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Abstract. The Python programming language is becoming increasingly
popular in a variety of areas, most notably among novice programmers.
This paper presents an implementation of Python for DrRacket which al-
lows Python programmers to use DrRacket’s features with Python code,
as well as adding Python support for DrRacket based tools, such as
Rosetta. The suggested approach involves compiling Python code into
equivalent Racket code. The compiled code makes use of a runtime li-
brary that runs on top of Python’s virtual machine, therefore using its
data types and primitive operations. This approach allows full support
for Python’s libraries, but intermediate results have evidenced issues with
garbage collection and a slowdown by at least one order of magnitude
when compared to Python’s reference implementation. Future efforts in-
clude reducing the dependency on Python’s virtual machine by imple-
menting most of its primitives over Racket data types.

Keywords: Python; Racket; DrRacket; Programming languages; Com-
pilers; Rosetta

1 Introduction

There is an increasing need for architects and designers to master generative
design, a design method based on a programming approach which allows them to
build complex three-dimensional structures that can then be effortlessly modified
through simple changes in a program. It is, thus, increasingly important for
architects and designers to master programming techniques.

Although most computer-aided design (CAD) applications provide program-
ming languages for this end, programs written in these languages have very
limited portability: given that each CAD application provides its own specific
language and functionality, a program written for one CAD application cannot
be used on other CAD applications. On the other hand, these are not pedagogical
programming languages and most of them are poorly designed or obsolete.

DrRacket (formerly known as DrScheme) is an integrated development envi-
ronment (IDE) originally meant for the Racket programming language, a dialect
of LISP and a descendant of Scheme.[1] Unlike such IDEs as Eclipse or Microsoft
Visual Studio, DrRacket provides a simple and straightforward interface aimed
at inexperienced programmers (Fig. 1).
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Fig. 1. DrRacket’s graphical user interface

DrRacket was designed as a pedagogic environment[2] and has been used
in introductory programming courses in many schools around the world. Addi-
tionally, DrRacket is not limited to Racket development, as it also supports the
development and extension of other programming languages.[3] A number of pro-
gramming languages have been implemented in Racket such as Algol, Datalog,
JavaScript and other dialects of LISP.

Rosetta is an extensible IDE for generative design, based on DrRacket and
targeted at architects and designers.[5] It seeks to answer the portability prob-
lem by allowing the development of programs in different programming languages
which are then portable across different CAD applications. This is achieved by
(1) an abstraction layer that allows portable and transparent access to several
different CAD applications; (2) back-ends that translate the abstraction layer
into different CAD applications; (3) front-end programming languages in which
users write the generative design programs; and (4) an intermediate program-
ming language, Racket, that encompasses the language constructs essential for
geometric modelling and that is used as a compilation target for the front-ends.

Rosetta users can program directly in Racket or in any other programming
language implemented as a front-end. Currently Rosetta supports front-ends
for AutoLISP, JavaScript and RosettaFlow (a graphical language inspired in
Grasshopper). AutoLISP and JavaScript were chosen precisely because they have
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been used for generative design. More recently, the language Python has emerged
as a good candidate for this area of application.

In this paper we propose an implementation of the Python programming
language for DrRacket.

Python is a very high-level, interpreted, dynamically typed programming
language.[9, p. 3] It supports the functional, imperative and object-oriented pro-
gramming paradigms and features automatic memory management. It is mostly
used for scripting, but it can also be used to build large scale applications. Its
reference implementation, CPython, is written in C and it is maintained by
the Python Software Foundation. There are also other implementations such as
Jython (written in Java), PyPy (written in Python) and IronPython (targeting
the .NET Framework).

Due to its large standard library, expressive syntax and focus on code read-
ability, Python is becoming an increasingly popular programming language on
many areas, including architecture. Python has been receiving a lot of attention
in the CAD community, particularly after it has been made available in CAD
software such as Rhino or Blender. This justifies the need for implementing
Python as another front-end language of Rosetta.

In the next section, we address the objectives for this thesis work. Section
3 explores some related Python implementations. Section 4 describes the archi-
tecture of the proposed solution, justifies our major decisions and showcases the
performance of our current implementation with benchmarks. Section 5 explains
how our results will be evaluated and we conclude with Section 6.

2 Objectives

The main objective of this thesis work is to develop a correct and efficient im-
plementation of the Python language for DrRacket. It will allow for Python
developers to use features of the DrRacket IDE such as syntax highlighting, de-
bugger and profiler, as well as developing programs or libraries that mix Python
and Racket code. Additionally, it will allow architects and designers to use it as
a front-end programming language for Rosetta.

Our main focus will be on exploring efficient methods for mapping Python’s
semantics on Racket’s features. This includes:

– Python’s object-based data model

– Built-in data types such as the numeric tower, lists and dictionaries

– Built-in operators such plus (+), greater than (>), etc.

– Function and class definitions

– Bindings and scopes

– Flow control statements such as return, break, continue and yield

– Exception handling

– Importing modules
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3 Related Work

There are a number of Python implementations that are good sources of ideas
for our own implementation. In this section we describe the most relevant ones.

3.1 CPython

CPython, written in the C programming language, has been the reference im-
plementation of Python since its first release and is maintained by the Python
Software Foundation. It parses Python source code (from .py files or interac-
tive mode) and compiles it to bytecode, which is then interpreted on a virtual
machine.

The Python standard library is implemented both in Python and C. In fact,
CPython makes it easy to write third-party module extension in C to be used in
Python code. The inverse is also possible: one can embed Python functionality
in C code, using the Python/C API.[6]

3.1.1 Object Representation

The virtual machine is a simple stack machine[7], where the byte codes operate
on a stack of PyObject pointers.

At runtime, every Python object has a corresponding PyObject instance. A
PyObject contains a pointer to a reference count, used for garbage collecting, and
a PyTypeObject, which indicaes the objects type (and is also a PyObject). In
order for every value to be treated as a PyObject, each built-in type is declared
as a structure containing these two fields, plus any additional fields specific to
that type.

This means that everything is allocated on the heap, even basic types. To
counter this, there is a special performance optimization: only requests larger
than 256 bytes are handled by malloc, the C standard allocator, while smaller
ones are handled with memory pools.

In addition to this, there is a pool for commonly used immutable objects such
as the integers from -5 to 256. These are allocated only once, when the virtual
machine is initialized. Each new reference to one of these integers will point to
the instance on the pool instead of allocating a new one.

3.1.2 Garbage collection

The traditional garbage collection scheme of following references to track reach-
able objects does not work in CPython, because extension modules make it
impossible to determine the root objects.

Instead, garbage collection is performed through reference counting. When-
ever a new Python object is allocated or whenever a new reference to it is made,
its reference count is incremented. When its reference is no longer needed, the
reference counter is decremented. When it reaches zero, the object’s finalizer is
called and the space is reclaimed.
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Reference counting, however, does not work well with reference cycles.[8,
ch. 3.1] Consider the example of a list appending itself. When its reference goes
out of scope, its counter is decremented, however the cyclic reference inside the
list is still present, so the reference count will never reach zero and the list will
not be garbage collected, even though it’s already unreachable.

This is still an open problem in CPython and for this reason, cyclic references
are not encouraged.

3.1.3 Threading

Threading in CPython is implemented over real OS threads, however CPython
enforces a global interpreter lock (GIL), which prevents more than one thread
running interpreted code at the same time. This is necessary because the ref-
erence counting system (described above) is not thread-safe.[10] If two threads
attempt to increment an object’s reference count simultaneously, it would be
possible for this count to be erroneously incremented only once.

This is a severe limitation to the performance of threads on CPU-intensive
tasks. In fact, using threads will often yield a worse performance than using a
sequential approach, even on a multiple processor environment.[11] Therefore,
the use of threads is only recommended for I/O tasks.[12, p. 444]

Note that the GIL is a feature of CPython and not of the Python language.
It is not present in other implementations such as Jython or IronPython.

3.2 Jython

Jython is another Python implementation, written in Java and first released in
2000. Similarly to how CPython compiles Python source-code to bytecode that
can be run on its virtual machine, Jython compiles Python source-code to Java
bytecode, which can then be run on the Java Virtual Machine (JVM).

3.2.1 Implementation Differences

There are some aspects of Python’s semantics in which Jython’s implementation
differs from CPython’s.[13] Some of these are due to limitations imposed by the
JVM, while others are considered bugs in CPython and, thus, were implemented
differently in Jython.

The standard library in Jython also suffers from differences from the one
implemented in CPython, as some of the C-based modules have been rewritten
in Java.

3.2.2 Java Integration

Jython programs cannot use extension modules written for CPython, but they
can import Java classes, the same way any other Python module can be im-
ported.

There is work being done by a third-party[14] to integrate CPython module
extensions with Jython, through the use of the Python/C API. This would allow
C-based libraries such as NumPy and SciPy to be used with Jython.
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3.2.3 Performance

It is worth noting that garbage collection is performed by the JVM and does
not suffer from the issues with reference cycles that plague CPython.[15, p. 57]
Furthermore, there is no global interpreter lock, so threads can take advantage
of multi-processor architectures for CPU-intensive tasks.[15, p. 417]

Performance-wise, Jython claims to be approximately as fast as CPython.
Some libraries are known to be slower because they are currently implemented
in Python instead of Java (in CPython these are written in C). Jython’s perfor-
mance is also deeply tied to performance gains in the Java Virtual Machine.

3.3 IronPython

IronPython is an implementation of Python for the Common Language Infras-
tructure (CLI). It is written in C# and was first released in 2006. It compiles
Python source-code to CLI bytecode, which can be run on Microsoft’s .NET
framework or Mono (an open-source alternative implementation of the CLI).

IronPython follows an architecture similar to CPython’s, with a scanner,
parser, bytecode generator and a support library, all written in C#.[16]

3.3.1 .NET Integration

IronPython provides support for importing .NET libraries and using them with
Python code.[17] As it happened with Jython, there is work being done by a
third-party in order to integrate CPython module extensions with IronPython.[18]

3.3.2 Performance

As far as performance goes, IronPython claims to be 1.8 times faster than
CPython on pystone, a Python benchmark for showcasing Python’s features.
Additionally, further benchmarks demonstrate that IronPython is slower at allo-
cating and garbage collecting objects and running code with eval. On the other
hand, it is faster at setting global variables and calling functions.[19]

3.4 PyPy

PyPy is yet another Python implementation, written in RPython, a restricted
subset of Python. It was first released in 2007 and currently its main focus is on
speed, claiming to be 6.2 times faster than CPython in a geometric average of a
comprehensive set of benchmarks.[20]

It supports all of the core language, most of the standard library and even
some third party libraries. Additionally, it features incomplete support for the
Python/C API.[21]

PyPy actually includes two very distinct modules:[22]

– The Python interpreter, written in RPython;
– The RPython translation toolchain.
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RPython (Restricted Python) is a heavily restricted subset of Python, in
order to allow static inference of types. For instance, it does not allow altering
the contents of a module, creating functions at runtime, nor having a variable
holding incompatible types.

3.4.1 Interpreter

Like the implementations mentioned before, the interpreter converts the user’s
Python source code into bytecode. However, what distinguishes it from those
other implementations is that this interpreter, written in RPython, is in turn
compiled by the RPython translation toolchain, effectively converting Python
code to a lower level platform (typically C, but the Java Virtual Machine and
Common Language Infrastructure are also supported).

The interpreter uses an abstraction called object spaces, commonly abbrevi-
ated to objspaces. An objspace encapsulates the knowledge needed to represent
and manipulate a specific Python data type. This allows the interpreter to treat
Python objects as black boxes, generating the same code for each operation,
without the need to inspect the types of the operands. The actual behaviour for
each operation is delegated to a method of the objspace.

Besides enforcing a clean separation between structure and behaviour, this
strategy also supports having multiple implementations of a specific data type,
which allows for the most efficient one to be chosen on runtime, through multiple
dispatching. For instance, a long can be represented by a standard integer when
it is small enough and by a big integer only when it is necessary.

3.4.2 Translation Toolchain

The translation toolchain consists of a pipeline of transformations, including:

– Flow analysis - each function is interpreted using a special objspace called
flow objspace. This results in a flowgraph of linked objects, where each block
has one or more operations;

– Annotator - the annotator assigns a type to the arguments, variables and
results of each function;

– RTyping - the RTyping uses these annotations to expand high-level opera-
tions into low-level ones. For example, a generic add operation with operands
annotated as integers will be expanded to an int add operation;

– Backend optimizations - these include constant folding, store sinking,
dead code removal, malloc removal and function inlining;

– Garbage collector and exception transformation - a garbage collector
is added and exception handling is rewritten to use manual stack unwinding;

– C source generation - finally C code is generated from the low-level flow-
graphs.

However, what truly makes PyPy stand out as currently the fastest Python
implementation is its just-in-time compiler (JIT), which detects common code-
paths at runtime and compiles them to machine code, optimizing their speed.
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The JIT keeps a counter for every loop that is executed. When it exceeds
a certain threshold, that codepath is recorded and compiled to machine code.
This means that the JIT works better for programs without frequent changes in
loop conditions.

The JIT and other features from the translation toolchain are not specific
to Python. In fact, the interpreter and translation toolchain are designed to be
independent from each other. This separation encourages the development of
other dynamic languages, without the need to reimplement the features already
present at the translation toolchain (most notably, the JIT).

3.5 PLT Spy

PLT Spy is an experimental Python implementation written in PLT Scheme
(the former designation of Racket) and C, first released in 2003. It parses and
compiles Python source-code into equivalent PLT Scheme code.[23]

PLT Spy’s runtime library is written in C and linked to Scheme via the PLT
Scheme C API. It implements Python’s built-in types and operations by mapping
them to the CPython virtual machine, through the use of the Python/C API.
This allows PLT Spy to support every library that CPython supports (including
NumPy and SciPy).

This extended support has a big trade-off in portability, though, as it led
to a strong dependence on the 2.3 version of the Python/C API library and
does not seem to work out-of-the-box with newer versions. More importantly,
the repetitive use of Python/C API calls and conversions between Python and
Scheme types severely limited PLT Spy’s performance. PLT Spy’s authors use
anecdotal evidence to claim that it is around three orders of magnitude slower
than CPython.

3.6 Other Experimental Implementations

Following the same philosophy, there are other experimental Python implementa-
tions which target pre-existing languages or virtual machines to allow integration
between Python code and the target language’s code.

Such implementations include:

– RubyPython, written in Ruby and targeting the Ruby Virtual Machine
– Brython and Skulpt, written in JavaScript
– CLPython, written in Common Lisp

As stated above, these are experimental implementations and currently they
only support subsets of Python.

3.7 Comparison

Table 1 displays a rough comparison between the implementations discussed
above:
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Language(s)

written

Platform(s)

targetted

Slowdown

(vs CPython)

Std. library

support

CPython C CPython’s VM 1× Full

Jython Java JVM ∼ 1× Most

IronPython C# CLI ∼ 0.55× Most

PyPy RPython C, JVM, CLI ∼ 0.16× Most

PLT Spy Scheme, C Scheme ∼ 1000× Full

Table 1. Comparison between implementations

Each implementation typically targets the same language/platform it was
written in, usually because they were designed with the goal of allowing Python
developers to integrate that platform’s libraries in their programs. The main
exception is PyPy, which was designed for speed and not integration.

In terms of performance, most of these implementations are on a par with
CPython, except for PLT Spy, manly due to the bottleneck that constitutes the
repeated conversion of data from Scheme’s internal representation to CPython’s
internal representation, that is needed in order to use the Python/C API.

On the other hand, the use of the Python/C API allows PLT Spy to effort-
lessly support all of Python’s standard library and third-party C-based extension
modules.

In the next section we present our initial approach to an implementation
of Python for DrRacket that provides most of the advantages of PLT Spy but
overcoming the performance problem.

4 Solution

In order to achieve the objectives stated in section 2, we plan to implement a
source-to-source compiler from Python to Racket.

The proposed solution consists of two compilation phases:

1. Python source-code is compiled to Racket source-code;
2. Racket source-code is compiled to Racket bytecode.

In phase 1, the Python source code is parsed into a list of abstract syntax
trees, which are then expanded into a list of syntax-objects containing equivalent
Racket code. Syntax-objects are Racket’s built-in structures which associate s-
expressions with its source location information (line number, column position,
etc.) and lexical context.

In phase 2, the Racket source-code generated above is fed to a bytecode com-
piler which performs a series of optimizations including constant propagation,
constant folding, inlining, and dead-code removal. This bytecode is interpreted
on the Racket VM, where it may be further optimized by a JIT compiler.
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Phase 2 is automatically performed by Racket, therefore the rest of section
will refer exclusively to phase 1, i.e. compiling Python source-code to Racket
source-code.

4.1 General Architecture

Fig. 2 summarises the dependencies between the different Racket modules of
the proposed solution. The next paragraphs provide a more detailed explanation
of these modules.

Fig. 2. Dependencies betwen modules. The arrows indicate that a module uses func-
tionality that is defined on the module it points to.

4.1.1 Racket Interfacing

A Racket file usually starts with the line #lang <language> to indicate which
language is being used (in our case, it will be #lang python). The entry-point
for a #lang is at the reader module, visible at the top of Fig. 2. This module
must provide the functions read and read-syntax.[4, ch. 17.2]

The read-syntax function takes the name of the source file and an input
port as arguments and returns a list of syntax objects, which correspond to
the Racket code compiled from the input port. It uses the parse and compile

modules to do so.



An Implementation of Python for DrRacket 11

The read function is similar to read-syntax, but it simply takes an input
port as the argument and returns a list of s-expressions instead of a list of syntax
objects. It is usually coded by mapping the Racket function syntax->datum to
the result of read-syntax, i.e. extracting the datum from each syntax object
produced by read-syntax.

4.1.2 Parse and Compile Modules

The lex+yacc module defines a set of Lex and Yacc rules for parsing Python
code. This outputs a list of abstract syntax trees (ASTs), which are defined in
the ast-node module. These nodes are implemented as Racket objects. Each
subclass of an AST node defines its own to-racket method, responsible for the
code generation. A call to to-racket works in a top-down recursive manner, as
each node will eventually call to-racket on its children.

The parse module defines a practical interface of functions for converting
the Python code from an input port into a list of ASTs, using the functionality
from the lex+yacc module.

In a similar way, the compile module defines a practical interface of functions
for converting lists of ASTs into syntax objects with the compiled code, by calling
the to-racket method on each AST.

4.1.3 Runtime Modules

Compiled code contains references to Racket functions and macros, as well as
some additional functions which implement Python’s primitives. For instance,
we define py-add as the function which implements the semantics of Python’s +
operator.

These primitive functions are defined in the runtime module. They are im-
plemented on top of the actual CPython primitives, using the Python/C API
through the Racket Foreign Function Interface (FFI). These FFI bindings are
defined on the libpython module.

Finally, the python module simply provides everything defined at the runtime
module, along with all the functionality from the racket/base language.

4.2 Parsing

There are two main alternatives for parsing Python code:

– Using Racket’s parser tools to implement a lexer and parser for Python’s
grammar;

– Using Python’s own parsing features, through its ast library. The resulting
AST would be marshalled into a format such as XML or JSON and finally
read and rebuilt in Racket.

The second alternative would yield an AST with an absolute guarantee of
correctness (from the Python side), however the marshalling and unmarshalling
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processes would take some time to implement and would still be error-prone,
defeating the purpose of this method.

Therefore, we opted for the first alternative. The lexer turns the source-code
into a sequence of tokens, which are then consumed by a LALR(1) parser. This
task was as trivial as porting PLT Spy’s lexer and parser code from PLT Scheme
to Racket. There have been some changes in Python’s grammar since version 2.3
(PLT Spy’s Python version), but these are minimal and can be updated with
little effort.

4.3 Code Generation

In order to support C-based Python modules, we started by following a similar
approach to PLT Spy, by mapping Python’s data types and primitive functions
to the Python/C API. The way we interact with this API, however, is radically
different.

On PLT Spy, this was done via the PLT Scheme C API, and therefore the
runtime is implemented in C. This entails converting Scheme values into Python
objects and vice-versa for each runtime call. This method is cumbersome and
lacks portability, since it requires compiling the runtime with a platform specific
C compiler, and to do so each time the runtime is modified.

Instead, we used the Racket FFI to directly access the Python/C API in
Racket, therefore our runtime is implemented in Racket.

While this provides us with a functional proof-of-concept, we will show on
the Performance section that the repetitive use of these foreign functions in-
troduces a huge overhead on our primitive operators, resulting in a very slow
implementation.

We plan on improving it by exploring more efficient processes for implement-
ing these primitive functions on top of Racket data types, therefore reducing
our dependency on the FFI. This will only entail changing the runtime module,
leaving the rest of the compilation process untouched.

4.4 Python 2 vs. 3

Before moving on to the examples, it is worth mentioning that Python’s most re-
cent version is Python 3.4, but we started our implementation effort by targeting
version 2.7 (the final release of the 2.x series) for the following reasons:

– Python 3.x is intentionally not backwards compatible with Python 2.x and
there are still many third party libraries not yet ported to 3.x[24];

– Python 2.x is still the default version for most current Linux distributions
and for MacOS;

– Some of the new features in Python 3.x may be less intuitive for inexpe-
rienced programmers that are the main target audience for Rosetta. For
instance, in Python 3.x the built-in function range now returns an iterator
instead of a list.

It should be noted that this decision does not present a future upgrade to support
the 3.x series as this version becomes more widely used.
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4.5 Examples

In this section we provide some examples of the current state of the translation
between Python and Racket. Note that this is still a work in progress and,
therefore, the compilation results of these examples are likely to change in the
future.

4.5.1 Ackermann

Consider the following program in Racket which implements the Ackermann
function and calls it with arguments m = 3 and n = 9:

1 (define (ackermann m n)

2 (cond

3 [(= m 0) (+ n 1)]

4 [(and (> m 0) (= n 0)) (ackermann (- m 1) 1)]

5 [else (ackermann (- m 1) (ackermann m (- n 1)))]))

6

7 (ackermann 3 9)

Its equivalent in Python would be:

1 def ackermann(m,n):

2 if m == 0: return n+1

3 elif m > 0 and n == 0: return ackermann(m-1,1)

4 else: return ackermann(m-1, ackermann(m,n-1))

5

6 print ackermann(3,9)

Currently, this code is compiled to:

1 (define (:ackermann :m :n)

2 (cond

3 [(py-truth (py-eq :m #<cpointer>))

4 (py-add :n #<cpointer>)]

5 [(py-truth (py-and (py-gt :m #<cpointer>)

6 (py-eq :n #<cpointer>)))

7 (py-call :ackermann (py-sub :m #<cpointer>) #<cpointer>)]

8 [else

9 (py-call

10 :ackermann

11 (py-sub :m #<cpointer>)

12 (py-call :ackermann :m (py-sub :n #<cpointer>)))]))

13

14 (py-print (py-call :ackermann #<cpointer> #<cpointer>))

Looking at line 1, the first thing one might notice is the colon prefixing
the identifiers ackermann, m and n. This has no syntactic meaning in Racket;
it is simply a name mangling technique to avoid replacing Racket’s bindings
with bindings defined in Python. For example, one might set a variable cond
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in Python, which would then be compiled to :cond and therefore would not
interfere with Racket’s built-in cond.

Please note that we still only support positional arguments on function def-
initions and calls. Python supports calling functions with an arbitrary number
of keyword arguments. Those arguments that do not match the parameters de-
clared on the function definition are placed on a special dictionary which is
available inside the function’s scope.

These semantics are not exactly the same as Racket’s function calling seman-
tics, but they can be emulated by compiling a function’s body as a lambda and
wrapping it with a higher-order function which would be responsible for binding
the appropriate values to each parameter.

Starting at line 3, there are references to #<cpointer> values, this is due
to the literals being evaluated and converted to CPython’s internal representa-
tion at compile-time, therefore being displayed as pointers in the FFI’s external
representation.

The functions py-eq, py-and, py-gt, py-add and py-sub are defined on the
runtime module and implement the semantics of the Python operators ==, and,
>, +, -, respectively.

The function py-truth takes a Python object as argument and returns a
Racket boolean value, #t or #f, according to Python’s semantics for boolean
values. This conversion is necessary because, in Racket, only #f is treated as
false, while, in Python, the boolean value false, zero, the empty list and the
empty dictionary are all treated as false when used on the condition of an if,
for or while statement. All other values are treated as true.

The functions py-call and py-print implement the semantics of function
calling and the print statement, respectively.

As a final remark, notice that except for the added verboseness, the original
Racket code and the compiled code are essentially the same.

4.5.2 Mandelbrot

Consider now a Racket program which defines and calls a function that computes
the number of iterations needed to determine if a complex number c belongs to
the Mandelbrot set, given a limited number of iterations.

1 (define (mandelbrot iterations c)

2 (let loop ([i 0] [z 0+0i])

3 (cond

4 [(> i iterations) i]

5 [(> (magnitude z) 2) i]

6 [else (loop (add1 i)

7 (+ (* z z) c))])))

8

9 (mandelbrot 1000000 .2+.3i)

Its Python equivalent could be implemented like such:
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1 def mandelbrot(iterations, c):

2 z = 0+0j

3 for i in range(iterations+1):

4 if abs(z) > 2:

5 return i

6 z = z*z + c

7 return i+1

8

9 print mandelbrot(1000000, .2+.3j)

This program demonstrates some features which are not straightforward to
map in Racket. For example, in Python we can assign new local variables any-
where, as shown in line 2, while in Racket they become parameters of a named
let form.

Another feature, present in most programming languages but not in Racket,
is the return keyword, which immediately returns to the point where the func-
tion was called, with a given value. On the former example, all returns were tail
statements, while on this one we have an early return, on line 5.

The program is compiled to:

1 (define (:mandelbrot :iterations :c)

2 (let ([:i (void)]

3 [:z (void)])

4 (let/ec return6306

5 (set! :z (py-add #<cpointer> #<cpointer>))

6 (py-for continue6305

7 (:i (py-call :range (py-add :iterations #<cpointer>)))

8 (begin

9 (cond

10 [(py-truth (py-or (py-gt :i :iterations)

11 (py-gt (py-call :abs :z) #<cpointer>)))

12 (return6306 :i)]

13 [else py-none])

14 (set! :z (py-add (py-mul :z :z) :c))))

15 (return6306 :i))))

16

17 (py-print

18 (py-call :mandelbrot #<cpointer> (py-add #<cpointer> #<cpointer>)))

You will notice the let form on lines 2-3. The variables :i and :z are declared
with a void value at the start of the function definition, allowing us to simply
map Python assignments to set! forms.

A (more efficient) alternative would be compiling the first assignment of a
given variable with a let form and the remaining assignments with set! forms
within the enclosing let. This, however, would not guarantee the same scope
semantics as Python’s.
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Unlike such languages as C and Java, compound statements (i.e. ”blocks”)
in Python do not define their own scope. Therefore, a variable which is assigned
in a compound statement is also visible outside of it.

Consider the case of variable i, first assigned inside a for loop (line 3 of the
Python program). If its let form was placed inside the for loop, its enclosing
scope would necessarily end when closing the for loop, therefore i would not be
visible afterwards and the return statement on line 7 would yield an error.

Early returns are implemented as escape continuations, as seen at line 4: there
is a let/ec form (syntactic sugar for call-with-escape-continuation) wrap-
ping the body of the function definition. With this approach, a return statement
is as straightforward as calling the escape continuation, as seen on line 12.

Finally, py-for is a macro which implements Python’s for loop. It expands
to a named let which updates the control variables, evaluates the for’s body
and recursively calls itself, repeating the cycle with the next iteration. Note that
calling this named let has the same semantics as a continue statement.

In fact, although there was already a for form in Racket with similar se-
mantics as Python’s, the latter allows the use of break and continue as flow
control statements. The break statement can be implemented as an escape con-
tinuation and continue is implemented by calling the named let, thus starting
a new iteration of the loop.

4.6 Performance

The charts on Fig. 3 compare the running time of these examples for (a) Racket
code on Racket, (b) Python code on CPython and (c) compiled Python code on
Racket. These benchmarks were performed on an Intel R© CoreTM i7 processor
at 3.2GHz running under Windows 7.

The times below represent an average of 3 samples.

Fig. 3. Benchmarks of the Ackermann and Mandelbrot examples
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We can see that Python code running on Racket is currently about 20-24
times slower than the Python code running on CPython, even for the Ackermann
example, where the Racket implementation is significantly faster than Python’s.

It is worth mentioning that the FFI function calls are allocating objects on
the CPython virtual machine which are not being garbage collected, therefore
producing a memory leak.

The Python/C API offers the same mechanism as the one CPython uses for
garbage collecting (reference counting). This is meant to be used manually by
the programmer: whenever a reference to a Python object is no longer needed,
its reference count should be decremented; when it reaches zero, the object is
garbage collected.

We are trying to implement this mechanism automatically in Racket by at-
taching a finalizer to each FFI function that allocates a new Python object.
This finalizer is responsible for decrementing the object’s reference count when
Racket’s GC proves that there are no more live references to the Python object.

Performance-wise, the use of the finalizers severely penalizes execution times:
the Mandelbrot example now runs with an average time of 20384ms instead of
8268ms, 18.5% of which are spent on garbage collecting. More work is needed
to understand the causes of this performance loss.

5 Evaluation

Our implementation will be evaluated in two distinct aspects: correctness and
performance.

The correctness of our implementation will be evaluated based on the for-
mal specifications presented on [25] and [26] and by its conformance to their
test suites. There are also test suites written for other Python implementations,
therefore we will be using these as well.

Performance will be evaluated through benchmarks on several aspects of the
Python language, comparing the running time and memory footprint of our
implementation with the reference implementation, CPython.

Additionally, we will be evaluate the correctness and expressiveness of Rosetta’s
geometric modelling operators when using the Python front-end.

6 Conclusions

We have shown that there is a need for an implementation of Python for the
Rosetta community and, more specifically, for DrRacket users. This implemen-
tation must support the most used Python libraries and should be competitive
with other state-of-the-art implementations in terms of performance.

Our solution follows a traditional compiler’s approach, as a pipeline of scan-
ner, parser and code generation. Python source-code is, thus, compiled to equiv-
alent Racket source-code. This Racket source-code is then handled by Racket’s
bytecode compiler, JIT compiler and interpreter.
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Some of Python’s common expressions and control flow statements have been
already implemented, allowing for the successful compilation of two examples:
the Ackermann function and a function for computing Mandelbrot’s set.

In order to support CPython-specific libraries, we developed a runtime li-
brary based on CPython’s primitive operations via the Racket Foreign Function
Interface. This resulted in a proof-of-concept which already supports some of
Python’s features correctly, but suffers from poor performance and garbage col-
lecting issues.

In the future, we will be exploring ways to implement Python’s primitive op-
erations over Racket types, therefore improving their performance and reducing
the garbage collecting issues described at the end of section 4. We will also be
implementing the remaining Python features.
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