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Abstract. Programs are rarely released with useful documentation. There-
fore, when the documentation is poor, obsolete, or absent, the remaining
option is to study the program itself. Over the years, many environments
have been proposed to write, document, and comprehend a program.
This report presents a survey of those environments, and proposes some
innovative tools to improve the current state of the art.

1 Introduction

Challenges in understanding programs are all too familiar since the early days of
computing. At that time we wrote programs in absolute binary [1]. It is a numeric
representation typically expressed by a sequence of zeros and ones, meaning that
the programs were represented as a sequence of instructions and addresses both
written in binary. To understand a program in this form is almost impossible.

Since early days, as Fred Brooks pointed out in his influential essay [2], we
have come to accept that there is no silver bullet to understand a program.
Fortunately, in recent years, the field of program comprehension [3] has evolved
considerably, because a program that is not comprehended cannot be changed,
shared and communicated.

The area of program comprehension has shown that to understand a program,
a silver bullet may not be required. This field came up with several theories that
provide rich explanations of how people understand programs. For instance, the
top-down theory [4] says that to comprehend a program, the programmer must
create a mental model of the program’s structure and behavior. This model is a
set of hypothesis which the programmer confirms or rejects based on evidence
found in the code.

In response to these theories or in parallel with them, many environments
and innovative tools were created or updated. Some of the examples are: sophis-
ticated frameworks to support rapid construction and integration of tools [5],
advanced programming environments with intelligent user interface [6–9], and
simple tools designed for learning environments [10–15]. In parallel to these ad-
vances, there are other fields interested in program comprehension. For example,
in the Architecture field, new tools [16, 17] are being proposed to support gener-
ative design: a procedural method for generating architectural models [18], that
also suffers from program understanding problems.



2 G. Ferreira

Fig. 1: An architectural sketch.

Regardless the area, people follow two ba-
sic steps to build a program: first imagining
its details, then implementing them. This is a
natural process for programmers that is com-
monly performed in their heads. Architects,
by contrast, prefer another medium to express
their ideas: diagrams/sketches [19], because it
is a compact medium to convey complex ideas.
For example, Figure 1 shows a sketch of a geometric model which would be more
complex, if it were described in text. These drawings are also helpful in the end
of design conception, because they clearly document the design decisions, the
relationship between different parts of the design, and the impact of external
factors in the final shape.

The generative design programs, by definition, can itself be considered a de-
scription of a design, as it formally specifies the modeling process of the design.
However, this formal specification can only be easily understood for simple de-
sign problems. Consequently, the situation becomes the same of any sufficiently
complex program, then it is helpful to have program documentation.

Many problems related with program comprehension could be mitigated, if
the programs were properly documented. Source code comments is the most
important artifact to understand a system and to maintain, as showed in [20].
Unfortunately, writing documentation is perceived as a tiresome task and, thus,
is frequently avoided [21], which negatively affects software development. A re-
sult of the lack of program documentation is that programmers must spend a
significant amount of time separating relevant ideas from the irrelevant ones.

We think that, by creating well designed tools, it is possible to improve
program comprehension and program documentation. We plan to address this
problem in two ways: (1) minimizing the lack of documentation in the programs,
by turning program documentation in a less tiresome task, and (2) creating a
new medium to help people design programs, by anticipating the effect of their
actions in the program output.

2 Objectives

This work addresses two challenges:

– minimize the lack of documentation in the programs.
– improve the program comprehension process.

To overcome these challenges, we will investigate better ways to help pro-
grammers in their conceptual tasks. The goal is to design and implement inno-
vative tools which support and encourage new ways of thinking, and therefore,
enabling programmers to more easily see and understand their programs.

Our approach to achieve this objective is to, at first, analyze how pro-
gramming tools can improve program comprehension. The Learnable Program-
ming [22, 23] approach has shown interesting insights in this direction. Secondly,
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based on this analysis, and in order to prove our ideas, we will implement two
interactive tools tailored for generative design programs:

1. Sketch-program correlation tool, which will encourage architects and design-
ers to reuse their conceptual sketches, such as that shown in Figure 1, to
visually document their programs. These sketches will be correlated with
the program source code in a way that significantly reduces the effort to
read the code. Therefore, it allows users to acquire a better mental model.

2. Immediate feedback tool, which will give a new medium for architects and
designers to create new ideas by continuously reacting with changes in their
models. This tool will minimize the latency between writing the code and ex-
ecuting it, consequently this will encourage users to experiment ideas quickly,
augmenting their comprehension about the program.

This thesis will produce the following expected results: i) a specification of
each tool, its purpose and how this tool is designed to support its purpose, ii)
an implementation of a prototype, and iii) an experimental evaluation with a
comparison to other similar tools.

3 Related Work

A programming system has two fundamental parts: the programming language
that users should know, and the programming environment that is used to write
and test programs. Undoubtedly, both parts are equally important to build a
program and understand it.

In the following sections we divide the programming systems in three cate-
gories: (3.1) general-purpose systems; proposed for building complex software,
(3.2) teaching systems; proposed to teach programming, and (3.3) empowering
systems; proposed to build programs tailored to specific needs. In each category,
we focus on the tools provided by the programming environment.

3.1 General-purpose systems

The systems in this category are built to support all, or at least a substantial
part, of the software development process. To this end, these systems suggest
an integrated development environment (IDE) that aims to support the entire
development process by grouping in a single environment all necessary tools.

In this section we describe, in detail, two relevant IDEs: Eclipse [6] and
LightTable1. For the sake of comparison, we include other IDEs which provide
similar features to Eclipse (e.g. NetBeans [7], IntelliJ [8], and Microsoft Visual
Studio (MVS) [9]), and similar features to LighTable (e.g. Xcode2).

1 http://lighttable.com/
2 https://developer.apple.com/xcode/
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Eclipse [6] is a popular IDE used mainly by Java developers, although it sup-
ports other programming languages such as C, C++ and JavaScript. As showed
in [24], the commonly cited reasons for using Eclipse include rich Java devel-
opment tools support and a plugin architecture, the Eclipse Platform [5], that
allows tight integration of third-party functionality.

The Eclipse platform [5] has a common architecture among the IDEs pre-
sented in this report. This architecture is characterized by two main components,
the plugin which is the smallest unit of functionality that can be developed and
delivered separately, and the platform runtime which will discover and connect
the plugins to the platform itself. As a result, the platform integrates several
tools that are used in distinct phases of the software development process. Fig-
ure 2 shows how the IDE looks like when the user is writing a Java program.

Fig. 2: Eclipse IDE showing Java perspective.

Eclipse has many features that provide feedback to the programmers about
what they are constructing, such as syntax highlighting, code completion sugges-
tions, and indications of problems associated with various locations in a source
file. In the literature, this concept is also known as liveness [25]. It generally
refers to the ability to modify a running program, however, as show in recent
studies [26], there are several levels of liveness and these tools represent the first
ones. While the tools in the first levels respond after a programmer action, the
tools in the last levels not only run the program and respond immediately, but
also predict the next programmer action. The modern IDEs tools, such as the
Eclipse tools, are far from achieving the last liveness levels.
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Moreover, both Eclipse and the other similar IDEs also share the following
drawbacks:

– They are incidentally complex. There is an immense amount of work to be
done in those IDEs that is indirectly related to the real problem itself. For
example, until the programmer gets a simple program to run, he needs to in-
stall and configure a set of necessary software, and he needs also to configure
the development environment. This is a tiresome and time consuming task
that adds an extra complexity into programming which is already a complex
subject.

– Program execution is difficult to observe, such that the only way to see how
the program executes is by a stepwise debugger. This forces the programmer
to stop the program and look at a line in a single instant of time. Conse-
quently, the programmer cannot see how his program is executing, nor how
his changes affect its execution.

LightTable is a programming environment which aims to turn programming in
a observable task. Bret Victor, in his influential work [23, 22], pointed out serious
problems with the current environments and showed, using prototypes, how the
environment can help to address those problems. LighTable is implemented base
on those ideas, and it is designed to build web applications. To support this
process, LightTable provides, at least, two useful features: (1) live execution
feedback, that executes the program on every change showing the program flow,
and (2) the organization of code in tables, enabling quick access to the program
documentation.

Fig. 3: LighTable IDE.

LightTable is implemented in ClojureScript3 (a Clojure compiler that targets
JavaScript). Due to this implementation, in LightTable adding a new user inter-
face (UI) element into the programming environment or changing an existing one
is doable in a short amount of time, contrary to other IDEs, such as Eclipse [6],
where an equivalent change requires considerable amounts of time.

The program documentation in LightTable is quickly accessed by a lateral
tab, where primitive functions of Clojure and ClojureScript can be consulted.
This documentation is a textual description of the function parameters, the type
of return, and some usage suggestions. While looking at a program, it is helpful

3 http://clojure.org/clojurescript
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to have the documentation of strange primitives, such as the keyword function
shown in Figure 3, however non-primitive functions are still undocumented.

Fig. 4: LightTable real-
time debugger.

On the other hand, programmers are encouraged
to understand new functions by seeing how the val-
ues of a function call flow through it. This feature is
based on the old idea of Lisp environments: the read-
eval-print loop (REPL) which is a prompt used to try
out expressions of the language without having to run
all the code. This approach goes further by using re-
flection mechanisms to trace the function call values
and shows them filled in the function template (as shown in Figure 4 the flow
of values produced by calling (x 3 7)).

The real-timer debugger is an interactive way to debug the code and under-
stand the program flow. Using this feature in an arbitrarily complex program (a
program with more than 30 functions) is, however, worthless, because, all the
programmer sees is a replica of his functions filled with numbers. It is a poor
representation of flow which forces the programmer to spend as much effort with
this feature as without it. For this reason, other systems, described in this re-
port, represent the program flow using graphs which are more appropriate in
some cases, for example, to show error occurrences in the source code.

Despite providing some tools which are state of the art, LightTable remains in
an experimental phase. It has serious limitations to identify and clearly present
the errors in the source code. This problem is, mainly, related with the Clojure
compiler which loses significant metadata between conversions. Consequently,
programmers can spend more time and effort to find a bug using LighTable,
than using the other IDEs, such as Eclipse.

3.2 Teaching systems

Unlike the previous systems, teaching systems are designed with the goal of help-
ing people learning to program. Most of the systems in this category provide
simple programming tools that expose the novice programmers some of the fun-
damental aspects of the programming process. After acquiring experience with
a teaching system, students are expected to move to a more general-purpose
environment.

LOGO [10] is a programming language and environment intended to allow
children to explore a wide variety of topics such as physics and mathematics.
The programming language is a dialect of Lisp, with much of the punctuation
removed to make the syntax accessible to children, it uses a helpful metaphor
which facilitates the introduction of programming concepts.

In Logo, the programmer draws pictures by directing the “turtle”, an on-
screen character which leaves a trail as it moves (see Figure 5). The turtle is a
metaphor that helps learners to translate their experiences as a person into pro-
gramming knowledge. That means, to figure out how to make the turtle perform
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an action, the programmer can ask how he would perform that action himself,
as if he were the turtle.

Fig. 5: Directing the “turtle”.

For example, to figure out how to draw a
circle, a learner would walk around in circles
for a bit, and quickly derive a “circle proce-
dure” of taking a step forward, turning a bit,
taking another step forward, turning a bit. Af-
ter teaching it to himself, the learner can then teach it to the computer.

LOGO has influenced several systems, and its principles show how a system
can be designed around the way people think and learn.

SmallTalk [11] is a programming language and environment to support chil-
dren in the world of information. The designers of this system, wanted to create a
programming language that had a simple model of execution and a programming
methodology that could accommodate a wide variety of programming styles.
SmallTalk was based around three ideas: (1) everything is an object, (2) objects
have memory in the form of other objects, (3) and objects can communicate
with each other through messages.

Fig. 6: Smalltalk user interface.

Smalltalk programming environ-
ment was a successful achievement
with relevant improvements on its
successors. The system consisted of
about 50 classes described in about
180 pages of source code [11]. This in-
cluded all of the OS functions, files,
printing and other Ethernet services,
the window interface, editors, graph-
ics and painting systems, as shown in
Figure 6.

In the Smalltalk programming lan-
guage, the communication through
messages has a strong resonant
metaphor. To specify the behavior of
an object, the programmer casts him-
self into the role of that object (to
the extent of referring to the object as
“self”) and thinks of himself as carry-
ing on a conversation with other ob-
jects. This is a strong metaphor, because role-playing and conversing are innate
human facilities.

In fact, SmallTalk features are, nowadays, a consistent reference for any pro-
gramming system.

Processing [12] is a programming language and environment designed to teach
programming in a visual context. Processing has become popular among stu-
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dents, artists, designers, and architects, because it acts as a tool to get non-
programmers started with programming through instant visual feedback.

The Processing programming language is built on top of Java, but it removes
much of the verbosity of Java to make the syntax accessible to novices. The
language provides simple access to external libraries, such as OpenGL, through
single entry points, such as setup and draw. This allows novices to quickly
prototype, learn fundamental concepts of programming, and, eventually, gain
the basis to learn other programming languages.

The programming environment contains a simple text editor, a text console
to present errors, and a run button. The run button compiles the Processing
code and executes it. Despite in the default mode the result is presented in a
2D graphical window, the render can be configured to present the result in 3D
or in other sophisticated methods using shaders to recur directly to the graphic
board.

Actually, with a few changes, the Processing code can be exported as an
application for different platforms, such as Java, JavaScript, and Android. For
example, to export a Processing program for JavaScript, it is only necessary
to create a HTML page and include the Processing code as a script of this
page. Then the Processing code will be automatically parsed and translated to
JavaScript. To maintain the usual render capabilities of a Processing program it
will use the HMTL5 canvas with WebGL.

The popularity of Processing is explained by the benefits of these features,
besides of being a domain-specific language, however it has drawbacks that can
discourage its use, such as the following:

– Weak metaphor. The Processing programming language, by contrast with
the above systems, has none strong metaphors that allow the programmer
to translate his experiences as a person into programming knowledge.

– Poor decomposition. Processing discourages the fundamental approach to
solving a complex problem by breaking it into simpler problems, because
drawing and input events are tied to single entry points. Thereby the behav-
ior of submodules must be tangled across these global functions, making it
difficult to achieve clean decomposition.

– Poor recomposition. Processing discourages combining two programs. The
programmer cannot just grab and use part of other programs, because vari-
ables must be renamed or manually encapsulated, and the draw and mouse
functions must be woven together. Even worse, Processing has global modes
which alter the meaning of the function arguments. For example, two Pro-
cessing programs can specify its colors in different modes and each mode has
its proper meaning of fill function arguments. Combining those programs
will be almost impossible.

– Weak readability. The syntax of a Processing program represents a significant
barrier for reading. For example, the function which draws an ellipse on
screen is written as ellipse(50,50,100,100). The reader must lookup or
memorize the meaning of every single argument.



Programming Environments for Generative Design 9

– Fragile environment. The programming environment is fragile, because it
does not attempt to solve any of the above issues related with the language
and its implementation.

Fluxus4 is a programming language and learning environment designed for
rapid prototype using 3D graphics and sounds. This emphasis on rapid proto-
type and quick feedback makes Fluxus a tool for learning computer animation,
graphics and programming. However, most users of Fluxus use it for livecoding,
which is the act of performing coding lively to an audience.

Fluxus is mainly written in C++ and it is statically linked to several shared
libraries, specified at compile time. For instance, Fluxus uses jack-audio, ode,
and fftw libraries to handle and synchronize the audio, GLEW to present graphics,
and racket3m to embed the Racket run-time system into the application. In this
way, Fluxus is an extension of Racket (a descendant of Scheme) with graphical
commands.

Like Processing, Fluxus provides simple access to those libraries through
single entry points, for instance start-audio connects an input audio to the
application, every-frame registers a function called once per frame, and so on.
However, as stated above, it is a barrier for decomposition since the behavior of
submodules must be tangled across these global functions.

Fluxus has its own environment specifically tailored for livecoding. It is com-
posed by a OpenGL graphical window with a simple text editor. The programmer
types his code in the editor and presses a shortcut key each time he wants to
run the code. Fluxus evaluates the code through Racket run-time system and
shows its result in the same graphical window that the code was written. This
mechanism is valuable in an livecoding environment, because the performer can
be editing the code while the result of the previous computation is maintained
in background. However, if the code has any error and the performer execute it,
the previous computation disappears and the environment will not help to find
it. This is a serious problem, specially for the Racket syntax.

Moreover, Fluxus shares with Processing similar drawbacks to those previ-
ously stated. However Fluxus can be used as a module of DrRacket [13] pro-
gramming environment and, fortunately, in DrRacket the above problem and
many others are solved.

DrRacket [13] is a programming environment designed to support the Racket
language. DrRacket is one of few programming environments which supports
gradual learning in a more general language from the start. Consequently, it has
been widely used in introductory programming courses in several universities
around the world.

The usual scenario where DrRacket is used is to teach functional program-
ming using Racket. To facilitate this process, DrRacket provides three tools.
The first is a symbolic stepper. It models the execution of Racket programs as

4 http://www.pawfal.org/fluxus/
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algebraic reductions, since Racket is implemented on top of lambda calculus.
The second tool is a syntax checker. It annotates programs with font and color
changes based on the syntactic structure of the program. It also permits students
to explore the lexical structure of their programs graphically and to α-rename
identifiers. The third tool is a static debugger that infers which set of values an
expression may produce and how values flow from place to place in the source
text, and, upon demand, it explains the reason of errors by drawing value flow
graphs over the program text.

Similar to Lisp environments, DrRacket provides a read-eval-print loop (REPL).
This is a command prompt intended to quickly evaluate expressions and print
their results. Especially in a learning environment, this feature makes an im-
portant connection between program execution and algebraic expression eval-
uation. However, the Lisp-style syntax obscures the effect of this feature. To
overcome this limitation, DrRacket provides a pretty-printer. A module ca-
pable of printing algebraic expressions in a meaningful way, as well as other
graphics elements supported by the text editor, such as images, snips, XML
boxes, and so on.

From the perspective of professional programmers DrRacket can be a poten-
tial target. It is useful for developing complex applications, including DrRacket
itself. Moreover it is extensible by the same application programming inter-
face (API) which the above tools implement. Through this API it is also possible
to extend the REPL, as in Pict3D5 (a 3D engine that integrates new graphi-
cal elements in the DrRacket environment). On the other hand, for supporting
extensions, DrRacket’s architecture has become increasingly complex. For in-
stance, to make a simple change in an editor’s element the programmer should
be able to understand several modules, unrelated with the problem itself. This
extra complexity is a negative impact when DrRacket is chosen as basis for new
development tools.

Despite of the identified advantages, DrRacket has some barriers that may
discourage the learner. For example, the Racket programming language is simple
to teach, but its heavy syntax of s-expressions hinders the learner to read the
program. Consequently, the learner can spend a huge mental effort to understand
insignificant details of the language.

PythonTutor [14] is a web-based program visualization tool, designed to ex-
plain how a piece of Python code executes. It has become popular among stu-
dents from introductory Computer Science courses. Using this tool, teachers and
students can write Python programs directly in the web browser and navigate
step by step throughout its execution, seeing the run-time state of data struc-
tures.

PyhtonTutor has two main modules: the backend which implements the tool
core functionality, and the frontend which presents the visualization of program’s
data structures. The backend executes the input program under supervision of
the standard Python debugger module (bdb) which stops execution after every

5 https://github.com/ntoronto/pict3d
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executed line and records the program’s run-time state. After execution ter-
minates, the backend encodes the program state in JSON format, serializing
Python data types into native JSON types with extra metadata tags and sends
it to the frontend. The frontend renders the objects using standard web technolo-
gies: HTML, CSS, and JavaScript. In this way, users can use the tool without
installing any extensions or plugins.

A major concern in PythonTutor is security, because the PythonTutor’s back-
end executes untrusted Python code from the web. To prevent the execution
of dangerous constructs such as eval, exec and file I/O, PythonTutor im-
plements sandboxing. Basically, it denies the use of most module imports, by
parsing the user’s code importing, a strict approach, but effective in this case.

The PythonTutor tool allows the programmer to follow the program execu-
tion over time, but he only sees a single point in time at any instant. There is
no visual context at all. The entire program flow is represented by disconnected
points in time. For example, the programmer who wants to understand a condi-
tional algorithm, using this tool will not see the pattern of this algorithm neither
understand it at a higher level.

YinYang [15] is a prototype of a programming language and environment
whose main feature is the live execution feedback. That means it combines edit-
ing and debugging, where updated debug results are conveniently visible while
editing. YingYang addresses the above issue in two ways. First, just like the
previous system, it allows programmers to see single points of execution directly
within the code editor (probe; precede expressions with @ operator). Second, it
has a pane aside the editor which traces execution with entries that are navi-
gable (trace; print-like statements). Basically, the trace is an enhanced display
function which, combined with “probes”, allows the state of previous executions
to be restored. So, programmers can take in the entire program flow at a glance
and navigate trough it using probes.

YingYang uses an incremental framework as basis of its programming model.
This framework decomposes the program execution into a tree of nodes that can
be re-executed independently on a code or input change. However, this decom-
position cannot be performed transparently. It requires programmers to specify
how the program will be decomposed. To perform this task one must deeply
understand the granularity and modularity characteristics of the computations
being performed by the program. Otherwise changes can sometimes have a huge
impact on program re-execution time (∼50ms). Consequently, live programming
would actually reduce programmer productivity as programmers wait for slow
feedback.

Although YinYang provides usable features for a learning environment, such
as the live execution feedback, it does not have a suitable language for begin-
ners. The language is merely experimental and to navigate through the program
execution, programmers must include probes in the code. At the end of experi-
mentation, the code is full of useless expressions.
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3.3 Empowering Systems

In this category of systems, the most important aspect is to allow people to build
programs tailored to their own needs. In this section, we describe how systems
from two distinct areas are tailored to achieve their user’s needs.

First, we consider Architecture, where new programming languages and en-
vironments are being proposed to support the increasing use of generative de-
sign (GD) [18]. GD is a design method that uses algorithms to generate ar-
chitectural models. Usually these models are rendered using a computer-aided
design (CAD) tool.

Second, we consider Mathematics, where advanced technologies are used to
approximate as much as possible the mathematical models to the ones that we
can see and understand.

DesignScript [16] is a programming language and environment designed to
support GD with textual methods. It is mainly used by architects and design-
ers to generate geometric models using a script. When the script is executed
it generates new models in a CAD tool. DesignScript is a AutoDesk6 product
initially proposed to be used within AutoCAD (as shown in Figure 7), nowadays
it provides the same functionality on top of Revit, another AutoDesk product
used for building information modeling (BIM). In short, a BIM model is similar
to a CAD model but it covers more than just geometry. It also covers spatial
relationships, properties of building components, such as manufacturers’ details.

Fig. 7: Typical DesignScript programming environment.

6 http://www.autodesk.com/products
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Fig. 8: Associative interpretation.

The programming language is pre-
sented as an associative language. The
variables are abstract types that can rep-
resent numeric values or geometric enti-
ties. These variables are maintained in a
graph of dependencies. When a change in a variable occurs it forces the re-
evaluation of the graph, as shown in Figure 8, consequently variables has always
updated values. This feature is useful, specially in a modeling environment, be-
cause it provides continuous feedback to the designer as the model is being
modified.

The DesignScript’s programming environment provides a text editor, an in-
terpreter, and a simple debugger. The language interpreter is invoked each time
that the designer clicks on the run button. Then all the script is interpreted
and its result produces geometric entities rendered in the CAD. The continuous
feedback feature works only in debug mode, because in this mode the script is
interpreted line by line. Thus, each update to a variable will change its depen-
dencies and will recompute the model. However, in debug mode the code cannot
be edited, so this feature is worthless during code editing.

In the DesignScript’s debug mode, users can inspect the variable values by
adding watchers to them. A watched variable is showed in a special tab, as shown
in Figure 8. In case the variable represents a geometric model, the respective
model will be highlighted in the CAD when the variable is selected. It creates a
certain traceability between models in the CAD and code in the editor. In this
way the user is able to correlate which model a variable corresponds to. However
the inverse, starting form the model and finding the correspondent variable, is
unsupported.

DesignScript also supports a typical mechanism of live programming envi-
ronments: the sliders. The sliders are widgets which facilitate giving new values
to the program input. This way, designers can create new models reacting to
these changes. However, in the DesignScript’s sliders the changes are reflected
in the models only when the designer leaves the slider. Until then, the designer
should imagine how the model would be with the new value, which is completely
against the purpose of sliders.

Moreover the DesignScript language, despite of being presented as pedagogic,
has some drawbacks. It does not carry any strong metaphor which helps begin-
ners start with the language. Additionally the associative paradigm represents
a barrier for sharing code: it discourages the recomposition of modules, because
new modules can change the previous one. The environment provides poor mech-
anisms that help people to find bugs in the code, and finally, DesignScript is
confined to produce geometry in a single CAD tool.

Monkey7 is a programming environment designed to support GD. Like Design-
Script, Monkey is used to edit, debug and interpreter scripts. However, Monkey

7 http://wiki.mcneel.com/developer/monkeyforrhino4
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uses RhinoScript as its programming language and Rhinoceros3D8 (or Rhino for
short), a lighter CAD than AutoCAD, to generate the geometric models.

Monkey is implemented as a .NET plugin for Rhino4 and provides a pro-
gramming environment to write and debug scripts. The RhinoScript is based
on Microsoft’s VBScript language (a descendant of BASIC), and like VBScript
it is a weakly typed language. One of the major drawback with this language
is the fact that users must beware with the data passed in their functions at
all time, because RhinoScript can accidentally casts variables into inappropriate
types. Therefore, it creates errors difficult to find, specially for people which are
learning to program.

Monkey is based on general-purpose programming environments. It pro-
vides typical features of those environments, namely syntax highlighting, auto-
completion, and error highlighting. The organization of code into trees is also
similar. However, the programming environment and language, does not provide
any well designed feature which helps beginners to start with programming. The
provided features are based on general-purpose systems, instead of being tailored
for GD.

Rosetta [17] is a programming environment designed to support GD that is
based on DrRacket [13]. Like Monkey, Rosetta provides its own environment
detached from the CAD. Rosetta is a step forward from the previous systems,
because it solves the portability problem among CAD tools. In Rosetta a GD

program can be written in various programming languages (frontends) and the
geometric models can be rendered by various CADs (backends). As a result,
designers are free to write their programs in their preferred frontend which,
upon execution, will generate the same geometry for the various backends. In
Figure 9, a program is written in Racket and its execution produces geometry
for AutoCAD.

Rosetta has been used to teach programming in architecture courses. Tailored
to this end, Rosetta uses DrRacketas its own programming environment. The
DrRacket environment serves a number of functions, but the most important is
that the student can start immediately to learn programming. For instance, the
environment is set up with just three lines of code. As shown in Figure 9, the
#lang specifies the frontend language, the require imports Rosetta’s primitives
and finally the backend names a possible backend.

The Racket language is also an advantage of Rosetta’s environment, because
it encourages the use of the mathematical paradigm for writing algorithms. In
this way, students that learn simple programming techniques, such as recursion,
are able to create robust models. Additionally, as the students progress, new
programming languages are also available to learn, such as JavaScript, Python,
Processing, and so on.

The Rosetta’s environment provides some interesting tools for GD, such as
a programming flow tracer, similar to the DesignScript’s watcher. It highlights
models in the CAD upon selection of expressions, it also supports the inverse,

8 https://www.rhino3d.com



Programming Environments for Generative Design 15

Fig. 9: Rosetta programming environment.

selecting the model in the CAD and shows the expression in the code editor.
Another interactive tool is the slider, an attempt to provide immediate feedback
to the designers. It uses the DrRacket slider, associating the slider callback to the
function that generates the entire model, so each time the slider change a new
model will be generated. However, this process must be performed manually.

Undoubtedly Rosetta’s environment goes further than the textual environ-
ments for GD presented in this report. However it presents some drawbacks which
may discourage the learning in general. Beginning with the usual programming
language: Racket. The syntax of a Racket program represents a significant bar-
rier for reading. For instance the function which draws a circle in Rosetta is
written as (circle (xy 0 0) 1). The reader must lookup or memorize every
argument. Using the Rosetta’s documentation the reader will spend even more
time, because it is in a book mixed with architecture topics.

Grasshopper9 is a programming language and environment designed to sup-
port GD using a visual language. Grasshopper provides an alternative way to
programming. By definition, it is a bi-dimensional representation consisting of
iconic components that can be interactively manipulated by the user according
to some spatial grammar [27]. For example, the boxes in Figure 10 are compo-
nents which receive the input (left ports) perform some operations and return
the output (right port). The components are linked to other components estab-
lishing a dataflow paradigm where the input of a component is the output of
another.

9 http://www.grasshopper3d.com/
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Fig. 10: A program in Grasshopper that computes the 3D coordinates of a conical
spiral. Each time the left sliders are dragged a new coordinate is calculated.

Like Monkey, Grasshopper is implemented as a plugin for Rhino8. However
Grasshopper tailors the Rhino’s environment with specific GD tools. These tools
are state of the art, because they implement important principles for design
models, such as the following:

– Get immediate feedback. As the user interacts with the components, by
adding and connecting them, the result reflects immediately in the CAD

model. It facilitates the design conception, because the user’s intentions are
immediately visible.

– Facilitate program input. To facilitate the process of design exploration,
Grasshopper provides sliders which are connected at the component input.
Dragging the slider causes a change propagation through components. The
components are re-executed with the new slider value. Combined with the
above feature new models are generated immediately.

– Correlate the program with the generated elements. Like DesignScript’s watcher,
by selecting a component its geometry is highlighted in the CAD. It allows
designers to better understand a program by figuring out the roles of each
component.

– Show comparisons between models. Grasshopper provides a special compo-
nent that, when connected at the output of another component, replicates
the geometry. This mechanism is useful for design exploration, because it
maintains in the CAD’s background an old replica of the changed geometry.
It adds a context at each change, so the designer can compare the result of
his change in the new geometry based on the old one.

Mainly, the Grasshopper interactivity depends on the immediate feedback
tool. However, this tool will never scale for arbitrarily complex programs, because
the CAD’s render is not designed to process the huge amount of information
generated by GD methods. Other systems, such as DesignScript and Rosetta,
improve this problem by sidestepping most of the functionality of traditional
CAD tools and focusing only on the generation and visualization of geometric
models. These systems provide a backend based on OpenGL that is independent
of a full-fledged CAD application, but, in Grasshopper, there is no such backend.

Moreover, the traceability among components is just in one direction. From
the designer perspective, it would be more useful start form the geometry and
find which component implements it, but it is unsupported. However, despite
the usefulness of model comparison in design exploration, this feature is also
unsupported.
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Dynamo10 is a programming language and environment designed to support
GD. Like Grasshopper, Dynamo provides an alternative way to programming.
However Dynamo, like DesignScript, is implemented on top of Revit, an Au-
todesk product for BIM.

Fig. 11: Dynamo search tab. Searching
for a component, highlighted in red.

Dynamo provides a set of tools
similar to Grasshopper, particularly
a searching table, as shown in Fig-
ure 11, which provides quick access to
the primitives of the language, such
as the components and widgets. This
feature encourages designers to ex-
plore the available components and
try new components.

In general, Dynamo and Grasshopper are programming environments and
visual languages popular among novices in programming. The smooth learning
curve and perhaps the style of the UI elements are attractive for beginners.
However as the visual programs become large and complex it requires more
time to understand, maintain, and adapt to new requirements, than the textual
programs as showed in [28]. Despite spending more time and effort to learn a
textual programming language, the learners have their time quickly recovered
once the complexity of the design task becomes sufficiently large.

Mathematica [29] is a language and environment built to support scientific
calculation. It is widely used in the scientific community, specially by students,
because it represents programs using a short and clear artificial language. This
language supports not just linear textual input, but also two-dimensional input,
like traditional mathematical notation.

Fig. 12: Mathematica notebook.

The core concepts of Math-
ematica are based in the
paradigm initiated by Tur-
ing’s work [30]. In this paradigm
mathematical processes are
systematized as computations.
For example, in a typical
interaction, the user types
a mathematical expression
in the Mathematica environ-
ment (i.e. notebook), then
this expression is evaluated,
as shown in Figure 12.

A relevant aspect of Math-
ematica’s notebook is the im-
mediacy that users get a re-
sponse. Unlike a typical pro-

10 http://dynamobim.com/
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gram that must be executed
explicitly to get a feedback of an action, in this notebook expressions are evalu-
ated as soon as they are typed. It works like a read-eval-print loop, however it
has enhanced mechanisms to present data meaningfully.

The Mathematica features are well designed to present data in a human
readable form. It would be useful for an external programming languages, if it
could take advantage of these features. Unfortunately, Mathematica is closed for
this end.

IPython [31] is a programming environment built to support scientific calcu-
lation. Unlike Mathematica [29], IPython is an open platform for extensions, it
allows external programming languages (frontends) to use its features which in-
cludes an interactive shell, and a browser-based notebook with support for code,
text, mathematical expressions, plots, and other rich media.

Fig. 13: IPython browser-based notebook.

Like Mathematica, IPython
has a notebook where users
can try out expressions and
immediately see its result, as
shown in Figure 13, however
this notebook is in a web for-
mat. IPython’s architecture is
a typical client-server, where
the frontend is the client (i.e.
the notebook), and the server
is a language kernel (i.e.
the programming language
which users interact with).
The communication between
client and server, is through
a strict protocol that the lan-
guage kernel must implement.

IPython provides a base layer for new programming environments, by ex-
posing the major components of its architecture, consequently its features are
available from other systems. For example, IJulia uses IPython interface with
Julia language.

MathCAD11 is a programming environment and language built to support
scientific calculation. Like Mathematica, MathCAD aims to present information
into a human readable form. However, it generates live calculations with graphi-
cal plots, text and images into a single document. This document is the program
environment as well as the final product.

The mathematical expressions defined in the MathCAD document act as an
associative language. So, when an expression is changed its value is propagated

11 http://www.ptc.com/product/mathcad
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through the document. This mechanism is the base of the interactiveness. How-
ever, it represents a barrier for program recomposition, because new expressions
can change the previous ones. That means that variables has a global scope, the
MathCAD document, if in somewhere a variable is changed it will be changed
in every occurrence in the document.

3.4 Summary

Table 1 shows the presented systems based on their major design influences. The
table is also intended to address the following questions:

Type(1) System Main feature(2) Support to understand

programs(3)
Representation of code(4)

GS

Eclipse
support software
development life cycle

debugger

text

NetBeans
IntelliJ
MVS

Xcode
observable programming live execution feedback

LightTable

TS

LOGO
understandable language physical interpretation

SmallTalk

Processing
visual context instant visualization

Fluxus

DrRacket gradual learning debugger; stepper

PythonTutor
show program flow

navigate through the
program executionYinYang

ES

DesignScript
support generative design
methods

debuggerMonkey
Rosetta

Grasshopper alternative way to
expressing programs

dataflow paradigm graphical components
Dynamo

Mathematica
support scientific
calculation

present data meaningfully mathematical formsIPython
MathCAD

Table 1: System attributes.

(1) What is the purpose of the system? We categorized three main purposes
for a system. General-purpose system (GS) designed for building complex soft-
ware for the industry; Teaching system (TS) designed to help people learn how
to program; Empowering system (ES) designed to help people build things that
are tailored to their own needs.

(2) How does the system support its purpose? We identified the following
strategies: (i) support software development life cycle, (ii) turn programming in
something more observable, (iii) create an understandable language, (iv) combine
textual programming with a visual context, (v) support gradual learning in a
single environment, (vi) show the program flow, (vii) support generative design
methods, (viii) find alternative ways for to express programs, and (ix) support
scientific calculation.
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(3) Does the programming environment provide additional support to enable
users to better understand the behavior of their programs? Environments in our
study used several techniques to help users understand the behavior of their pro-
grams. These included (i) a debugger which helps to find bugs in the program,
(ii) an enhanced debugger which provides live execution feedback, (iii) languages
with strong metaphor allowing physical interpretation, (iv) instant visualization
of models, (v) navigation through the program’s execution (vi) assembling com-
ponents in a dataflow paradigm and (vii) present data adequately.

(4) How does code look in the programming environment or language? The
systems in our study represent programs using text, users can type, graphical
components, users can manipulate, and mathematical forms users can fill in.

To conclude, in the surveyed systems the common representation of code is
textual. This representation is typically static and, to be understood, requires
the reader to know the vocabulary of the programming language. For a novice it
is simply a barrier to learning. On the other hand, the representation of programs
as graphical components or mathematical forms lowers this barrier, because for
simple programs it is easier to read, but it becomes incomprehensible as the
program grows.

4 Architecture

The problem addressed in this thesis is to design and implement an interactive
programming environment for generative design that covers the needs of both
beginners and advanced users. Our approach suggests two interactive tools: (1)
sketch-correlation tool, which correlates sketches with code, as a result it sig-
nificantly reduces the effort to read the code, and (2) immediate feedback tool,
which executes the program upon changes, thereby creating an interactive en-
vironment to users quickly test their ideas and, eventually, improve program
comprehension. The next section shows how these features will work.

4.1 Experimental results

An initial prototype was devised to show how code and images can be correlated,
as shown in Figure 14. In this prototype, the meaning of the function and its
parameters are transparent, because users can move the mouse over an identifier
to figure out its meaning. For example in Figure 14a, there are two arrows
pointing to the identifier r, when we look at the image is easy to see that it
represents the radius of the sphere, while the other arrow refers to the location
where it is used, i.e. in the sphere function. Especially in this example, the
sketch illustrates exactly the function output. The function uses a primitive of
Rosetta [17] (the sphere function) which creates a sphere, given a 3D point and
a radius, in the selected backend.

Using the immediate feedback tool, programmers can test their ideas by
quickly experiment them, as the prototype shown in Figure 15 which sup-
ports this process. In this prototype, the function defined in Figure 14, i.e.
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(a) Searching for “r” meaning. (b) Searching for “c” meaning.

Fig. 14: Contextualizing the code with image.

cube-spheres, is being interactively tested. Each change in the slider causes
an execution of the program with the new slider value, particularly in this ex-
ample, it will generate a new geometric model (see Figure 15b). As a result, users
can confirm that the parameter r is, indeed, the radius of the sphere and it also
eliminates the cycle edit-compile-run, allowing fast visualization of changes.

These features will be built on top of DrRacket [13]. In the following sections,
we will present relevant properties of DrRacket that justify its choice as the
basis of this thesis, as well as the proposed architecture to extend the DrRacket
environment.

4.2 DrRacket Properties

Like DrRacket, our solution initially will target students, but, eventually, it
would be used by anyone who wants to document the code with images or de-
velops a program interactively. Therefore, to implement our solution we choose
DrRacket, because it is built in the same principle we search for and has some
key qualities:

– Pedagogic. DrRacket is a popular environment used in introductory courses
for programming languages. The environment is designed to guide the stu-
dent by catching typical mistakes and explaining them in terms that students
understand. It is also useful for professional programmers, due to its sophis-
ticated programming tools, such as the static debugger, and its advanced
language features, such as units and mixins.

– Sophisticated editor. DrRacket fully integrates a graphics-enriched editor
which supports, in addition to plain text, elements such as images and boxes
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(a) Changing the “r” parameter. (b) The generated models,
rendered by AutoCAD.

Fig. 15: Interacting with the cube-spheres function.

(with comments, Racket code or XML code). DrRacket also displays these
elements appropriately in its read-eval-print loop.

– Extensible. The main tools of the DrRacket environment are implemented
using the same API that is available for extension. For example, the debugger,
the syntax checker and the stepper, despite providing different functionali-
ties, are implemented on top of the same API.

Moreover, DrRacket helps programmers to understand the syntactic and lex-
ical structure of their programs. DrRacket provides a syntax checker that anno-
tates a syntactically correct program in five categories: the primitives, keywords,
bound variables, free variables, and constants. When the programmer moves the
mouse over an annotated identifier, the syntax checker displays arrows that point
from bound identifiers to their binding occurrence, and vice-versa (see Figure 14).
However, the syntax checker ignores the category of comments, including its vi-
sual elements such as the images, as a result these elements are uncorrelated
with the program’s structures and behavior.

In the next section, we propose an architecture which aims to address the
above issue as well as proposes a solution for the immediate feedback tool.

4.3 Proposed Architecture

Figure 16 presents a publish-subscribe view of the proposed features. There are
two different interactions in this architecture, the first presented by a publish-
subscribe and the second by a client-server.

1. The main functionality of the proposed environment is made through a
publish-subscribe interaction. The DrRacket UI event manager acts as an
event bus for user-interface events (such as button clicks). From this event
bus we subscribe only the UI events which are relevant to our system, defin-
ing which components will handle them. It is done at load time when the
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event manager reads the plugin configuration file (info file). When users are
working on the editor, an UI event is generated and dispatched via implicit
invocation to the action handler objects that subscribe to that event.

2. The client-server interaction is only needed to support the correlation be-
tween images and code. We assume that the images, inserted in the editor,
will be associate to a single function and will contain the same identifiers de-
fined by its associated function parameters (as shown the handmade sketch in
Figure 14). Then, the manuscript symbols present in the image (e.g. the pa-
rameters “c”,“r”, and “w”), will be parsed using an optical character recog-
nition (OCR) engine. This engine usually gets an image and returns a text
file containing a symbol table with the parsed symbols and its respective
coordinates. We expect the OCR engine to act as an external service that
identifies those symbols, thereby in our architecture the symbol identifier

component calls this service to handle the recognition of symbols in the im-
age.

Fig. 16: Diagram for a publish subscribe view of the proposed architecture.

The tool core component, in Figure 16, will receive, at least, three kinds
of DrRacket events. For each of these events, we will change the programming
environment based on the following desired action:

– on-change: when DrRacket detects that the editor has been modified, it
sends the contents of the editor over to action handlers. The action handler,
in this case, it the online expansion handler where the code is expanded.
Desired action: sends an execute event to the editor frame, if the action
handler expanded the code successfully.
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– on-paint: this event is sent just before and just after every element is
displayed in the editor. Handling this event provides a way to add arbitrary
graphics to the editor display. Desired action: sends a show event to the
editor frame, to display a slider widget when the user moves the mouse over
a literal.

– on-new-image-snip: this event is sent when an image is inserted in the
editor. The default implementation creates an image snip which is an object
with the image information, such as path and format. Desired action: sends
an insert-image event to the editor frame, before to get the image and
send it to the OCR engine to recognize its symbols and respective coordi-
nates (x, y). Then, it returns a subclass of image snip, containing this extra
information.

Finally, to correlate the image-snip, created above, with the function pa-
rameters we will use a syntactic transformer, i.e. macro. The macro will add a
new syntax form into the language grammar, allowing an image to be used as a
comment. Very similar to Lisper’s comment, the macro will add a new rule in
the grammar, where an image is between a function declaration and a function
body (see the macro define/img in figure 14). The image will be ignored, but
in background, our macro expansion will add into the function body new occur-
rences of the function parameters. As a result, the DrRacket syntax checker will
mark these free variables and will be able to recognize bound occurrences and
point to them inside an image.

5 Evaluation

The evaluation of the proposed architecture will be performed experimentally,
building a prototype. The prototype will serve to test the proposed ideas and to
evaluate them. To evaluate the prototype, we will use the Rosetta [17] generative
design tool as a case study. As Rosetta is used by architects, and designer, we
will receive real feedback from the target users. In this way, we can evaluate if
our programming environment helps their target users to design programs.

Furthermore, to evaluate our proposal we plan to use the following evaluation
metrics.

– Correctness. To assess the quality of our system we plan to test, individ-
ually, each proposed feature with a specific test case scenario, for example
using the slider widget to explore the result of a parametric function and
inserting different kinds of images and check if the image is well correlated
with the function parameters.

– Security. Among others qualities, security is an important concern in a live
environment where the code is executed instantly. In our case, the code is
executed locally, however while the users are using the live code mode they
can create dangerous constructs such as eval, exec and file I/O which
can damage the operating system. On the other hand, in this mode it is
possible to block the environment with a simple “while true” expression. To
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avoid these problems, we plan to implement sandboxing, similar to Python-
Tutor [14], and design specific tests to test this feature.

– Performance. The performance of our system should scale for the genera-
tive design programs. The Rosetta tool will give us different backends to test
the performance of our interactive tool. In fact, to be an interactive tool, the
response for an event should be quick (∼50ms). It imposes restrict require-
ments for the CADs tools, because these tools were designed for the speed of
human operation, consequently they are the performance bottleneck. This
issue forces us to establish a limit which this tool will be tested, thus we will
compare this limit against other similar systems.

– Comparison with other systems. We can only claim that our solution
is somehow better than the other, if we compare them. Therefore, we plan
to compare our system with the existing programming environments in gen-
erative design, particularly the visual environments, such as Grasshopper.
Between these systems, the performance limit, stated above, will be our ref-
erence of comparison.

6 Conclusions

Programs are rarely released with useful documentation. This negatively affects
software development including the several areas where it is applied, particu-
larly in generative design, where programs are becoming relatively complex. It
is now important to develop good tools for program documentation and program
comprehension.

Based on Learnable Programming we propose an interactive environment
tailored for generative design. This programming environment helps the designer
in establishing a strong correlation between the GD program, and the geometric
sketches that it represents, as a result it eliminates the first barriers to learning,
allowing designers to read the code and to understand it at a high level. It also
encourages the designer to test his ideas quickly, by seeing the result of his action.

Among the generative design systems which support programming in a tex-
tual form [16, 17], only one [17] supports other elements in the editor, besides
plain text. However, none of them correlates text with sketches, beyond the only
way to get immediate feedback is by a stepwise debug which stops the entire
program execution, disabling code to be edited.

Using the immediate feedback tool will be possible to edit a program without
stopping its execution. However, similar to what happens with all other GD sys-
tems, this tool will not scale for all GD programs, due to the render performance
of CAD tools. On the other hand, the code correlation tool requires that the
symbols in the sketch to be strictly identified, i.e. get their coordinates in the
image to, eventually, point to them. An OCR engine is designed for this pur-
pose, however, until now, we had bad experiences in using the OCR to recognize
handwritten symbols. If necessary, and as a proof-of-concept we will generate
the OCR data manually.

A functional prototype of these tools was already implemented. We plan
to improve this implementation and, if time permits, explore additional tools,
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studding possible forms of integrations in the proposed architecture. Table 2, in
Appendix A, shows a more detailed plan.

More important than these tools are the underlying design principles that
they represent. Understanding how these principles enable people to think is the
initial step to evolve the way we build programs.
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A Planning

Tasks Details Duration

Improve the related work research − Explore additional related systems July (3 weeks)

Improve the sketch-correlation tool
− Research additional OCR engines July (1 week)
− Implement client-server architecture August (4 weeks)
− Test the tool implementation September (1 week)

Improve the immediate feedback tool

− Study DrRacket API September (2 weeks)
− Implement publish-subscribe architecture October (4 weeks)
− Improve the slider mechanism November (2 weeks)
− Test the tool implementation November (1 weeks)

Implementation of the case study

− Design specific tests using GD programs November (2 week)
− Implement the tests December (4 weeks)
− Test the tools January (2 weeks)
− Review the results with the target users January (1 weeks)

Evaluation
− Evaluate the solution with the case study results February (1 week)
− Perform a comparison with similar systems February (3 weeks)

Thesis final dissertation writing − Write thesis dissertation
March (4 weeks)
April (2 weeks)

Reviews and Submission − Dissertation review and deliver MSc dissertation April - May (3 week)

Table 2: Planning schedule


