
Generative Design
for

Building Information Modelling

Bruno B. Ferreira

Instituto Superior Técnico, Universidade de Lisboa
bruno.b.ferreira@tecnico.ulisboa.pt

http://tecnico.ulisboa.pt/

Abstract. Generative Design (GD) is a programming-based approach
for Architecture that is becoming increasingly popular amongst archi-
tects. However, most Generative Design approaches were thought for
traditional Computer Aided Design (CAD) tools and are not adequate
for the recent Building Information Modelling (BIM) paradigm. This pa-
per proposes a solution that extends Generative Design so that it can be
used with BIM while preserving and taking advantage of BIM ideas. The
solution will be evaluated by developing a connection between Revit, a
well-known BIM tool, and Rosetta, a programming environment for GD,
and by implementing the necessary programming language features that
allows GD to be used in the context of BIM tool.

Keywords: BIM; Revit; Racket; Programming Languages; Generative
Design; Rosetta

1 Introduction

Throughout the years, architects have used different tools to perform their job.
In the beginning, they used simple ones like pen and paper, but as the scale
and requisites of the buildings changed, the paper-based approach showed its
limitations, such as the need to redraw an entire model to correct a mistake.
With the advent of information technology, the computer proved to be a great
aid for architects and this led to the development of a new and more powerful
tool: Computer Aided Design (CAD).

CAD applications increased the efficiency of the design activities and allowed
architects to produce more accurate and precise drawings that could be more
easily edited without the need of manually erasing and redrawing parts of the
original design [1]. Some of these tools were also able to create tridimensional
models of the buildings, enabling a more realistic preview. The design process
was obviously changed by these tools, which opened new possibilities for more
creative and artistic models.

However, errors were likely to occur and CAD tools were not able to detect
them. Moreover, changing a very complex model was still a hard and time con-
suming task. Normally, several views of the building were created and changing



2 Generative Design for Building Information Modelling

one implied changing all the others. Also, this type of software is only able to deal
with geometry, so all the information relevant for the construction of buildings
could not be stored in the model itself, causing a documentation problem.

Building Information Modelling (BIM) appeared as a new paradigm shift
that presented a solution to these problems.

BIM represents the process of development and use of a computer-generated
model to simulate the planning, design, construction and operation of a building
[2]. This leads to a model that contains not only the geometry of the building,
but also information to support the construction, fabrication and procurement
activities needed to realize it [3].

This is possible because BIM uses parametric objects that contains all the
information needed. Parametric BIM objects are defined as a combination of
geometric definitions and associated data and rules. They also have the following
properties [3]:

– Geometry is integrated non-redundantly, and without inconsistencies. All
views of an object are consistent with its shape.

– Parametric rules for objects automatically modify associated geometries
when inserted into a building model or when changes are made to associated
objects. For example, a door will fit automatically into a wall.

– Objects can be defined at different levels of aggregation, so a wall can be
defined as well as its related components.

– Objects can be defined and managed at any number of hierarchy levels. For
example, if the cost of a wall subcomponent changes, the cost of the wall
should also change.

– Objects rules can identify when a particular change violates object feasibility.

– Objects have the ability to import or export sets of attributes such as struc-
tural materials, acoustic data and energy data to other applications and
models.

The parameters and rules that describe these objects are defined by the
user or the vendor and are created to fit the needs of the project in hands.
Hence in models produced with this approach it is possible to find objects with
contextual semantics, such as walls and doors, instead of simple geometry. For
instance, instead of representing a wall with a simple geometric object, a wall
object is used. This object has properties that describe not only the geometrical
dimensions of the wall, such as length, width, and height, but also the materials,
finishes, specifications, manufacturer, and price [4].

A BIM model contains information about the life cycle of the building and
this can be easily extracted to produce several documents needed throughout
the project duration.

The following list describes some of the uses of a BIM model [2]:

– Visualization: 3D renderings can be easily generated in-house with little
additional effort.



Generative Design for Building Information Modelling 3

– Fabrication: it is easy to generate shop drawings for various building sys-
tems. For example, the sheet metal ductwork shop drawing can be quickly
produced once the model is complete.

– Reviews: fire departments and other officials may use these models for their
review of building projects.

– Forensic analysis: a building information model can easily be adapted to
graphically illustrate potential failures, leaks, evacuation plans, etc.

– Facilities Management: BIM can be used for renovations, space planning,
and maintenance operations.

– Cost estimation: BIM tools have built-in cost estimating features. Material
quantities are automatically extracted and changed when any changes are
made to the model.

– Construction sequencing: a BIM can be effectively used to create material
ordering, fabrication, and delivery schedules for all building components.

– Conflict, interference and collision detection: BIM models are created
to scale, in 3D space, and all major systems can be visually checked for inter-
ferences. This process can verify, for example, that piping does not intersect
with steel beams, ducts or walls.

BIM allows a more effective design process by facilitating the reuse and share
of information. However, there are also disadvantages in this approach, such as
the learning curve of BIM tools and the difficulty of changing the design process.

Still, modelling and producing complex and creative geometry can still be a
challenge in a CAD or BIM tool and changing the model continues to present
some difficulties since the degree of flexibility provided by these tools is not suffi-
cient. Particularly, complex geometry modelling, repeated tasks, and exploration
of different solutions are still difficult or cumbersome to implement in these tools.
The concept of Generative Design (GD) is a solution to these problems [5].

GD can be described as form creation through algorithms [6]. This approach
allows the generation of different solutions just by changing the constraints and
the requirements implemented in a given program.

Writing a GD program that describes an architectural model requires a large
initial effort, and might be less cost-effective than the typical digital modelling
approach. However, the initial cost can be quickly recovered when it becomes
necessary to incorporate changes in the design [7]. This flexibility is provided by
the advantages that programming languages give to their users. A program does
not allow ambiguity and describes the geometry to generate through parameters
and algebraic formulas. These programs can also be reused if needed in a different
project.

However, writing a GD program requires programming skills and knowl-
edge of programming languages, a requisite that some potential users of this
approach do not have. Moreover, each CAD tool must be programmed in its
own programming language, which reduces the portability between CAD tools
and might introduce difficulties for users who are not familiar with the language
available in their preferred CAD tool.



4 Generative Design for Building Information Modelling

Rosetta is a solution to overcome these problems. Rosetta is a programming
environment for GD that allows the usage of different programming languages
(called front-ends) to produce scripts that can generate models in different CAD
tools (called back-ends) [8]. Some of the programming languages available, such
as Scheme, Racket, and Python, are considered very good targets for architects
that want to learn programming. The ability to portably generate models in
different CAD tools is another advantage, as it makes the developed programs
independent of the CAD tool being used and, thus, more reusable. Fig. 1 shows
a script written in Racket that uses Rosetta in order to produce the model in
AutoCAD.

Fig. 1. Rosetta with the AutoCAD back-end

Using Rosetta it is possible to write programs that generate complex, but
identical, geometry in several CAD families. These programs include parameters
and constraints that define the geometry to create and how each of the elements
in the design are related.

Nevertheless, the constraints used in GD programs are only present in the
code. Although the design reflects those constraints, all the generated parts are
disconnected in the CAD tool, and manually changing one does not change the
others. However, BIM applications have several mechanisms that allow propa-
gation of changes in one part to other connected parts.

Since BIM is so rich in information, its use would be preferable to normal
CAD tools, and so the use of GD with BIM is a real need. GD would allow
quicker and easier iterations in the development of a complex BIM model [9].



Generative Design for Building Information Modelling 5

Developing a GD program for a BIM is a problem that exists nowadays but
the solution offered by BIM tools is an Application Programming Interface (API)
that gives users a way to use BIM with a programming approach. In the next
section we briefly discuss the API of one of the most successful BIM tools.

1.1 RevitAPI

Revit has an API that allows its users to use programming in order to interact
with the BIM. This API is written in C# and can be used with Microsoft Visual
Studio.

This API gives the users primitive operations that can produce simple geom-
etry and others that can explore several capabilities of this BIM. This gives the
users the opportunity to use GD principles in order to interact with the tool.

However, for several reasons, the API is not suitable for architects that want
to start to program. The first reason is the programming language that is recom-
mended to use when developing with the API: C#. This programming language
is not suitable for beginners, as it requires that several concepts are already
known by its users, such as transactions and polymorphism. The second one is
the programming environment: Visual Studio. Although this is a very power-
ful Integrated Development Environment (IDE), it is not the most suited for
newcomers because it overwhelms the user with the amount of functionalities
and options that it presents. Finally, the API itself. The RevitAPI has a docu-
mentation that is difficult to use for beginners since they might have problems
understanding all the concepts that it contains. Also, due to the changes recently
made to the API, the documentation and some of the examples found in the In-
ternet are obsolete, which might confuse and create a barrier for users that want
to try examples in order to learn how to use the API for simple tasks.

One of our goals is to produce a tool that will solve these problems and give
an easier way for users to interact with Revit and other BIM tools.

This paper presents a solution that allows the usage of the GD mechanisms
available in Rosetta in a back-end that is a BIM application, instead of a tradi-
tional CAD application.

In the next sections, we describe the objectives of this work as well as the
related work and the general architecture of our solution. Finally, we discuss the
evalutation of the solution.

2 Objectives

The main objective of this thesis is to develop an approach that allows the
usage of GD with a BIM tool. This requires the definition of new programming
abstractions that allow users to write GD programs that generate models in
BIMs and that take advantage of the features that are unique to this type of
tool.

In order to do this, the operations needed for the creation of BIM objects
must be identified and implemented in such a way that makes the interaction



6 Generative Design for Building Information Modelling

with the BIM as simple as possible, mimicking the process that would be done
directly in the BIM.

To evaluate the ideas developed in this thesis, we will implement them in the
context of Rosetta, by connecting it to Autodesk’s Revit, a popular BIM tool.
To this end, we will also develop a simpler Application Programming Interface
(API) to interact with Revit. The solution to be developed will then introduce
Revit as an additional back-end for Rosetta, making it possible for users to write
programs using functions that take advantage of the BIM capabilities.

3 Related Work

In this section the most relevant languages and applications that are a source of
ideas for this work are described.

3.1 Grasshopper 3D and Lyrebird

Grasshopper 3D is a visual programming language developed for architects as a
plug-in for Rhinoceros 3D CAD.

Programs written in this language represent a data flow that consists of a
group of components and the connections between them. These components can
be selected from a series of menus and dragged to the working environment. The
components can represent functions, parameters or even geometry and they are
connected with lines between each other. This allows the user to specify which
parameter component connects to or from each of the function components,
allowing the implementations of complex algorithms that create and transform
geometry.

They also provide the user some of the most common data types like numer-
ical data types and booleans, and data structures such as arrays and vectors.
Some functions are also available, such as mathematical functions (sine, cosine
and others) and also conditional statements (equality, similarity, larger than and
smaller than). The user may also define function blocks that evaluate conditional
statements or solve complex mathematical algorithms [10].

Grasshopper also has a slider component that allows the user to easily change
the values that are inputted to a specific program and see the change occur in
their model.

It is important to notice that this language’s functionality can also be ex-
tended using scripting components to write code using VB.NET, C# or Python
programming languages [10].

Because it is a visual language, Grasshopper is easy to learn and start us-
ing, which made it popular amongst architects. However the visual aspect of
the language is also a disadvantage because, as programs grow, the amount of
connections between components makes them difficult to understand and even
features such as the sliders stop working as intended due to performance prob-
lems. Fig. 2 shows a complex program that illustrates the mentioned problems.



Generative Design for Building Information Modelling 7

Fig. 2. An example of a complex parametric model in Grasshopper. Re-
trieved from http://workshopsfactory.wordpress.com/files/2009/08/parametric-table-
grasshopper.jpg (retrieved December 2014)

Although Grasshopper was designed to be used only with Rhinoceros, it
can also be extended with plug-ins, such as Lyrebird, that allows it with other
tools. Lyrebird is a plug-in developed by LMN Architects as an interoperability
tool between Grasshopper 3D and Revit [11]. This plug-in enables the usage of
Grasshopper to structure the information needed in order to produce the desired
model in Revit. To do this, a Grasshopper component receives as input the family
type and parameters that represent the Revit object to be instantiated, or the
object from which the user wants to receive information. That information is
then sent to Revit through a pipe as a 2D array.

On the Revit side, there are several commands available, and based on the
function executed on the Grasshopper side, the corresponding command is ex-
ecuted in the BIM tool. These operations might include the creation of new
instances of a certain object, the modification of an existing instance, or might
simply collect data of created instances, such as the family type or the parame-
ters that define that family.

This software is of particular interest for this thesis because of the connection
established with Revit and its ability to use several objects that this BIM tool
has available. Nonetheless, not all of its functionalities are available in Lyrebird.

3.2 DesignScript

DesignScript is a programming language that is heavily influenced by design
principles. It was created by Robert Aish to be not only a production modelling
tool but also a full-fledged programming language and a pedagogical tool [12].
This language was supposed to be primarily a textual language but ended up to
be a more visual one due to Grasshopper’s popularity.



8 Generative Design for Building Information Modelling

As a programming language, DesignScript is seen as an associative language
as it mantains a graph of dependencies between the variables used in a program.
Any change in one of the variables is propagated throughout the program. This
means that if we have a variable a, and if b is defined as a + 1, a change in a will
also modify the value of b. This is a change-propagation mechanism, similar to
the update mechanisms available in associative CAD tools. The language is also
a domain-specific language as it contains primitives for design and geometry. In
order to be more flexible, it aims to be:

– focused on the end-user because it is meant to be used by programmers of
different skill levels.

– multi-paradigm.
– host-independent, making it usable with different back-ends.
– extensible, which gives the programmer freedom to add new functions and

classes.

As a modeling tool, DesignScript tries to introduce concepts that are eas-
ily understood by users that are not accustomed to design with the help of a
programming language. This is achieved by allowing the user to use its logi-
cal framework in order to produce the design models, and also facilitating an
exploratory approach to the tool involving refactoring of the produced models
[12].

Finally, DesignScript aims to be a pedagogical tool, as it allows the evolution
of the programming skills of its users. Users unfamiliar with programming are
able to use a direct approach with a graph node diagramming interface that is
simple and requires little to no understanding of programming concepts [13].
However, as their design becomes more complex, users might feel the need to
learn more advanced programming concepts. The node-to-code functionality of
DesignScript allows a transition between the graph representation and a script
that initially presents a logic very similar to the original graph. For users that
desire to produce more complex programs, this script might be changed into a
normal script.

This tool is very interesting to this thesis for its ambition to be useful not only
to different skilled users, but also for its ability to be accessible for newcomers and
flexible enough for them to learn and explore several programming skills. Also,
the idea of reproducing the designer’s way of thought in the way the program is
written is also an objective to achieve as described previously. Yet, the fact that
it uses a visual language similar to Grasshopper, makes it suffer from the same
scalability problems. A program created in DesignScript can be seen in Fig. 3.

3.3 Dynamo

Dynamo is a plug-in for Revit that is strongly influenced by visual programming
languages like Grasshopper for Rhino. As a matter of fact, the first version of
Dynamo used DesignScript in an attempt to make it a more visual language.



Generative Design for Building Information Modelling 9

Fig. 3. An example of a program created in DesignScript. Retrieved from
http://through-the-interface.typepad.com/.a/6a00d83452464869e20192ac16a8d2970d-
pi (retrieved December 2014)

Just as Grasshopper, users create a workflow by introducing nodes that are
connected to each other through wires, associated with the ports that each node
contains [14]. A port from an element can only be connected to another port
of a matching type, which means, a port must be connected to a port with an
input type that matches its output type.

Nodes can represent several Revit elements, such as lines, or functions, such
as mathematical functions. Users can also define custom nodes that represent
other functions in order to extend the functionality provided by Dynamo.

Fig. 4 shows a program written with Dynamo nodes and its result.

Dynamo also allows the usage of code blocks, which are elements that can
be used to write programs with a textual programming language, being Python
one possible language to use [15]. These code blocks allow the creation of small
algorithms that introduce more complex functionalities that are not possible to
create with the other nodes.

This tool is another one that communicates with a BIM and presents a way
to create GD programs for it, based on a visual programming language.



10 Generative Design for Building Information Modelling

Fig. 4. A program written with Dynamo. Retrieved from
http://inthefold.autodesk.com/.a/6a017c3334c51a970b019b01bc21de970c-pi (re-
trieved December 2014)

3.4 Geometric Description Language

Geometric Description Language (GDL) is a parametric programming language
for ArchiCAD that allows the creation of scripts that describe objects, which
are called library parts.

This language, similar to BASIC, requires several scripts to be defined that
include the model description and the parameters of the new object [16].

Each object is described with a sequence of commands that describe its geom-
etry. Like OpenGL, a matrix stack implements transformations like translations,
rotations and scales. Users use push and pop to introduce or remove a matrix
associated with a transformation in the stack. The transformations that are in
the stack when creating a shape are the ones that are going to influence it.

Fig. 5 shows a program written in GDL. The editor shows the sequence of
commands that produces the result, visible on the top left corner of the image.

GDL is an interesting point of comparison for this work, since it was a so-
lution introduced in another BIM tool. However, the language, which is similar
to BASIC, is obsolete and offers poor abstraction mechanism compared to other
languages. Also, GDL does not take advantage of the BIM components of Archi-
CAD and produces only simple geometry.

3.5 GenerativeComponents

GenerativeComponents (GC) is a parametric and associative system developed
for Bentley’s Microstation.



Generative Design for Building Information Modelling 11

Fig. 5. A GDL program that creates a bed canopy.

This system is propagation-based so the user has to determine the rules,
relationships and parameters that define the desired geometry. This propagation-
based system consists of an acyclic directed graph that is generated by two
algorithms: one that is responsible for ordering the graph and the other that
propagates values through it [17].

GC has several ways of user interaction, taking into consideration his skills.
The first one is a Graphical User Interface (GUI) that allows direct manipulation
of geometry. The second one is by defining relationships among objects with
simple scripts in GCScript. The third and final one, is by writing programs in
C#. This last one allows the definition of complex algorithms.

GC shows that a Visual Language might be easier to learn but as the user
learns and wants to produce more complex models, he will eventually start to
produce scripts and eventually will write programs in a textual language.

3.6 RevitPythonShell

RevitPythonShell is a plug-in developed for Revit that allows users to take ad-
vantage of the RevitAPI but using Python. This tool was developed by Daren



12 Generative Design for Building Information Modelling

Thomas to simplify the workflow that is needed in order to develop with the
RevitAPI [18].

This plug-in embeds IronPython as language and uses a code editor provided
by Python Tools. With this editor, developers have access to a Read-Eval-Print-
Loop (REPL) that will let them experiment the API in an easier approach. They
only need to type a statement, hit enter, see the results and carry on [18]. This
is a great advantage in comparison with the normal workflow of the API when a
change is needed. If anything is wrong in an add-on developed with the RevitAPI
and a change is needed, the application must be close, the code modified and
recompiled.

In addition to this, the fact that it uses Python, a very popular language
nowadays, makes it easier to use. However, the functions available in this plug-
in are almost equal to the ones available in the RevitAPI and require the user to
start and commit a transaction to produce the results in the graphical interface
of the BIM tool.

The code needed to create a reference point with the RevitPythonShell is the
following:

import clr

clr.AddReference(’RevitAPI’)

clr.AddReference(’RevitAPIUI’)

from Autodesk.Revit.DB import *

app = __revit__.Application

doc = __revit__.ActiveUIDocument.Document

t = Transaction(doc, ’create a single reference point’)

t.Start()

#define x, y, and z variables

x = 10

y = 10

z = 0

#declare a XYZ variable

myXYZ = XYZ(x,y,z)

#use XYZ to define a reference point

refPoint = doc.FamilyCreate.NewReferencePoint(myXYZ)

t.Commit()

__window__.Close()

The interactivity that the RevitPythonShell gives is a feature that facilitates
the interaction with the API and allows more experimental approaches. This is
very important when developing a GD program.



Generative Design for Building Information Modelling 13

3.7 Comparison

Table 1 is a comparison between the tools mentioned above taking into consid-
eration if they allow the usage of visual or textual languages.

Visual Programming

Languages

Textual Programming

Languages

Lyrebird Yes No

DesignScript Yes Yes

Dynamo Yes Only small scripts

GDL No Yes

GC Yes Yes

RevitPythonShell No Yes

Table 1. Comparison between tools

As seen in the table, there is almost an even distribution between the tools.
However, as mentioned before, visual programming languages have their disad-
vantages, specially when algorithms become very complex. And the tools that
support textual languages are either using obsolete languages like BASIC, in the
case of GDL, or have complex APIs that create a barrier to architects who are
starting to learn how to program.

However there are many advantages to all of these tools that must be taken
into consideration. The interactivity and explorable nature of tools like the Re-
vitPythonShell are extremely important for an architect to experiment and learn
how to program and how to make use of their creativity. And the fact that the
workflow and primitives of tools like Dynamo are easy to learn, motivates archi-
tects to start programming.

So taking this information into consideration, the solution to be developed
will make use of a textual programming language in order to not suffer from
the disadvantages of tools like Grasshopper. But since textual languages present
a bigger barrier to newcomers, the primitives and workflow must be as easy to
learn as possible. This, in combination with a pedagogical IDE, allows users to
learn and explore with ease.

Finally, all these tools can only be used with a specific BIM. The solution
that is being developed will not only enable the usage of Revit, but also define
an approach that can be explored with other BIM tools as well.

4 Solution

The proposed solution consists of two major modules:



14 Generative Design for Building Information Modelling

– An Abstraction Layer made of a set of functions written in Racket that will
be provided by Rosetta in order to write the GD programs.

– A plug-in that communicates with a BIM tool. In this case, the plug-in is
written in C# and uses the RevitAPI in order to produce the desired models
in the BIM tool.

4.1 General Architecture

Fig. 6 shows the connection between each of the modules of the solution. In the
next sections the purpose of each module will be explained.

Fig. 6. A general view of the architecture of the solution. The arrows show the flow of
information between each module of the solution.

4.1.1 Racket and Rosetta

The program will be written in Racket making use of the functions already
defined in Rosetta and new ones specially defined for the new back-end, Autodesk
Revit.

At the start of the program execution, a connection is established with the
Revit plug-in, creating a communication channel. Afterwards, this channel is
used to transmit information between Rosetta and Revit so that Revit’s func-
tionality can be accessed from Rosetta.



Generative Design for Building Information Modelling 15

4.1.2 Communication Channel

Rosetta will send the necessary information through the channel in order to
select the desired functionality on the plug-in side.

Right now, this channel is implemented with sockets and the messages are
serialized using Google Protocol Buffers. The Protocol Buffers were selected
because they are known for their performance and there are implementations
available for Racket and for C#, the languages used in Rosetta and in the plug-
in. The socket server is initialized when the plug-in is started and the Racket
program creates the client and connects to the server when it starts to exe-
cute. Information will then be exchanged between them until the user closes the
session.

4.1.3 Revit Plug-In

The plug-in will receive the necessary information through the channel in order
to create the desired objects or to obtain information about the objects already
created. This works like Remote Procedure Call (RPC). The information received
is deserialized with the Protocol Buffers in order to correctly reconstruct the
information that was sent.

It is important to notice that this plug-in can be non-blocking or blocking.
Non-blocking means that the user can still use Revit while the program is ex-
ecuting. This is specially useful if the user wants to change the view while the
model is being created to check if it has the desired look.

Blocking, on the other hand, does not allow any type of interaction with the
BIM until the program reaches its end.

Both approaches have advantages and disadvantages. The first one allows
interaction with Revit while the program is executing but that means a more
complex implementation and a loss in performance. The second one is easier to
implement and it has better performance but reduces the user’s interactivity in
the process.

In the current prototype we experimented both approaches and due to the
interactivity allowed by the first one we decided to make it the default behaviour.
This behaviour is achieved by using the idle function of the RevitAPI. When the
user is not using the graphical interface, the idle function will execute and see if
new information is in the socket. In case it is, the information will be deserialized
and processed in order to invoke the desired functionality.

4.2 Abstraction Layer

The main objective to accomplish is to create an approach that allows users to
use GD but taking into account the different paradigm that BIM defines.

This leads to the creation of a set of functions that will not only create
geometry but will also take advantage of the functionalities present in the BIM,
in this particular case, Revit.

These functions can be divided into two categories: the geometry functions
and the BIM functions.



16 Generative Design for Building Information Modelling

Another objective of this layer is to simplify the functions and reduce the
complexity that is introduced by the programming languages available to com-
municate with a BIM.

4.2.1 Geometry Functions

The creation of complex geometry to use in the models is still a desired feature in
BIM. Revit, for example, offers a type of document, called a Family document,
in which a user can create a new instance of a specific family of objects, or create
a new family for a type of objects that is not provided yet.

For this reason, a set of geometry functions was created in order to produce
complex geometry in Family documents. These functions include the creation of
cylinders, boxes and spheres, among others.

This set of functions is simply implementing the creation of geometry like
in a normal CAD and will enable the production of the same models that were
possible to create in other back-ends, such as AutoCAD.

However, it will then be possible to introduce a series of parameters like
restrictions and properties (material, price and others) converting the geometry
into a proper BIM object. A set of functions to introduce this parameters will
be made available and must be used when creating models in order to create
objects that can be used in a Revit Project.

Functions that translate and rotate objects and operations like extrusions,
revolutions, blends and sweeps are also included in this set.

4.2.2 BIM functions

Another problem that we want to address is the lack of architectural concepts in
GD programs written for traditional CAD tools. As an example, in these tools,
the concept of levels or floors does not exist, and the walls have the correct
height simply because the code has the mathematical values required to make
them that way. Similarly, doors and windows have no relation between them and
the walls. They can even be created before the wall in which they are placed.
These restrictions are present in the code but not in the generated model.

This is where the differences between BIM and traditional CAD tools are
noticed. With BIM, all of these relationships should also be present in the gen-
erated model. Moreover, levels must be created and floors, ceilings and walls
must be associated with specific levels, and doors and windows cannot be cre-
ated without the indication of which wall is their host. Indeed, a door is created
in a wall and a wall is placed on a specific floor. This is very important consid-
ering that in BIM a change to a wall that contains a door must propagate to the
door itself and deleting a wall will also delete the door it contains.

To support these relations and restrictions, several functions must be created
in our solution that will insert elements into other elements, like a door into a
wall. At the present time, most of these functions are still to be defined and the
current approach to provide them to the user still needs refinement. However,
an example that uses some of these functions is already working and it will be
shown in the next section.



Generative Design for Building Information Modelling 17

4.3 Examples

In this subsection a set of examples will be presented in order to demonstrate
what is already working in the solution. The first three examples use code that
was originally written in order to produce models in AutoCAD and the result
of executing the exact same code in Revit will be shown. The last example will
show the result of using functions that make use of BIM objects.

4.3.1 City

In this example, simple geometry objects are used in order to create an ab-
stract city. The code used for this example was created as a simple exercise for
the students of Design Programming and Computing at IST. The code is the
following:

1 (define (malha-predios p n-ruas m-predios l h s)

2 (if (= n-ruas 0)

3 #t

4 (begin

5 (rua-predios p m-predios l h s)

6 (malha-predios (+y p (+ l s))

7 (- n-ruas 1)

8 m-predios

9 l

10 h

11 s))))

12

13 (define (rua-predios p m-predios l h s)

14 (if (= m-predios 0)

15 #t

16 (begin

17 (predio p l h)

18 (rua-predios (+x p (+ l s))

19 (- m-predios 1)

20 l

21 h

22 s))))

23

24 (define (predio-blocos n p0 c0 l0 h0)

25 (if (= n 1)

26 (box p0 c0 l0 h0)

27 (begin

28 (let ((c1 (* (random-range 0.7 1.0) c0))

29 (l1 (* (random-range 0.7 1.0) l0))

30 (h1 (* (random-range 0.2 0.8) h0)))

31 (let ((p1 (+xyz p0

32 (/ (- c0 c1) 2.0)

33 (/ (- l0 l1) 2.0)

34 h1)))

35 (box p0 c0 l0 h1)



18 Generative Design for Building Information Modelling

36 (predio-blocos (- n 1) p1 c1 l1 (- h0 h1)))))))

37

38 (define (predio0 p l h)

39 (predio-blocos (random-range 1 6)

40 p

41 l

42 l

43 (* (random-range 0.1 1.0) h)))

44

45 (define (predio1 p l h)

46 (cylinder

47 (+xy p

48 (/ l 2.0)

49 (/ l 2.0))

50 (/ l 2.0)

51 (* (random-range 0.1 1.0) h)))

52

53

54 (define (predio p l h)

55 (if (= (random 5) 0)

56 (predio1 p l h)

57 (predio0 p l h)))

58

59 (malha-predios (xyz 0 0 0) 10 10 100 600 40)

Cylinders and boxes are used in order to simulate different types of buildings
that exist in a real city. In order to give it a more realistic look, the box buildings
are made of several boxes of different size and the size of all buildings is random.
This example illustrates the box and cylinder functions.

The result of this program in Revit can be seen in Fig. 7.

4.3.2 Sphere of Cylinders

The objective of this example is to produce a sphere made of cylinders. The
cylinders are created with several orientations. The code produced for AutoCAD
is the following:

1 (define (cilindros-esfera p r rc n)

2 (if (= n 0)

3 #t

4 (let ((phi (random-range pi/4 (- 2pi pi/4)))

5 (psi (random-range 0 pi)))

6 (cylinderb (+sph p r phi psi)

7 rc

8 (+sph p

9 r

10 (+ phi (random-range -pi/4 pi/4))

11 (+ psi (random-range -pi/4 pi/4))))

12 (cilindros-esfera p r rc (- n 1)))))

13



Generative Design for Building Information Modelling 19

Fig. 7. An example of a city made of boxes and cylinders in Revit

14 (cilindros-esfera (xyz 0 0 0) 3.0 0.1 400)

The model obtained from the program execution, but targeting Revit, can
be seen in Fig. 8.

4.3.3 Trusses

Trusses are models that are relatively hard to design in a CAD tool. However
with GD this task is much easier. The following code produces an example of a
truss whose nodes are distributed according to a bi-dimensional sinusoid:

1 (define raio-no-trelica (make-parameter 0.1))

2

3 (define (no-trelica p)

4 (sphere p (raio-no-trelica)))

5

6 (define raio-barra-trelica (make-parameter 0.03))

7

8 (define (barra-trelica p0 p1)

9 (if (=c? p0 p1)

10 (empty-shape)

11 (cylinder p0 (raio-barra-trelica) p1)))

12

13 (define (nos-trelica ps)

14 (map no-trelica ps))

15

16 (define (barras-trelica ps qs)

17 (for/list ((p (in-list ps))



20 Generative Design for Building Information Modelling

Fig. 8. Geometric model in Revit with cylinders placed in order to form a sphere

18 (q (in-list qs)))

19 (barra-trelica p q)))

20

21 (define (trelica as bs cs)

22 (nos-trelica as)

23 (nos-trelica bs)

24 (nos-trelica cs)

25 (barras-trelica as cs)

26 (barras-trelica bs as)

27 (barras-trelica bs cs)

28 (barras-trelica bs (cdr as))

29 (barras-trelica bs (cdr cs))

30 (barras-trelica (cdr as) as)

31 (barras-trelica (cdr cs) cs)

32 (barras-trelica (cdr bs) bs))

33

34 (define (trelica-espacial curvas)

35 (let ((as (car curvas))

36 (bs (cadr curvas))

37 (cs (caddr curvas)))

38 (nos-trelica as)

39 (nos-trelica bs)

40 (barras-trelica as cs)

41 (barras-trelica bs as)

42 (barras-trelica bs cs)

43 (barras-trelica bs (cdr as))

44 (barras-trelica bs (cdr cs))

45 (barras-trelica (cdr as) as)



Generative Design for Building Information Modelling 21

46 (barras-trelica (cdr bs) bs)

47 (if (null? (cdddr curvas))

48 (begin

49 (nos-trelica cs)

50 (barras-trelica (cdr cs) cs))

51 (begin

52 (barras-trelica bs (cadddr curvas))

53 (trelica-espacial (cddr curvas))))))

54

55 (define (render-trelica malha)

56 (let* ((p0 (caar malha))

57 (p1 (caadr malha))

58 (p2 (cadadr malha))

59 (p3 (cadar malha))

60 (d (min (distance p0 p1) (distance p0 p3))))

61 (parameterize ((raio-no-trelica (/ d 9.0))

62 (raio-barra-trelica (/ d 19.0)))

63 (trelica-espacial

64 (insere-vertice-piramide

65 malha)))))

66

67 (define (sin-u*v n)

68 (map-division

69 (lambda (u v)

70 (xyz u

71 v

72 (* 0.4 (sin (* u v)))))

73 (* -1 pi) (* 1 pi) n

74 (* -1 pi) (* 1 pi) n))

75

76 (render-trelica (sin-u*v 10))

The nodes are spheres and the bars uniting them are cylinders whose base
and top are the center of the two nodes that they unite. The result is seen in
Fig. 9.

4.3.4 Floor Example

This last example does not include simple geometry and uses features that are
only available in a BIM tool. The most relevant one is the fact that it uses BIM
objects instead of simple geometry. By using these objects, the code is simplified
because users do not need to implement all of the details of a door like in a
CAD tool. The selected door family has all the details and properties that a
door needs.

The code used to produce the model is the following:

1

2 (define floor-points

3 (list (xyz -10 20 0)



22 Generative Design for Building Information Modelling

Fig. 9. A Truss made of cylinders and spheres

4 (xyz 10 20 0)

5 (xyz 10 5 0)

6 (xyz 20 5 0)

7 (xyz 20 -10 0)

8 (xyz -20 -10 0)

9 (xyz -20 20 0)

10 (xyz -10 20 0)))

11

12 (define walls-ids (list))

13

14 (define (floor-walls points level)

15 (for/list ((pt0 points)

16 (pt1 (cdr points)))

17 (set! walls-ids (append walls-ids (list (wall pt0 pt1 level))))))

18

19 (define f1 (floor-from-points floor-points "Level 1"))

20 (floor-walls floor-points "Level 1")

21 (insert-door-relative (car (cddddr walls-ids)) 15 0)

22 (define w1 (wall (xyz -10 5 0) (xyz 10 5 0) "Level 1"))

23 (insert-door-relative w1 10 0)

24 (define w2 (wall (xyz -10 5 0) (xyz -10 20 0) "Level 1"))

25 (define w3 (wall (xyz -20 5 0) (xyz -10 5 0) "Level 1"))

26 (insert-door-relative w3 5 0)

27 (define w4 (wall (xyz 10 5 0) (xyz 10 -10 0) "Level 1"))

28 (insert-door-relative w4 10 0)

29 (insert-window (car walls-ids) 10 5)



Generative Design for Building Information Modelling 23

In this example, all the objects use their standard family but it is possible
to choose other ones with different properties that fit different situations. Also,
in the case of walls, BIM automatically joins them since they are objects with
that property. The result can be seen in Fig. 10.

Fig. 10. A 3D view of a floor created in Revit

This example has all the properties of a model created with the graphical
interface of the BIM tool. The advantage of this model is that it can fully explore
the capabilities of the BIM tool, namely, it can be used to compute the needed
materials and it can be used for structural analysis. Also, plan views of the model
can be automatically generated, as visible in Fig. 11.

5 Evaluation

The solution will be evaluated taking into consideration (1) its capability for
creating the complete desired model, and (2) the correctness of the model, which
means, if the model has the properties expected of a proper BIM model.

To do this, models that are possible to create in CAD tools must be produced
in Revit, as well as models that explore features of the BIM tool. Several BIM
experts will help us in the creation of these models by showing us how they
would create them with a manual approach. In the end, their solution will be
compared with a solution that creates the same model but using a programming
approach.

Additionally, the time needed to create and modify the model in both the
manual and the programming approaches will also be taken into account.



24 Generative Design for Building Information Modelling

Fig. 11. Representation of the floor in plan view

6 Conclusions

The GD approach created for CAD applications proved very useful but nowadays
these tools are being replaced with BIM. This paradigm is very different from
CAD, so the approach originally created no longer fits.

To solve this problem we propose a solution that allows users to create GD
programs with a set of abstractions designed for BIM tools. Our solution extends
Rosetta, a IDE for GD. By taking advantage of Rosetta, users have a develop-
ment environment fit for the needs of beginners. Due to the many front-ends
available, users can pick the programming language they prefer. Also, since the
abstraction layer we are implementing takes into consideration generic BIM con-
cepts and not the concepts that are exclusive to a given tool, we expect that
users will be able to create portable programs that explore different BIM tools.

The solution will continue to be developed and tested with architects that
are also novice programmers. Their feedback will be used to define and improve
the abstractions and functions needed to work with a BIM tool.

References

1. Fernandes, R. (2013). Generative Design: a new stage in the design process. Master
thesis, Instituto Superior Técnico.

2. Azhar, S., Hein, M. and Sketo, B.(2008). Building Information Modeling (BIM):
Benefits, Risks and Challenges. In Proceedings of the 44th ASC National Confer-
ence, Auburn, Alabama, USA.

3. Eastman, C., Teicholz, P., Sacks, R., & Liston, K. (2008). BIM Handbook: A Guide
to Building Information Modeling for Owners, Managers, Designers, Engineers,
and Contractors, Hoboken, New Jersey: John Wiley & Sons, Inc.



Generative Design for Building Information Modelling 25

4. Ibrahim, M., Krawczyk, R., & Schipporeit, G. (2004). Two Approaches to BIM: A
Comparative Study. In eCAADe Conference (volume 22, pp. 610-616).

5. McCormack, J., Dorin, A., & Innocent, T. (2004). Generative Desing: a paradigm
for design research. In Proceedings of Futureground, Design Research Society, Mel-
bourne.

6. Terdizis, K. (2003). Expressive Form: A conceptual Approach to Computational
Design. London and New York: Spon Press.

7. Leitão, A., Santos, L., & Fernandes, R.. Pushing the Envelope: Stretching the limits
of Generative Design.

8. Lopes, J., & Leitão, A. (2011). Portable Generative Design for CAD Applications.
In Proceedings of the 31st annual conference of the Association for Computer Aided
Design in Architecture (pp. 196-203).

9. Fernando, R., Drogemuller, R., & Burden, A. (2012) Parametric and Generative
Methods with Building Information Modelling: Connecting BIM with explorative
design modelling In Beyond Codes and Pixels: CAADRIA 2012: Proceedings of the
17th International Conference on Computer Aided Architectural Design Research
in Asia (pp. 537-546).

10. Payne, A., & Issa, R. (2009) The Grasshopper Primer, Second Edi-
tion - for version 0.6.0007, http://www.liftarchitects.com/blog/2009/3/25/

grasshopper-primer-english-edition (retrieved on August 2014)
11. Logan, T. (2014, February) Superb Lyrebird. http://lmnts.lmnarchitects.com/

bim/superb-lyrebird/ (retrieved on November 2014)
12. Aish, R. (2012) DesignScript: origins, explanation, illustration. In Computational

Design Modelling (pp. 1-8). Springer Berlin Heidelberg.
13. Aish, R. (2013) DesignScript: Scalable Tools for Design Computation. In eCAADe

2013: Computation and Per- formance–Proceedings of the 31st International Con-
ference on Education and research in Computer Aided Architectural Design (pp.
18 - 20)

14. Dynamo Source Code https://github.com/DynamoDS/Dynamo (retrieved on
November 2014)

15. Learn Dynamo http://dynamobim.com/learn/ (retrieved on December 2014)
16. Nicholson-Cole, D. (2004) Introduction to Object Making with Archicad: GDL for

Beginners Graphisoft R&D Rt
17. Aish, R., & Woodbury, R. (2005) Multi-level interaction in parametric design In

Smart Graphics (pp. 151-162), Springer Berlin Heidelberg.
18. Thomas, D. (2009) Introducing RevitPythonShell http://darenatwork.blogspot.

pt/2009/12/introducing-revitpythonshell.html (retrieved on April 2015)



26 Generative Design for Building Information Modelling

A
P
la
n
n
in
g

P
la
n
n
in
g

T
a
sk

s
D
e
ta

il
s

D
u
ra

ti
o
n

R
el

a
te

d
W

o
rk

R
es

ea
rc

h
-

C
o
n
cl

u
d
e

th
e

re
se

a
rc

h
J
u
ly

(3
w

ee
k
s)

A
tt

ri
b
u
te

in
tr

o
d
u
ct

io
n

fo
r

F
a
m

il
y

D
o
cu

m
en

ts
-

S
tu

d
y

th
e

A
P

I
a
n
d

tu
to

ri
a
ls

-
Im

p
le

m
en

ta
ti

o
n

-
T

es
ti

n
g

J
u
ly

(1
w

ee
k
)

A
u
g
u
st

(4
w

ee
k
s)

S
ep

te
m

b
er

(2
w

ee
k
)

B
IM

fu
n
ct

io
n
s

fo
r

th
e

a
b
st

ra
ct

io
n

la
y
er

-
S
tu

d
y

th
e

A
P

I
a
n
d

tu
to

ri
a
ls

-
Im

p
le

m
en

ta
ti

o
n

-
T

es
ti

n
g

S
ep

te
m

b
er

(2
w

ee
k
s)

O
ct

o
b

er
(4

w
ee

k
s)

N
ov

em
b

er
(2

w
ee

k
s)

Im
p
le

m
en

ta
ti

o
n

o
f

th
e

ca
se

st
u
d
y

-
D

efi
n
it

io
n

o
f

th
e

ca
se

st
u
d
y

w
it

h
a

B
IM

ex
p

er
t

-
Im

p
le

m
en

ta
ti

o
n

-
T

es
ti

n
g

-
R

ev
ie

w
th

e
re

su
lt

s
w

it
h

th
e

B
IM

ex
p

er
t

N
ov

em
b

er
(2

w
ee

k
)

D
ec

em
b

er
(4

w
ee

k
s)

J
a
n
u
a
ry

(2
w

ee
k
s)

J
a
n
u
a
ry

(2
w

ee
k
s)

E
va

lu
a
ti

o
n

-
E

va
lu

a
te

th
e

so
lu

ti
o
n

w
it

h
th

e
ca

se
st

u
d
y

re
su

lt
s

-
P

er
fo

rm
o
th

er
te

st
s

n
ee

d
ed

fo
r

ev
a
lu

a
ti

o
n

F
eb

ru
a
ry

(1
w

ee
k
)

F
eb

ru
a
ry

(3
w

ee
k
s)

T
h
es

is
fi
n
a
l

re
p

o
rt

-
W

ri
te

th
es

is
re

p
o
rt

M
a
rc

h
(4

w
ee

k
s)

A
p
ri

l
(2

w
ee

k
s)

R
ev

ie
w

a
n
d

S
u
b
m

is
si

o
n

-
R

ep
o
rt

re
v
ie

w
a
n
d

su
b
m

is
si

o
n

A
p
ri

l
-

M
ay

(3
w

ee
k
)

T
a
b
le

2
.

P
la

n
n
in

g
sc

h
ed

u
le


