
Procedural Generation for Architecture

Artur Alkaim
arturalkaim@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa

Abstract. Existing tools used for 3D modeling creation are mostly
geared for manual use. Unfortunately, the manual production of large
amounts geometry is very time consuming. Procedural generation of
these forms is one of the approaches which considerably speeds up this
process. This approach consists in the algorithmic construction of these
forms and allows the quick creation of massive amounts of geometry. As
most 3D modeling tools were not made specifically for this type of use,
favoring instead manual use, they do not have the performance neces-
sary for a smooth use. This work proposes solutions to this performance
problem, through the use of different techniques that accelerate the pro-
duction and visualization of large volumes of geometry.

Keywords:

3D modeling, OpenGL, Generative Design, Procedural Generation, Shaders

1 Introduction

Graphic contents are mainly used for entertainment, both in the gaming and
movie industries, but they are also used in many other different areas. The
fields of architecture and design, for instance, use this technology to experiment
and model new designs, from small objects like a plate, to buildings or even
entire cities. Unfortunately, manual modeling of large sets of potentially complex
shapes is tiresome and very costly. The obvious solution to this problem is to
hire more architects or designers in order to increase productivity and reduce the
time needed. However, experience has shown that this solution is not scalable,
because doubling the number of architects or designers working in a project will
not double their overall productivity. Also, this solution has a big impact on
financial costs, that would take immediately out of the market producers with
fewer resources.

A solution for this problem is the use of generative design (GD). This is a
design method that is based on a programming approach which allows architects
and designers to model large volumes of complex shapes with significantly less
effort. They can model cities, buildings, trees, and many other objects that are,
usually, too big or complex for a manual approach.



2 Artur Alkaim

Fig. 1: Common Generative Design
Pipeline

Although most computer-aided
design (CAD) applications provide
programming languages for genera-
tive design, programs written in these
languages have very limited portabil-
ity. Additionally, the provided lan-
guages, such as AutoLisp, C++ or Vi-
sual Basic, are not pedagogical and
are difficult to use even to experienced
programmers. All this problems cre-
ate barriers to the adherence to this
approach by all users, specially those
that are not used to code.[12]

There are several generative de-
sign (GD) tools such as Grasshop-
per1 and Rosetta[8], that aim to break
down some of this barriers, and facili-
tate the approximation of these individuals to programming. With this tools the
users can create their models using pedagogical and easy to use languages. This
systems implement a straightforward pipeline presented in Figure 1.

Users implement their models through the GD tool interface. Then all the
geometry data is serialized and the data is transfered through some transport
mechanism. This data has to be deserialized on the other side within the CAD
application. The CAD application takes the deserializes data and processes it
producing geometry. Finally, the geometry is moved to the GPU that renders it.
All these steps are time-consuming, due to the large amount of data that needs
to be transfered. This creates a performance problem.

One big difference between GD and traditional approaches is that users do
not see the result of their program while they code. They follow a code-execute-
visualize loop where they make changes in the code, execute the code and vi-
sualize the resulting model. This makes it difficult for them to understand the
impact of changes in their programs. It would be much more productive if they
could easily understand the correlation between their program and the result-
ing model and to be able to experiment values on their program and see the
effects they have on the model. To help them with this, there is the concept of
immediate feedback. Immediate feedback is a mechanism that allows the users
to quickly see the results of the changes they make. This can be implemented,
for instance, through the use of sliders that can be associated with values on
the program, and when one slider is moved the effects of that change should be
visualized immediately.

However, there is a problem: CAD applications are built for manual model-
ing mainly, and are not prepared to quickly handle large amounts of geometry.
Running the code produces much more geometry and much faster than manual
modeling, so the user is able to create massive amounts of geometry, which is

1 http://www.grasshopper3d.com/



Procedural Generation 3

fed to the CAD that gets overloaded. With this issues, it is hard to get good
performance, specially with large models, that makes impossible to have true
immediate feedback.

This work proposes a solution to this problem and aim to generate large vol-
umes of geometry that is as close as possible to real-time. It does so by jumping
over some steps while drastically decreasing the amount of data that is trans-
fered between steps. First we aim to get the geometry as fast as possible to the
GPU, so since our goal is just visualization, we jump the CAD layer, eliminat-
ing the first communication steps. Another action is to reduce the amount of
data that is transferred, by transferring only a very concise description of the
geometry, generating the actual geometry on the GPU. To implement the gen-
eration of the geometry, procedural techniques such as: Fractals(Section 3.3.1),
Cellular Automata (Section 3.3.2), and L-Systems (Section 3.3.3) will be ap-
plied. To improve visualization performance, techniques such as Level Of Detail
(Section 3.4.1) and Occlusion Culling (Section 3.4.2) are explored.

2 Overview

This section will provide an overview of this topic. Section 3 will explore related
work. Section 4 will address the objectives for this thesis work. Section 5 will
describe the architecture of the proposed solution. Section 6 will explain how
this solution will be evaluated and section 7 will conclude this work.

2.1 Procedural Modeling

Procedural Modeling is the algorithmic generation of content instead of the usual
manual creation of content. This can be applied in almost all forms of content,
but is mostly used in the generation of graphic content, such as textures, geome-
try and animations, in which is included generative design. Procedural generation
is also used for the generation of sound, with procedurally generated music and
synthetic speech.

The key property of procedural generation is that it describes the data enti-
ties, such as textures, geometry, or sounds, in terms of a sequence of instructions
rather than as a static block of data [7]. This allows the production of big vol-
umes of detailed, high quality, graphic content without the costs, both in time
and money, of manual content creation. Since it is based on procedures, it pro-
vides parametric control. Users can introduce in their programs as many useful
parameters as they want, which allows them, for instance, to have different re-
sults from just one implementation by just changing some control values.

3 Related Work

In this section we give an overview of the related work that has been carried
out on procedural generation of large amounts of geometry . After that, in the



4 Artur Alkaim

following sections, some techniques of procedural modeling are explained. Since
the target audience of this work are architects and designers, most of the work
that we present have the same target.

3.1 CityEngine [11] [10]

CityEngine is a three-dimensional (3D) modeling software developed by Proce-
dural Inc. (now part of the Esri R&D Center). Specialized in the generation of
3D urban environments. With the procedural modeling approach, CityEngine
enables the efficient creation of detailed and large-scale 3D city models with a
lot of control from the user. This system applies the concept of Immediate Feed-
back by allowing the user to immediately see the results of each change. This
is implemented through a set of sliders (Figure 2 top left), that are assigned to
various indicators in the model. This indicators can be as high level as the size
of the city or as specific as the width of a window or the number of floors in a
building.

The following sections explain how CityEngine faces each of the steps in the
generation of a city, such as road network generation or building modeling.

Fig. 2: City Engine Interface

3.1.1 RoadNetwork The first part to procedurally generate a city is to create
a road network to become a backbone of the city and provide an overall structure.
For that, CityEngine receives as input maps such as land-water boundaries and



Procedural Generation 5

population density. From that input a network of highways is created to connect
the areas off high density population, and small roads connect to the highways.
This growth process continues until the average area of each lot is the desired
one. The system have a default value, but it can be set by the user to a different
one.

To implement this growth process, it uses an L-System (Section 3.3.3) that
computes the road network.

Fig. 3: Road Map growth

The Figure 3 shows the evolution of this process in a map of Manhattan.
The first two pictures on the top shows the process in different phases during
the process, the picture in the middle is the result of the process and the bottom
line is the real map of Manhattan for comparison.

3.1.2 Buildings To implement the generation of buildings, CGA was created,
which is a shape grammar(Section 3.3.4) that was introduced in [11]. It is defined
as “a novel shape grammar for the procedural modelling of CG architecture,
produces building shells with high visual quality and geometric detail.” To do
so, this grammar uses a group of well defined production rules.

This tool allows the user to model buildings with an high control and in
different ways. It can be done by text, writing production rules from a shape
grammar or with a visual language similar Grasshopper 3D, that is nice for



6 Artur Alkaim

simple models but it is hard to work with more complex models, for instance,
Figure 2 shows a set of rules (bottom left), that is relatively small but is already
difficult to follow the connections between rules.

3.1.2.1 Mass Modeling To model a building the first step is to create a mass
model of the entire building by assembling basic shapes. With scaling, translation
rotation and split applied to basic shapes namely I, L, H, U and T as shown in
the Figure 4.

Fig. 4: Basic shapes

The next step is to add the roof, from a set of basic roof shapes or general
L-Systems.

After that, with the application of the grammar rules in the created mass, it
is possible to create complexity to the level that is desired, being able to produce
highly complex buildings like the one in Figure 5.



Procedural Generation 7

Fig. 5: Complex building modeled with CGA

3.1.3 Cities The result can be a city like Figure 6, with approximately 26000
buildings.

Fig. 6: City with approximately 26000 buildings.

City Engine outputs can be imported by Maya2, to achieve better results.
Like the Figure 7, that represents a ‘virtual’ Manhattan.

2 http://www.autodesk.com/products/maya/overview



8 Artur Alkaim

Fig. 7: City rendered with Maya.

3.2 Undiscovered City

In [5] Stefan Greuter et al. presented a system that generates in real-time pseudo
infinite virtual cities which can be interactively explored from a first person per-
spective. In their approach “all geometrical components of the city are generated
as they are encountered by the user.” As shown in the Figure 8 only the part of
city that is inside the viewing range is generate. This method allows the visual-
ization of massive amounts of geometry, buildings in this case, by generating in
real time only the geometry that on sight, and since this subset is usually much
smaller than all the geometry this results in huge benefits in performance.

Fig. 8: Viewing Range



Procedural Generation 9

3.2.1 Road Network The system uses a 2D grid that divide the terrain into
square cells. The cells represent proxies for the content that will be procedurally
generated. Before the content of each cell is generated, the potential visibility of
it is tested, and after that, only the visible cells are filled with content.

Then the roads are created in a uniform grid pattern. This grid does not
feel very natural, and in the continuation of the work, this system evolved into
a more realistic one with the join of some of the grids to create a less uniform
distribution of the buildings.

3.2.2 Buildings To compute the form and appearance of each building, it
is used a “single 32 bit pseudo random number generator seed. The random
sequence determines building properties such as width, height and number of
floors.” Similar sequences of number result in similar buildings. To avoid that,
it is used a a hash function to convert each cell position into a seed.

To generate a building the first is to generate a floor plan. To do so, it is
randomly selected and merged a set of regular polygons and rectangles, then
this is extruded. This is an iterative process, that creates sections from the top
to the bottom, by adding more shapes to the the initial shape and extruding
as shown in the Figure 9. Starting from the left, first there is a simple polygon,
that is merged with a rectangle and after extrusion, forms the first block that
will be the top of the building. After that, another extrusion is made to generate
the next block followed by the merge of a rectangle to the floor shape and the
generation of a new block and so on.

Fig. 9: buildings

With the application of this method very complex architectural forms can
be generated, depending only on which forms are selected and the order that is
used to merge them.



10 Artur Alkaim

3.3 Procedural Modeling Techniques

In the following sections are explained some procedural modeling techniques.
These techniques are applied to the generation of various types of forms proce-
durally and will be explored for application within this work.

3.3.1 Fractals A fractal is defined in [4] as “a geometrically complex object,
the complexity of which arises through the repetition of a given form over a range
of scales”. This concept is observed in some forms that exist in nature. Trees,
mountains, coastlines and the network of neurons on a human cortex can be
seen as examples of fractals. Natural shapes tend to be irregular and fragmented
and exhibit a complexity incomparable to regular geometry [9]. Fractals were
proposed to be seen as a new form of symmetry [4], Dilation Symmetry, which
is when an object is invariant over a change of scale. This invariance might be
only qualitatively and not exact. For instance, a river network exhibit dilation
symmetry if zooming in in some part looks the same as the whole image. As this
example, many others show dilated symmetry such as clouds, tree branches and
some vegetables as shown in Figure 10.

Fig. 10: Fractals in Nature

This idea was applied in maths and resulted in a new area in this science
called fractal mathematics. The objective of this field is to describe very complex
shapes with simple rules such as repeating a substitution pattern.

In Figure 11 there are four examples of Geometric Fractals, with the first five
iterations of each one. All of them are built by the substitution of a part of the
image by another one.

The example of the second row is known as the Koch snowflake. In this
example, at each iteration, all the line segments are replaced by four segments
with 1/3 of the size of the original one with the two in the middle being placed
in a angle forming a equilateral triangle with the original line that is removed.

It is clear that the detail that is presented in each iteration increases as the
scale changes. There is the concept of Fractal Dimension that tries to measure



Procedural Generation 11

Fig. 11: Geometric Fractals

this evolution, in which the detail in a pattern changes in comparison with the
scale in which it is measured.

As stated before, the world is visually very complex, so when synthesizing
worlds, “complexity equals work”[4]. This work can be done by the program-
mer/artist or by a computer. Fractals as being defined as a simple mathematical
function, it is relatively easy to implement a procedure that model one fractal.

This technique is used to model many natural forms that present fractal
properties. Mountains, for instance, are usually modeled using of fractals. Other
natural forms that present fractal properties are trees, river systems, lightning
or vascular systems in living beings.

3.3.2 Cellular Automaton A cellular Automaton is a model of a system of
cells within a grid with a given shape, each of this cells can be on one of a finite
set of states. It evolves during a finite amount of time steps with a set of simple
rules according to each state of the neighboring cells. The neighborhood of the
cell can be defined in many different ways, the most common is the use of the
adjacent cells.

This models have various applications, such as modeling of nature aspects
(Figure 15), textures, and as inspiration to architecture (Figure 12).

The case where each cell have two possible states and the next generation
state depends only on the previous state of the cell and the two immediate
neighbors is called an elementary cellular automaton. In this case we have 23 = 8
possible patterns for a neighborhood and 28 = 256 sets of possible different rules.
This rules are referred by their Wolfram code [15].

A common initial state for this elementary cellular automata is a random
line. But to be able to compare the results between rules and get clean results
another option is to start with a line with zeros except the middle cell that is
initialized with the value one. Applying this second option and the set of rules



12 Artur Alkaim

Fig. 12: Examples of cellular automata applied in architecture

in Figure 13 (the rule 30), we get the pattern in the Figure 14 that represents
the evolution of a cellular automaton over a few generations.

Fig. 13: Example Production Rules[13]



Procedural Generation 13

Fig. 14: Sierpiński Triangle, rule 90

In Figure 14 each line represents an iteration of the system with the appli-
cation of the rules. With this set of rules a Sierpiński triangle is reproduced.

Cellular automata are used mainly to model phenomena that occur in the
physical world, most of them can only express the basic idea of a phenomenon,
but some are accurate enough to be able to make predictions.

In this context, cellular automata are used to model natural shapes and
textures, Figure 15 shows on the left, a natural texture on the shell of a Textile
Cone Snail, that looks like the patterns formed with the cellular automaton on
the right.

Fig. 15: Example of the representation of natural patterns with cellular automata. On
the left, a Natural Shell [13] and on the right a Pattern formed with the rule 30

3.3.3 L-Systems Lindenmayer Systems (L-Systems) are a class of string
rewriting mechanisms, originally developed by Lindenmayer as a mathemati-
cal theory for plant development. It is capable of describe the behavior of plant
cells and model the growth processes of plant development.

An L-Systems consists of two different parts, one axiom and a set of produc-
tion rules. The axiom is the starting point of the system, acting as a seed. Then
it is applied in this seed the set of production rules, that change the initial string,
producing other strings. This is an iterative process, so after the production of



14 Artur Alkaim

a larger set of strings, the rules can be applied to each one of them which grows
the size of the set even more.

L-Systems are used to model the natural growth of vegetation (Figure 16),
and the generation of Fractals.

Fig. 16: Trees with L-Systems

In this process, each symbol is associated with a production rule. For instance
having {F,+,−} for the alphabet and production {F → F +F −−F +F}. From
a starting axiom aba, and the application of the rules we have:

F (1)

F + F −−F + F (2)

F +F−−F +F + F +F−−F +F − − F +F−−F +F + F +F−−F +F (3)

This is an example of the evolution of one system where the production is
applied in (1) that turns into F +F −−F +F . Note that the space between the
symbols are just for readability.

All the symbols are assigned with a geometric meaning. The notion of a
turtle with a pen, as proposed in [3], with the symbols being interpreted as
moving instructions to the turtle, is a simple way to understand, where “F”
means forward and the symbols “+” and “-” are interpreted as rotations counter-
clockwise and clockwise respectively by a predefined angle. By applying this
method to the last example and setting the angle for the rotation to 60◦ the
result is Figure 17.



Procedural Generation 15

Fig. 17: Result of the “turtle walk” with the given example



16 Artur Alkaim

3.3.4 Shape Grammars Shape Grammars can be considered grammars for
design. Instead of having symbols or letters as components of the alphabet, it
has shapes that can be in 2D or 3D, and has production rules that are composed
by these shapes, that specify the evolution of the system. With this process,
similar to the L-Systems explained before, the shape starts from a seed, i.e. a
usually simple shape and can evolve to one big and/or complex shape.

The process is performed in two steps, the recognition of a shape and the
replacement according to the rules previously defined.

Figure 18 exemplifies one shape grammar with one rule, and the evolution of
the application of this rule to the shapes iteratively. In this image, it is shown
that from very simple initial shape, a complex from can be generated after a few
iterations.

Fig. 18: a) Grammar Tiles b) Recursion steps

In the CityEngine [10] system, this is applied to the generation of buildings
using 3D blocks for the main form, and 2D shapes to design the facades.

Figure 19 shows a simple building that I modelled using CityEngine and
its CGA Shape Grammar (Section 3.1). But CGA is powerful enough to model
much more complex buildings like the one in Figure 20.

Fig. 19: Simple Building
Fig. 20: Complex Building [10]



Procedural Generation 17

3.3.5 Noise “To generate irregular procedural textures, we need an irregular
primitive function, usually called noise” [4]. It is a pseudorandom function that
breaks the monotony of a pattern and make it look more random. Perlin Noise
is the most known and used noise function. It was created by Ken Perlin, for the
movie Tron to generate natural looking textures.

The psedorandom property is important and a true random function like
white noise would not do the job. If we generate a texture based on white noise
the pattern would change every time it is generated and we would like that it
stays the same, frame after frame. This is achieved with the use of inputs for
this functions so that the same input returns always the same output sequence.

The properties of an ideal noise functions are as follows [4]:

– noise is a repeatable pseudorandom function of its inputs
– noise has a known range, namely, from -1 to 1.
– noise is band-limited, with a maximum frequency of about 1.
– noise does not exhibit obvious periodicities or regular patterns. Such pseu-

dorandom functions are always periodic, but the period can be made very
long and therefore the periodicity is not conspicuous.

– noise is stationary - that is, its statistical character should be translationally
invariant

– noise is isotropic - that is, its statistical character should be rotationally
invariant

With this noise function, we can generate a sequence of values that are in-
terpolated to produce a coherent noise. With the application of turbulence that
is composition of several layers of this noise with different frequencies and am-
plitudes forming a coherent noise. These layers are called Octaves and the ratio
between amplitude and frequency of the layers can be expressed as a constant
known as persistence [6]. With the result we can create a texture that looks
natural and with fractal like structure.

For instance, the Figure 21 shows the result of the interpolation over six noise
functions with different frequencies and different amplitudes. And the sum of all
this functions is illustrated in the Figure 22 [2].

Noise can also be used to generate planes. The method used is the same as
the 1D problem but we have to generate a lot more data points that are then
interpolated as a plane. This results in noisy images that are often used to model
clouds, smoke and other textures with similar visual properties as illustrated in
Figure 23. Another application for this technique is the generation of height
maps.

Another application for Noise planes is object placement on a grid. By cre-
ating a noise plane with the same size of the grid, with each cell of the grid
corresponding to one pixel of noise, the object placement is done by choosing
each object for each cell according to the noise value. Figure 24 and Figure 25
shows two cities which the buildings where placed with the use of a noise plane. In
this cases the noise domain was splitted in three intervals, each one corresponds
to one type of building (commercial, industrial or residential). After setting the



18 Artur Alkaim

Fig. 21: Different noise functions

Fig. 22: “You may even imagine that it looks a little like a mountain range.”



Procedural Generation 19

Fig. 23: Gradient mapped textures [1]

Fig. 24: Objects Placed following a noise function



20 Artur Alkaim

type for one block, the system randomly chooses one from a set of buildings of
that type.

Fig. 25: Objects Placed with a noise plane from [1]

3.4 Visualization Improvement Techniques

This section will present other techniques that can be applied to achieve the
performance needed for this work.

3.4.1 Level of Detail Level of Detail (LOD) is a technique that is used to
improve the performance of the graphic pipeline. This is done by managing the
complexity of the objects representation relative to some indicator. Within this
indicators, the most common one is the distance of each object to the viewer.
If an object is far from the viewer a decrease on the detail will not be noticed
and will save computation time. Other indicators can be the importance that is
assigned for each object, relative speed or partial occlusion.

This concept is easy to understand and implement if we look at the example
in the Figure 26. In this figure there are five cylinders that have different detail
according to the distance to the camera. In this case only the number of sides
of the cylinder changes.



Procedural Generation 21

Fig. 26: LOD example

3.4.2 Occlusion Culling (OC) is another technique that is used to improve
performance. It involves determining the faces that are not visible at each point,
so that they can be removed from the pipeline.

This technique is usually done automatically by the GPU and applied to
occluded faces behind other objects or out of the viewing frustum.

If this concept is applied before the generation of the objects, and prevents
the inclusion of large amounts of geometry through the pipeline, we can make a
large improvement on performance. Figure 8 is a good example. Here only the
buildings that are visible from the current point are generated.

3.5 Conclusion

The systems presented (Section 3.1,Section 3.2) show ways to generate and vi-
sualize large volumes of geometry, in this cases applied to urban models. While
CityEngine [11] aims to allow the users to create large and realistic urban mod-
els, where they give, in the limit, total control to the users. Undiscovered City[5]
is much more a visualization tool, it generates the model automatically for the
user to explore.

From these works there are some ideas to explore. The idea of immediate
feedback that is implemented in CityEngine, with sliders, is a good input to our
work. This helps the unexperienced users to easily see the how their code impact
the results. Also the commands they have on the grammar could be an helpful
inspiration for the design of our API.

From the Undiscovered City system, since they also have massive amount of
geometry, how they tackle this problem is very important source of inspiration
as well.



22 Artur Alkaim

The presented procedural modeling techniques are important for the proce-
dural generation of geometry, such as Fractals (Section 3.3.1), and Noise (Sec-
tion 3.3.5), and will be explored and applied during the development of this
work. Additionally, techniques related to visualization, such as level of detail
(Section 3.4.1), was presented and will be explored to help improve performance.

4 Objectives

Nowadays new cities are being built completely from scratch. An example of
these cities is the city of Maasdar3 in Abu Dhabi. This city, designed by Foster
and Partners, is currently being built in the desert at an estimated cost between
18 and 19 billion US$. Whoever is responsible for a project of this size can
not afford to make any mistakes. To designs this projects it is necessary to
create models, but in contrast to the relatively small size of a model of a single
building, in this situations an entire city has to be modeled. Therefore, it requires
generation and visualization of very large amounts of geometry.

The overall goal of our work is to build a GD tool that solves the performance
problems that raise with the generation and visualization of large amounts of
geometry. It should be an easy to use tool, with very high performance that will
be focused on model visualization, avoiding features regarding interactive model
manipulation.

It also should be able to support Immediate Feedback, i.e. allow the users to
quickly see the results of the changes they make, for much larger models than
the current GD tools can handle. This system should also provide a significant
amount of geometric primitives such as boxes, cylinders or spheres that will allow
users to model a large variety of shapes.

It will also provide a programming interface, that is how users will interact
with the system. It should be simple and easy understand, yet broad and powerful
to give the users freedom to create. This will be the visible part of the system
together with the visualization window.

After, there is the GPU communication module that implement the func-
tions provided. This module will generate the geometry description, create the
windows and transfer the data to the GPU. This module will implement a set
of techniques that will

The GPU pipeline is where the geometry will be generated and is explained
in Section 5.2.

This work is being developed in the context of the Rosetta that is also a
GD tool that helps architects and designers to develop their work procedurally.
Rosetta is an extensible IDE based on DrRacket and built in Racket.

In this context the module will act as a fast preview mode that allows the
users to rapidly see the changes they make on their model during their creative
process.

On the next section will be explained the architecture of our proposed solu-
tion.

3 http://www.masdar.ae/en/masdar/detail/masdar-city-free-zone



Procedural Generation 23

5 Architecture

This section present the architecture of the solution that we propose, but before
will introduce some technology that is used in the solution.

5.1 Graphic Tools

There are several Application Programming Interfaces (APIs) for graphic content
creation, but the most known ones are DirectX and OpenGL.

DirectX is a collection of multimedia APIs created by Microsoft for their
platforms. It includes the Direct3D API. This tool has evolved very much since it
was released and supports the state of techniques such as hardware acceleration
and so forth. On the other hand this system is only supported by Microsoft
platforms and since this work should not be limited to the Microsoft platforms,
this tools will not be used.

OpenGL is an open-source library that is widely used. This system will be
better explained in the next section.

5.2 Modern OpenGL

OpenGL is a well known cross-platform API created by Silicon Graphics Com-
puter Systems with Version 1.0 released in July of 1994 for 3-D Graphics and
Imaging. It is a streamlined and hardware-independent interface that can be im-
plemented on many different types of graphics hardware. It is also independent
of the machine’s operative and windowing systems.

Major changes has been imposed to this library from its early versions and
this section covers the modern version of OpenGL after version 3.2.

OpenGL provides a small set of geometric primitives - points, lines, trian-
gles and patches that are specified by their vertices. From this set of geometric
primitives all geometry is constructed, both in 2D and 3D.

There are some steps that are performed to render an image, and OpenGL
follows the pipeline in Figure 27. While some of steps are fix and are automat-
ically executed, other steps are programmable, which allows the developers to
program directly to the GPU. This code that runs on the GPU is called shader.
Shaders can be thought of as small programs that are specifically compiled for
the GPUs[14].

First the model is created from geometric primitives and it is the input for
the pipeline (Vertex Data on Figure 27).

The first step of the pipeline is the Vertex Shader that process the data
associated with each vertex.

After, there are three optional shaders. In this three there are two Tessellation
Shaders. With this shaders simple geometries can be tessellated and increase of
the number of primitives to improve the models dynamically.

The third optional shader is the Geometric Shader that allows the additional
processing of geometric primitives and also including the creation of new primi-
tives.



24 Artur Alkaim

Fig. 27: OpenGL Pipeline [14]

Until now all steps work with vertices. After those steps there are three fixed
steps, primitive assembly, clipping and rasterization that assembly the vertices
into primitives, clip the geometry cutting the parts that falls off the “screen”
and the generation of fragments, respectively.

A fragments is a “‘candidate pixel ’, in that pixels have a home in the frame-
buffer, while a fragment still can be rejected and never update its associated
pixel location” [14].

5.2.1 Vertex Shaders can be very simple, from a pass-through shader that
just copies the data to the next step to very complex ones.

These shaders are used to perform computations to calculate the position of
the vertices in screen coordinates, assign vertex’s color using lightning compu-
tations, etc..

Vertex Shaders have some limitations, they cannot create additional geom-
etry and cannot access data of other vertices. They can just process the data
of the current vertex and the number of vertices after this step is the same as
before.

5.2.2 Tessellation Shaders are very different form the previous ones. This
shaders address some of limitations presented before. This shaders work with a
geometric primitive called a patch. A patch is a list of vertices that preserves their
order during processing. Each patch can have an arbitrary number of vertices
that have to be specified before drawing, in contrast to the other primitives that
have a specific number of vertices.



Procedural Generation 25

5.2.3 Tessellation Control Shader defines the layout of the output through
the generation of the tessellation output-patch vertices and the specification of
the tessellation level factors. The output-patch vertices is the list of vertices that
results after the input vertices have been processed. The tessellation level factor
defines how much the output patch is tessellated.

OpenGL supports three tessellation domains: a quadrilateral, a triangle, and
a collection of isolines [14]. To control the amount of tessellation two sets of values
are assigned, the outer-tessellation values and the inner-tessellation values. This
values define how the perimeter or the interior of the domain are subdivided
respectively.

As an example, Figure 28 shows a triangular domain with the following tes-
sellation levels.

gl_TessLevelOuter [0] = 6;

gl_TessLevelOuter [1] = 5;

gl_TessLevelOuter [2] = 8;

gl_TessLevelInner [0] = 5;

In this example three outer control values are used, each one correspond with
one side of the triangle and one inner value. Each outer value defines the number
of divisions that its correspondent side has.

Fig. 28: Example for tesselation control with triangular domain [14]

5.2.4 Tessellation Evaluation Shaders Tessellation shaders work with the
output of the previous phase. Here the vertex positions are computed from the



26 Artur Alkaim

tessellation computed before. It is is basically responsible for the computation
of the vertices’ screen positions from the layout defined.

5.2.5 Geometry Shaders Geometry Shaders are the first shaders that access
the complete primitive as a list of vertices and with that it is allowed to do
different actions that require this access to information. The amount of output
can be variable so both culling geometry and geometry amplification, respectively
output less vertices that the input and output more vertices than the input. Also
in this shaders the primitives type can be modified, i. e. the input can be quads
and the output be a triangle strip.

Geometry shaders however have a limitation. Each call of a geometry shader
have a maximum number of vertices that it can output. This limitation could
be important for the implementation of geometry amplification. This maximum
number is hardware dependent and varies with the size of the output buffer that
is used by the GPU to support geometry shaders. OpenGL specification since
version 4.3 imposes 256 as the minimum number of vertices supported.

5.2.6 Fragment Shaders This shaders implement the last phase of the
pipeline. Here the fragment’s final color is computed and also the depth value.

Fragment Shaders are useful to implement texture mapping or lights, for
instance.

5.3 The Proposed Solution

This work will follow the architecture described in Figure 29. There will be a
module in Racket that will provide a Racket interface for the rest of the system
using Racket FFI. Is through this interface that users will interact with the
system. This will be a layer that will not have an impact on performance.

Fig. 29: High Level Architecture

The second step is the OpenGL
layer, that implements the Racket in-
terface and then creates the window
and manages user input. The func-
tions provided to Racket will cre-
ate here the description of the ge-
ometry that will be amplified in the
next phase. This description is one
GL POINT that represent each ge-
ometric primitive and is embedded
with an array of floats that encode
the position, the type of geometry and
specific information like size or num-
ber of sides. For example, to create a
cylinder, instead of generating all the
points that represent a cylinder, that
can have 2× 32 points, each one with



Procedural Generation 27

three values so 193 values in total, we generate a description with only 7 values
that encode the primitive type, three values for the position, and three values
for the size in each direction.

In the last step are the shaders, where most of the work is done. This receives
the small description of the geometry and generates the primitives to be drawn.
To achieve this, it is applied the concept of geometry amplification. As explained
in Section 5.2.5, this method has limitations that could make an impact on how
the geometry generation is implemented. However OpenGL guarantees support
for at least 256 vertices which is enough to generate the majority of geometric
primitives. Since this problem is hardware dependent and GPU hardware is
getting more powerful this should not be a problem in the near future. To achieve
high performance with this system, will be explored and implemented within
this module the concepts of level of detail (LOD) and object culling. The first
is related with the detail which each object is generated in relation with the
camera position, generating objects with high detail when they are close to the
camera and to progressively lose detail when move away from the camera. At
the same time, objects that are partly or completely covered by other objects
are generated in order to decrease the detail or even prevent them from being
generated.

This architecture significantly reduces the amount of data that is moved
between layers and takes advantage of the power that recent GPUs have. In
order to validate this architecture, one prototype has been implemented. This
prototype currently supports a subset of the geometric primitives: boxes and
cylinders.

For instance the following code results in the Figure 30 that is a procedural
generated model of a city with 40k buildings. This example was generated with
the current prototype with the following Racket code:

1 (define (building x y z w l h)

2 (let ([h1 (* 0.7 h)]

3 [h2 (* 0.4 h)])

4 (begin

5 (box x y h1 w l h1)

6 (cylinder x y (+ (* h1 2) h2) (* 0.7 w) h2))))

7

8 (init 1000)

9

10 (let ([grid-size 30.0])

11 (for* ([xi (in-range (- grid-size) grid-size 0.3)]

12 [yi (in-range (- grid-size) grid-size 0.3)])

13 (building xi yi 0.0 0.1 0.1 (random))))

14

15 (start)

The init command makes an initialization of the system and its argument
is an estimation of the number of primitives just for optimization purposes, the
start command creates the window and starts the visualization. In between the



28 Artur Alkaim

model is created, in this case the code that creates a squared city model with
buildings of random height.

Fig. 30: City with 40k buildings

6 Evaluation

This work will be evaluated in two distinct concerns: functionality and perfor-
mance.

To evaluate this system will be implemented an interface in Racket to be
tested in the context of Rosetta. Rosetta is a GD tool that is largely used by a
community of architects that use it to create large models. They have a large
amount of examples to be run for comparison. I will use this same set of examples
to benchmark my system.

This benchmark will show how broad is the system functionality, and it
should implement a large set of functionality that allows the generation of a
significant set of the examples. It will also test the correctness of the system,
by allowing the comparison and to check if the examples generate the exactly
matching results.

And performance is the main concern throughout all this work, and it will be
evaluated by comparison with Rosetta’s several backends with the same bench-
marks.



Procedural Generation 29

7 Conclusions

Architects and designers increasingly use programming as a tool. This powerful
tool enables them to work faster and with greater creative freedom. With the
development of their programming capabilities they begin to create larger, more
complex models. This, unfortunately, creates a performance problem because the
CAD systems being used were not built for this kind of use. They were developed
for a manual, slow usage. Because it was not thought at the time that a user
could generate massive amounts of geometry in seconds. As a result generative
designers, have to wait for large periods of time before they can see the results
of their programs.

This is a relevant problem which this thesis attempts to solve. To become
a valid alternative to the currently used tools, our solution must have good
performance and support the most used functions that the users need.

Our solution shortcuts the Rosetta traditional pipeline to improve perfor-
mance, doing that by using Rosetta just as an interface and transferring to the
GPU as most of the processing as possible.

In order to evaluate the planed architecture of our system, one prototype was
implemented that already creates boxes and cylinders without transformations
that allows the creation of the city example in Figure 30.

In the future, our will explore how to implement the rest of the primitives,
without losses in performance and how to introduce transformations to the ob-
jects without adding much data to the current primitive description set.

References

1. How to use perlin noise in your games. http://devmag.org.za/2009/04/25/

perlin-noise/. Accessed: 2015-01-15.
2. Perlin noise. http://freespace.virgin.net/hugo.elias/models/m_perlin.htm.

Accessed: 2014-10-16.
3. H Abelson. Aa disessa. Turtle geometry, 1982.
4. David S Ebert, Forest Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steven

Worley. Texturing and modeling: a procedural approach. 2002.
5. Stefan Greuter, Jeremy Parker, Nigel Stewart, and Geoff Leach. GRAPHITE 2003

Real-time Procedural Generation of ‘ Pseudo Infinite ’ Cities. 2003.
6. George Kelly. An Interactive System for Procedural City Generation. 2008.
7. George Kelly and Hugh Mccabe. A Survey of Procedural Techniques for City

Generation.
8. Menezes Leit. Programação para Arquitectura. 2012.
9. Benoit B Mandelbrot, Dann E Passoja, and Alvin J Paullay. Fractal character of

fracture surfaces of metals. 1984.
10. Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool.

Procedural modeling of buildings. ACM SIGGRAPH 2006 Papers on - SIG-
GRAPH ’06, page 614, 2006.

11. Yoav I. H. Parish and Pascal Müller. Procedural modeling of cities. Proceedings
of the 28th annual conference on Computer graphics and interactive techniques -
SIGGRAPH ’01, pages 301–308, 2001.



30 Artur Alkaim

12. Pedro Palma Ramos and António Menezes Leitão. Implementing Python for Dr-
Racket. In Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões,
editors, 3rd Symposium on Languages, Applications and Technologies, volume 38
of OpenAccess Series in Informatics (OASIcs), pages 127–141, Dagstuhl, Germany,
2014. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

13. Daniel Shiffman. The Nature of Code. 2012.
14. Dave Shreiner, Graham Sellers, John M Kessenich, and Bill M Licea-Kane. OpenGL

programming guide: The Official guide to learning OpenGL, version 4.3. Addison-
Wesley, 2013.

15. Eric W. Weisstein. Cellular automaton. From MathWorld–A Wolfram Web
Resource.http://mathworld.wolfram.com/CellularAutomaton.html. Accessed:
2015-05-16.



Procedural Generation 31

A Appendix

A.1 Work Scheduling

May Jun. Jul. Aug. Sept. Oct. Nov. Dec.

State of the Art reading

Solution Development

Implementation

Tests and Evaluation

Writing

Review

Table 1: Work Scheduling


