ V belongs. The adjacency matrix A of
G and the degree dm of a vertex m ∈ V are respectively defined as

Amn =
{

1 if (m,n) ∈ E,
0 otherwise and dm =

∑
n∈V

Amn. (1)

We define the modularity Q of G with respect to the given division as

Q =
1

2|E|
∑

m,n∈V

[
Amn −

dmdn

2|E|

]
δ(cm, cn), (2)

where the δ-function is such that δ(i, j) = 1 if i = j and δ(i, j) = 0 otherwise.
We note that the above sum runs over all possible pairs of vertices. Therefore,
each edge is summed twice. If we split the sum in two terms,

1
2|E|

∑
m,n∈V

Amnδ(cm, cn) and
1

2|E|
∑

m,n∈V

dmdn

2|E|
δ(cm, cn), (3)

then the first term is the fraction of edges that fall within the communities, and
the second term is the expected fraction of edges within the communities if the
edges were randomly distributed respecting the vertices degrees. In particular,
if the edges were randomly placed as mentioned, dmdn/|E| is the probability of
the existence of an edge between vertices m and n.

Thus, modularity measures the fraction of edges that connect vertices in the
same component minus the expected value of the same quantity in a graph with
the same components but random connections between the vertices [16]. Values
near 1, the maximum value of Q, indicate strong community structure. Typically,
values for graphs underlying common networks with known community structure
are in the range from 0.3 to 0.7.

The CNM algorithm operates by finding the changes in Q which result from
merging each pair of communities. It chooses the largest of such possible changes
in a greedy way and performs the merging. Let ∆Qij be the change in Q that
results from merging the communities i and j. Initially each vertex m ∈ V is a
community, by equation 2,

Q = − 1
2|E|

∑
m∈V

dmdm

2|E|
. (4)



And, for each community i and for each pair of communities i, j, we set

Ai =
dm

2|E|
, and ∆Qij =

{ 1
|E| − 2AiAj if i, j are connected ,
0 otherwise.

(5)

where m is the unique vertex in the community i. Thus, the main loop of the
CNM algorithm consists in

1. select the largest ∆Qij and increment Q accordingly,
2. join the corresponding communities and, assuming that community i is

merged into community j, update the ∆Q and the A values as follows:

∆Qjk =

∆Qik + ∆Qjk if k is connected to i and j,
∆Qik − 2AjAk if k is connected to i but not to j ,
∆Qjk − 2AiAk if k is connected to j but not to i;

(6)

Aj = Aj + Ai. (7)

3 Finding co-occurring motifs

As described, our method builds a motif relation graph and finds communities
of motifs, i.e., subgraphs such that the density of edges within it is greater than
the density of edges between its vertices and those outside it. Each community is
then processed in order to obtain the associated Position Weight Matrix (PWM).

3.1 Building the relation graph

Let S be the set of sequences and M be the set of motifs found in S. For each
m ∈ M and s ∈ S, let l(m, s) be the list of positions in s where m occurs. We
say that m,n ∈ M overlap in a sequence s ∈ S if x ∈ l(m, s) and y ∈ l(n, s)
exist such that one of the following two conditions verifies:

x < y < x + |m|; y ≤ x < y + |n|. (8)

In such case we say that motifs m and n overlap in s with a shift σ equal to
y − x.

In our method, we assume that a minimum overlap 0 < αo ≤ 1 and a min-
imum quorum 0 < αq ≤ 1 are given as parameters. The quorum represents the
fraction of the number of common sequences in which a given pair of overlapping
motifs must occur to be considered. Therefore, given two motifs m,n ∈ M we
define the minimum shift and the maximum shift, for m and n, respectively, as

σmin = αo min{|m|, |n|} − |n| and σmax = |m| − αo min{|m|, |n|}. (9)

To ensure that m and n overlap in a given sequence s ∈ S with at least
αo min{|m|, |n|} common characters, we must check that such overlap occurs
with a shift σ such that σmin ≤ σ ≤ σmax.



The relation graph G is a tuple 〈V,E〉 where V and E are defined as follows.
The set of vertices V is the set of motifs found, i.e., V = M. The set of edges
E contains every pair (m,n) ∈ M × M for which exists σ ∈ IN such that
σmin ≤ σ ≤ σmax and

αq|S ′| ≤ |{s ∈ S ′ : m,n overlap in s with shift σ}|, (10)

where S ′ ⊆ S is the set of sequences in which both m and n occur.

3.2 Implementation of the CNM algorithm

In its original version, the CNM algorithm iterates until a negative ∆Qij is
selected, and stops when all vertices belong to the same community. However,
in our case, the relation graph G may not be connected, and the selection of
a negative value is an admissible stop condition because after that Q can only
decrease.

The bound O(|E|d log |V |) in the running time can only be achieved if ad-
vanced data structures are used [18]. In our implementation, we store the ∆Qij

values in a red-black tree for each community. Additionally, we maintain these
values in binary heaps. Therefore the insertion, the selection and the maximum
extraction can be done in O(log |V |) [19]. We also use the well known union-find
data structure [19] to track the vertices in each community. Because the relation
graph G is, in general, sparse, the CNM algorithm complexity is almost linear
in the number of motifs.

3.3 Computing and ranking the PWM of a community of motifs

By applying the CNM algorithm to the motif relation graph and choosing the
partition which grants maximum modularity, we obtain a set of communities of
motifs. The third and final step of our method consists in processing each of
these communities and computing the PWM for each one.

Thus, let C ⊆ M be a community of motifs found in the graph G. First,
we align the motifs in C, which is simple because we already know the relative
shift from the graph construction, and we compute the length of the PWM for
this community. Second, for each edge (n, m) ∈ E and using the best shift for
equation 10, i.e., the shift which maximizes the right side of equation 10, we
update the corresponding columns of the PWM by checking the symbols in the
sequences where the pair of motifs occur, i.e, the sequences in the set S′ in
equation 10.

Each community gets assigned a p-value that correspond to the lowest p-value
of the motifs in that community. This p-value is used to rank the communities
and corresponding PWMs. For each community a quorum is also computed. This
quorum corresponds to the average number of sequences that support each edge
in the community structure.

The method developed was implemented in C, including the CNM algorithm
and all data structures. The resultant tool was integrated with two motif finders,



MUSA and RISO , and made available through the DISCOVERER platform
in the YEASTRACT database [20]. Given that the complexity of the CNM
algorithm is almost linear for sparse graphs, the computation of the relation
graph is the most computational demanding step of our method, taking Ω(|M |2)
time. For all test examples, which have at most 3000 statistically significant
motifs, we were able to compute motif communities and corresponding PWMs
in less than one minute in a common workstation.

4 Results

In this section we only present the results obtained, with the motif finder MUSA,
for the first two datasets described in Table 1. More detailed results for both
motif finders and for all datasets are available, as supplementary material, at
http://kdbio.inesc-id.pt/mat/isbra08.

To test the ability of the proposed method to find relevant motif communities,
four real biological datasets were used. These datasets correspond to different
sets of promoter sequences of Sacharomyces cerevisiae genes.

For all datasets the MUSA algorithm was executed with the default param-
eter values: λ = 4, ε = 1 and the quorum equal to 30%. The motifs reported
were ranked in accordance with their statistical significance. Motifs that have a
p-value smaller than 10−3 were considered statistically significant and selected
for further processing. To build the relation graph, for these motifs, the default
values of αo, the minimum overlap, and αq, the minimum quorum, were 0.4 and
0.7, respectively.

Table 1 summarizes the results obtained. For each dataset it shows the num-
ber of sequences (N. seq), that were used to search for over-represented motifs,
the total number of motifs found by the motif finder (T. mot), the number of
motifs considered for processing (N. mot), the total number of edges in the re-
lation graph (N. edg), the number of communities identified (N. com) and the
modularity value achieved (Modul). It is clear from this table that the method

Table 1. Datasets content and results statistics.

Datasets N.seq T.mot N.mot N.edg N.com Modul

DeRisi [21] 25 1647 204 299 89 0.80
Aft2p [22] 193 2176 2026 3397 202 0.84
Yap1p [23] 225 2150 2065 3541 168 0.84
2,4D [24] 486 2088 2045 3143 271 0.86

effectively reduces the number of motifs that need to be analyzed, by up to one
order of magnitude.

The first dataset, identified as the DeRisi set, corresponds to a list of 25 genes
that were up-regulated in response to the expression of a point mutation in the
PDR1 gene, that encodes a transcription factor (TF) involved in Pleiotropic
Drug Resistance in yeast [21]. Due to the experimental procedure used, this set



Table 2. The top 15 motifs reported by MUSA for the DeRisi dataset

ID Motif Quorum P − value

1 TCCGTGGA 12 of 25 2.79106e-17
2 TCCACGGA 12 of 25 2.79106e-17
3 AAGA (17,19) TTTC 18 of 25 3.57327e-16
4 GAAA (17,19) TCTT 18 of 25 3.57327e-16
5 CCGT (1,3) GAAA 13 of 25 7.22785e-15
6 TTTC (1,3) ACGG 13 of 25 7.22785e-15
7 CCACGGA 14 of 25 8.57847e-15
8 TCCGTGG 14 of 25 8.57847e-15
9 AAAA (4,6) AAAT 25 of 25 1.31737e-14
10 ATTT (4,6) TTTT 25 of 25 1.31737e-14
11 CCACGGAA 11 of 25 1.45924e-14
12 TTCCGTGG 11 of 25 1.45924e-14
13 AACA (43,45) CCTC 11 of 25 2.40999e-12
14 GAGG (43,45) TGTT 11 of 25 2.40999e-12
15 CAAAAG (3,5) AAAT 9 of 25 4.18278e-12

correspond to a small and very well characterized set of genes where the Pdr1p
binding site can be easily identified.

For this set, using the default input parameters and considering both strands,
the MUSA algorithm identified 1647 over-represented motifs. From these, only
204 motifs were classified as statistically significant and considered for further
processing. Table 2 presents the first 15 motifs reported by MUSA. In this list,
motifs 1 and 7 correspond to instances of the TF binding site of interest. Al-
though these motifs are well positioned in the motifs list, it is possible to verify
that they are only present in at most half of the input sequences. This low quo-
rum hides the real importance of this binding site, something that is not expected
in this particular dataset where all the genes were up-regulated by Pdr1p.

By inspecting Table 2 it is also possible to note that there is a large number
of complex motifs in the top 15 motifs reported. For space reasons, we will not
describe, in this article, the way complex motifs are handled, although a trivial
extension of the method exists and has been implemented.

Figure 1 shows the 14 motifs which contribute to the most significant com-
munity obtained. The PWM description of this community is also presented. By
inspecting this figure it is possible to see that the quorum of this community is
97%. This value is very important since it reflects the real importance of this
binding site in this set. The community quorum is also an important feature in
the evaluation of the community importance. Figure 2 shows the PWMs logos
for the two most significant motif communities identified.

If a search for documented TFs binding sites is performed in YEASTRACT
database using the PWM of the first community, the best match will be one of the
documented Pdr1p-binding sites. If this search is also performed for the second
most important community, shown in Figure 2, again one of the documented
Pdr1p-binding sites will be found. This second motif is similar to the first one
but not included in the same community because of the difference in the central



Community 1 (14 motifs) (quorum stat: min 0.71 avg 0.97 max 1.00)

---TCCGTGGA- 0 14 8 2.79106e-17

---TCCGTGG-- 1 17 9 8.57847e-15

--TTCCGTGG-- 2 12 9 1.45924e-14

----CCGTGG-- 3 26 10 2.03787e-09

---TCCGTG--- 4 18 9 2.16867e-07

--TTCCGT---- 5 28 13 4.31347e-07

-----CGTGG-- 6 45 16 1.13802e-05

-----CGTGGA- 7 23 10 5.08829e-05

----CCGTG--- 8 33 13 0.000103709

-GTTCCG----- 9 15 8 0.000258935

---TCCGTC--- 10 16 5 0.00026753

CCCTC------- 11 36 14 0.000360318

------GTGGA- 12 48 17 0.000506259

------GTGGAA 13 21 8 0.000797191

A: 0.26 0.11 0.12 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.90 0.63

C: 0.12 0.28 0.10 0.04 0.97 1.00 0.00 0.00 0.01 0.00 0.03 0.03

G: 0.18 0.36 0.07 0.03 0.01 0.00 1.00 0.00 0.99 0.99 0.06 0.17

T: 0.44 0.25 0.71 0.88 0.01 0.00 0.00 1.00 0.00 0.01 0.01 0.17

Fig. 1. Depiction of the most significant community found for the DeRisi dataset:
motifs alignment and PWM description.

Fig. 2. Depiction of the PWM logos for the first and second most important commu-
nities identified.

nucleotides: an GT switched for a AC. In fact, since MUSA searched for motifs in
both strands, this second community roughly contains the reverse complement of
the motifs contained in the first community. This community could be trivially
merged with the first one, however when reporting only one of the communities
we have found out that some users do not recognize the motif they were looking
for. Thus, we decided to report both.

The second dataset, identified as Aft2p, includes 193 promoter sequences of
Aft2p-target genes. This TF is involved in the regulation of iron homeostasis and
associated oxidative stress [25]. There is evidence supporting the direct binding
of Aft2p to the promoter region of many of these 193 target-genes [26]. However,
for some of them, evidence of a regulatory association is indirect, coming from
the comparison of gene transcript levels in the wild type and in a mutant devoid
of AFT2 [22]. In this test case the list of genes considered includes direct and
indirect targets of Aft2p and, due to this fact, this TF binding site is not expected
to be a strong signal in the sequences.

From a total of 2176 motifs extracted by the motif finder, only 2026 were
classified as statistically significant and considered for further processing. For
this set, 202 communities were identified. Table 3 presents the top 15 motifs
extracted by MUSA.



Table 3. The top 15 motifs reported by MUSA for the Aft2p dataset

ID Motif Quorum P − value

1 TTTT (13,15)CACC 64 of 193 6.54141e-34
2 ACATAT 139 of 193 1.63126e-31
3 ATATGT 139 of 193 1.63126e-31
4 CACCC 165 of 193 6.43219e-31
5 GGGTG 165 of 193 6.43219e-31
6 GAAGAA 149 of 193 6.3155e-30
7 TTCTTC 149 of 193 6.3155e-30
8 GTATAT 124 of 193 1.36158e-29
9 CATATA 130 of 193 3.35912e-29
10 AAGAAG 145 of 193 1.04215e-28
11 TATTCT 145 of 193 1.31282e-28
12 CAAGAA 148 of 193 5.27289e-28
13 TTCTTG 148 of 193 5.27289e-28
14 GCACC 155 of 193 4.69138e-27
15 GGTGC 155 of 193 4.69138e-27

Fig. 3. Depiction of the PWM logo for the Aft2p-target genes binding site.

Figure 3 shows the PWM logo of the fourth most significant community
found, that corresponds precisely to the documented Aft2p-binding site [22].The
binding site previously described for this TF allows some variability in the pe-
ripheral nucleotides. It is interesting to note that the identified community also
exhibits a central conserved core region, the motif CACCC, flanked by less con-
served peripheral nucleotides. This core motif, that correspond to motif 4 in
Table 3, is statistically significant and is present in 85% of the input sequences.
The correspondent community still presents a better quorum, 91%.

The first three most significant communities found for this dataset were com-
pared with the documented TF binding sites described in the YEASTRACT
database. The third most significant community was also associated with the
documented Aft2p-binding site. The second most significant community matched
the TATA-box, a well characterized core promoter element also expected to be
a strong signal in this dataset.

For the first community found, the alignments obtained were very poor, sug-
gesting that there is no documented TF binding site with such characteristics.
To further investigate the existence of a similar TF binding site, the original
PWM was trimmed. In this case, the best match was with the binding site of
the Rap1p transcription factor. This TF is described as a DNA-binding protein
involved in either activation or repression of transcription, depending on binding
site context. However, the trimmed PWM aligned only with a short part of the
Rap1p TF binding site.Although presumably not related with the documented



Aft2p binding site or other documented TF binding site, this motif can have an
important biological meaning.

5 Discussion

In this paper we proposed a methodology that assembles a list of individual
simple motifs into communities of motifs, leading to a simplified analysis of the
motif finders results.

For the test-cases presented, the results show that this method is able to
identify the most important motif communities. In fact this approach is very
useful in reducing the number of motifs to be inspected, leading to a more
tractable output, easier to interpret by humans. The PWM representation of
the community highlights the motifs degeneracy, being more informative than
the consensus representation usually reported by combinatorial motif finders.
The quorum of the community reveals the real importance of the motifs in the
dataset.

Compared to the first test-case, the results obtained for the second test-case
seem less precise. However the results achieved are still remarkably important.
The post-processing of the motif finder results allowed the identification of the
Aft2p binding site and suggested new putative binding sites. The third and
fourth test-cases show that even for more noisy datasets this approach can pro-
vide interesting clues on how transcription factors interact with their target
genes.
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1 Supplementary material

In this document we present the results obtained, with the motif finders MUSA and RISO,
for all datasets described in Table 1.

The motifs extracted by both algorithms were ranked in accordance with their statisti-
cal significance. Motifs that have a p-value smaller than 10−3 were considered statistically
significant and selected for further processing.

To build the relation graph, for the statistically significant motifs, we used the following
default values for αo, the minimum overlap, and for αq, the minimum quorum:

– MUSA algorithm: 0.4 and 0.7, respectively,
– RISO algorithm: 0.6 and 0.9, respectively.

1.1 Datasets

To test the proposed method, four real biological datasets were used. These datasets cor-
respond to different sets of promoter sequences of Sacharomyces cerevisiae genes. Table 1
presents the datasets, showing the number of sequences (N. seq) in each one.

Table 1. Datasets content.

Datasets N.seq

DeRisi [1] 25
Aft2p [2] 193
Yap1p [3] 225
2,4D [4] 486

The first dataset, identified as the DeRisi set, corresponds to a list of 25 genes that were
up-regulated in response to the expression of a point mutation in the PDR1 gene, that encodes
a transcription factor (TF) involved in Pleiotropic Drug Resistance in yeast [1]. Due to the
experimental procedure used, this set of Pdr1p-target genes correspond to a small and very
well characterized set of genes where the Pdr1p binding site can be easily identified. This site
will correspond to a set of motifs that are over-represented in the promoter sequences.

The second dataset, Aft2p, includes 193 promoter sequences of Aft2p-target genes. This
TF is involved in the regulation of iron homeostasis and associated oxidative stress [5]. There



is evidence supporting the direct binding of Aft2p to the promoter region of many of these 193
target-genes [6]. However, for some of them, evidence of a regulatory association is indirect,
coming from the comparison of gene transcript levels in the wild type and in a mutant devoid
of AFT2 [2]. In this test case the list of genes considered includes direct and indirect targets
of Aft2p and, due to this fact, this TF binding site is not expected to be a strong signal in
the sequences.

The third dataset, Yap1p, correspond to a set of 225 promoter sequences of the genes
involved in stress response and showing Yap1p-dependent expression [3]. Yap1p is a bZIP
transcription factor involved in multiple stress responses and controlling a set of genes in-
volved in detoxifying the effects of reactive oxygen species. Since Yap1p are implicated in the
response to cellular stresses, we selected the expression measurements for cells treated with
the oxidizing agent hydrogen peroxide (H2O2). The dataset was created including the genes
whose transcript level increased at least 2 fold in response to the stress induced and that
decreased its expression at least 25% in the yap1∆ mutant. This gene list includes direct and
indirect targets of Yap1p.

The fourth and last set, identified as the 2,4D set, includes 446 promoter sequences of the
genes that have shown significant response to the herbicide 2, 4−dichlorophenoxyacetic acid
(2,4-D) [4]. This dataset was created from the treated microarray data, including the yeast
genes whose transcript level increased at least 2 fold in response to the stress induced by
2, 4−D. This particular set mimics the typical data that can be obtained from a microarray
experiment. It includes direct and indirect targets for a set of different transcription factors.
It is also expected that even for the main biological processes involved in this stress answer,
the TFs binding sites will not correspond to strong signals in the sequences.

1.2 Results with MUSA algorithm

MUSA (Motif finding using an UnSupervised Approach) is a motif finder algorithm that does
not require the user to specify parameters (such as box lengths and distances between boxes) in
order to extract motifs [7]. The algorithm can therefore either be used autonomously to search
for motifs, or to estimate the search parameters to be used in other motif discovery tools.
The method relies on a biclustering algorithm that operates on a matrix of co-occurrences of
small motifs. The performance of this method is independent of the composite structure of
the motifs being sought.

Requiring as input a list of genes, MUSA returns the list of structured or simple motifs
found, ordered by their p-value, and the proportion of sequences containing each motif (the
quorum).

For all datasets, MUSA algorithm was executed with the default parameter values: λ = 4,
ǫ = 1 and the quorum equal to 30%.

The complete set of results obtained for the four tested datasets can be found through the
following links:

– DeRisi dataset: http://kdbio.inesc-id.pt/mat/isbra08/derisi/musa
– Aft2p dataset: http://kdbio.inesc-id.pt/mat/isbra08/aft2p/musa
– Yap1p dataset: http://kdbio.inesc-id.pt/mat/isbra08/yap1p/musa
– 2,4D dataset: http://kdbio.inesc-id.pt/mat/isbra08/24d/musa

Each link correspond to a web page that contains a link to the MUSA’s output and a table
listing all the motif communities identified. Each entry contains a logo depicting the PWM
(Position Weight Matrix) of the community, the p-value of the most statistically significant



motif within the community and a link to a file containing the list of motifs in the community
and the PWM itself.

Table 2 summarizes the results obtained. For each dataset it shows the total number of
motifs found by the motif finder (T. mot), the number of motifs considered for processing (N.
mot), the total number of edges in the relation graph (N. edg), the number of communities
identified (N. com) and the modularity value achieved (Modul).

Table 2. Results statistics.

Datasets T.mot N.mot N.edg N.com Modul

DeRisi 1647 204 299 89 0.80
Aft2p 2176 2026 3397 202 0.84
Yap1p 2150 2065 3541 168 0.84
2,4D 2088 2045 3143 271 0.86

Since MUSA and RISO algorithms are integrated in the YEASTRACT-DISCOVERER
system, it is possible to use other facilities available to help the results analysis. Each of the
PWMs, in the previous described links with output results, can be compared to the tran-
scription factors binding sites (TFBS) contained in the YEASTRACT database, by following
these steps:

– Select a family’s PWM in the column labeled ”Select”

– Select the parameters to be used in the alignment of the PWMs

– Press the button labeled ”Match!”, to compare the selected PWM with the database’s
TFBS

The default metric is Sum of the Squared Distances, and the input PWM can also be
trimmed. Trimming removes the columns at the edges of the PWM that have an information
content below the selected threshold.

The comparison of the input PWM with the TFBS of the YEASTRACT database is done
using a procedure described in [8]. First of all, the TFBS of the YEASTRACT database
are converted to PWMs, using the IUPAC rules and assuming equiprobability between the
nucleotides. The input PWM is then locally aligned (using the Smith-Waterman local align-
ment algorithm) with each of the TFBS PWMs, with the selected column distance metric to
perform the alignment. Four distance metrics were implemented but the default metric was
the one used in this context.

A detailed analysis of the results obtained for the first two datasets, in table 1, was
performed. This analysis is presented here and in the paper. For the results obtained with
the two other sets, further analysis is needed.

DeRisi dataset For this set, using the default input parameters and considering both
strands, the MUSA algorithm identified 1647 over-represented motifs. From these, only 204
motifs were classified as statistically significant and considered for further processing.

Table 3 presents the first 20 motifs reported by MUSA. In this list, motifs 1 and 7 corre-
spond to instances of the TF binding site of interest. Although these motifs are well positioned
in the motifs list, it is possible to verify that they are only present in at most half of the input



Table 3. The top 20 motifs extracted for the DeRisi dataset

ID Motif Quorum P − value

1 TCCGTGGA 12 of 25 2.79106e-17
2 TCCACGGA 12 of 25 2.79106e-17
3 AAGA (17,19) TTTC 18 of 25 3.57327e-16
4 GAAA (17,19) TCTT 18 of 25 3.57327e-16
5 CCGT (1,3) GAAA 13 of 25 7.22785e-15
6 TTTC (1,3) ACGG 13 of 25 7.22785e-15
7 CCACGGA 14 of 25 8.57847e-15
8 TCCGTGG 14 of 25 8.57847e-15
9 AAAA (4,6) AAAT 25 of 25 1.31737e-14
10 ATTT (4,6) TTTT 25 of 25 1.31737e-14
11 CCACGGAA 11 of 25 1.45924e-14
12 TTCCGTGG 11 of 25 1.45924e-14
13 AACA (43,45) CCTC 11 of 25 2.40999e-12
14 GAGG (43,45) TGTT 11 of 25 2.40999e-12
15 CAAAAG (3,5) AAAT 9 of 25 4.18278e-12
16 GACG (35,37) CATA 9 of 25 2.10875e-11
17 TATG (35,37) CGTC 9 of 25 2.10875e-11
18 CAACA (5,7) ATAA 9 of 25 6.84029e-11
19 AAAGAAAA 18 of 25 1.39523e-10
20 TTTTCTTT 18 of 25 1.39523e-10

sequences. This quorum uncovers the real importance of this binding site, something that is
not expected in this particular dataset where all the genes were up-regulated by the Pdr1p
transcription factor.

Figure 1 shows the 14 motifs which contribute to the most significant community obtained.

By inspecting this figure it is possible to see that the quorum of this community is 97%.
This value is very important since it reflects the real importance of this binding site in this
set. The community quorum is also an important feature in the evaluation of the community
importance.

If a search for documented TFs binding sites is performed in YEASTRACT database using
the PWM of the first community, the best match will be precisely one of the documented
Pdr1p-binding sites. If this search is also performed for the second most important community,
shown in Figure 1, again one of the documented Pdr1p-binding sites will be found. This second
motif is similar to the first one but not included in the same community because of the
difference in the central nucleotides: an GT switched for a AC. In fact, since MUSA searched
for motifs in both strands, this second community roughly contains the reverse complement
of the motifs contained in the first community.

Aft2p dataset For this set and considering the default parameters MUSA extracted 2176
motifs. From these, only 2026 were classified as statistically significant and considered for
further processing. For this set, 202 communities were identified. Table 4 presents the top 20
motifs extracted by MUSA.

Figure 2 shows the PWM logo of the fourth most significant community found, that
corresponds precisely to the documented Aft2p-binding site [2, 9]. The list of motifs in the
alignment is not presented in this document since this community includes 124 motifs.



Community 1 (14 motifs) (quorum stat: min 0.71 avg 0.97 max 1.00)

---TCCGTGGA- 0 14 8 2.79106e-17

---TCCGTGG-- 1 17 9 8.57847e-15

--TTCCGTGG-- 2 12 9 1.45924e-14

----CCGTGG-- 3 26 10 2.03787e-09

---TCCGTG--- 4 18 9 2.16867e-07

--TTCCGT---- 5 28 13 4.31347e-07

-----CGTGG-- 6 45 16 1.13802e-05

-----CGTGGA- 7 23 10 5.08829e-05

----CCGTG--- 8 33 13 0.000103709

-GTTCCG----- 9 15 8 0.000258935

---TCCGTC--- 10 16 5 0.00026753

CCCTC------- 11 36 14 0.000360318

------GTGGA- 12 48 17 0.000506259

------GTGGAA 13 21 8 0.000797191

A: 0.26 0.11 0.12 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.90 0.63

C: 0.12 0.28 0.10 0.04 0.97 1.00 0.00 0.00 0.01 0.00 0.03 0.03

G: 0.18 0.36 0.07 0.03 0.01 0.00 1.00 0.00 0.99 0.99 0.06 0.17

T: 0.44 0.25 0.71 0.88 0.01 0.00 0.00 1.00 0.00 0.01 0.01 0.17

Fig. 1. Depiction of the most significant community found for the DeRisi dataset: motifs alignment,
PWM description and PWM logo

Fig. 2. Depiction of the trimmed PWM logo of community that matches the Aft2p-binding site



Table 4. The top 20 motifs reported by MUSA for the Aft2p dataset

ID Motif Quorum P − value

1 TTTT (13,15)CACC 64 of 193 6.54141e-34
2 ACATAT 139 of 193 1.63126e-31
3 ATATGT 139 of 193 1.63126e-31
4 CACCC 165 of 193 6.43219e-31
5 GGGTG 165 of 193 6.43219e-31
6 GAAGAA 149 of 193 6.3155e-30
7 TTCTTC 149 of 193 6.3155e-30
8 GTATAT 124 of 193 1.36158e-29
9 CATATA 130 of 193 3.35912e-29
10 AAGAAG 145 of 193 1.04215e-28
11 TATTCT 145 of 193 1.31282e-28
12 CAAGAA 148 of 193 5.27289e-28
13 TTCTTG 148 of 193 5.27289e-28
14 GCACC 155 of 193 4.69138e-27
15 GGTGC 155 of 193 4.69138e-27
16 CTTTTC 149 of 193 5.89157e-27
17 GAAAAG 149 of 193 5.89157e-27
18 AGGAAA 143 of 193 1.54727e-26
19 TTTCCT 143 of 193 1.54727e-26
20 AAGGAA 142 of 193 3.50713e-26

The binding site previously described for this TF allows some variability in the peripheral
nucleotides. It is interesting to note that the identified community also exhibits a central
conserved core region, the motif CACCC, flanked by less conserved peripheral nucleotides.
This core motif, that correspond to motif 4 in Table 4, is statistically significant and is present
in 85% of the input sequences. The correspondent community still presents a better quorum,
91%.

The first three most significant communities found for this dataset were compared with
the documented TF binding sites described in the YEASTRACT database. The third most
significant community was also associated with the documented Aft2p-binding site. This
community roughly contains the reverse complement of the motifs present in the fourth com-
munity. The second most significant community matched the TATA-box, a well characterized
core promoter element also expected to be a strong signal in this dataset.

For the first community found, the alignments obtained were very poor, suggesting that
there is no documented TF binding site with such characteristics. To further investigate the
existence of a similar TF binding site, the original PWM was trimmed. Trimming removes
the edges of the PWM with low information content, considering only the most informative
columns for the alignments. In this case, the best match was with the binding site of the
Rap1p transcription factor. This TF is described as a DNA-binding protein involved in either
activation or repression of transcription, depending on binding site context. However, the
trimmed PWM aligned only with a short part of the Rap1p TF binding site, which motivated
us to search further for a community originating a better match with a documented TF
binding site. Although presumably not related with the documented Aft2p binding site or
other documented TF binding site, this motif can have an important biological meaning.



1.3 Results with RISO algorithm

RISO [10] is an algorithm that searches for simple and structured motifs in a given set of DNA
sequences. The motifs that are found by RISO comply with certain characteristics which are
specified by the user, such as the number and size of the boxes that form the structured motif,
the distances between them and the minimum quorum expected. It is also possible to specify
a number of substitutions for each box.

RISO searches for motifs in the input sequences by using all the input sequences to con-
struct what is known as a factor tree, a kind of suffix tree pruned at a given depth (defined by
the length of the boxes of the complex motif). RISO uses a new data structure, the box-link,
in order to efficiently extract structured motifs from the set of promoters of the input genes.

For all datasets, RISO algorithm was instructed to identify simple motifs, sized between
4 and 7, with 0 substitutions and a quorum equal to 60%.

The complete set of results obtained for the four tested datasets can be found through the
following links:

– DeRisi dataset: http://kdbio.inesc-id.pt/mat/isbra08/derisi/riso
– Aft2p dataset: http://kdbio.inesc-id.pt/mat/isbra08/aft2p/riso
– Yap1p dataset: http://kdbio.inesc-id.pt/mat/isbra08/yap1p/riso
– 2,4D dataset: http://kdbio.inesc-id.pt/mat/isbra08/24d/riso

Table 5 summarizes the results obtained. For each dataset it shows the total number of
motifs found by the motif finder (T. mot), the number of motifs considered for processing (N.
mot), the total number of edges in the relation graph (N. edg), the number of communities
identified (N. com) and the modularity value achieved (Modul).

Table 5. Results statistics.

Datasets T.mot N.mot N.edg N.com Modul

DeRisi 1353 264 249 88 0.89
Aft2p 1198 1094 527 682 0.97
Yap1p 1233 1133 698 612 0.96
2,4D 1204 1158 675 706 0.95
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