Reaching Python from Racket

Pedro Palma Ramos
INESC-ID, Instituto Superior Técnico,
Universidade de Lisboa
Rua Alves Redol 9
Lisboa, Portugal

pedropramos@tecnico.ulisboa.pt

ABSTRACT

Racket is a descendant of Scheme, a language that has been
widely used to teach computer science. Recently, the Python
language has taken over this role, mainly due to its huge
standard library and the great number of third-party li-
braries available. Given that the development of equivalent
libraries for Racket is an enormous task that cannot be cur-
rently done in an acceptable time frame, the next best option
is to allow the Racket platform to use Python programs and
libraries.

We have been developing an implementation of Python for
the Racket platform based on a source-to-source compiler.
In order to provide good performance and good interoper-
ability with the Racket platform, the runtime libraries are
being implemented over Racket data-types. This, however,
entails implementing all of Python’s standard library on
Racket and it does not provide access to popular Python
libraries implemented using C module extensions (such as
Numpy and SciPy).

This paper presents an alternative approach that allows li-
braries from Python’s reference implementation to be im-
ported and used in our Racket implementation of Python,
immediately providing access to all of Python’s standard li-
brary and every third-party library, including NumPy and
SciPy.

The proposed solution involves importing Python module
objects directly from Python’s virtual machine, by calling
the Python/C API through Racket’s Foreign Function Inter-
face, and converting them to objects usable by our Racket
runtime libraries, making them compatible with the Racket
platform.

This compatibility layer therefore relies on relatively expen-
sive foreign function calls to Python’s libraries, but our per-
formance tests show that the overhead introduced by them
is quite low and, for most cases, it can be minimized in or-

ILC ’14, August 14 - 17 2014, Montreal, QC, Canada

Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2931-6/14/08$15.00.
http://dx.doi.org/10.1145/2635648.2635660

32

Anténio Menezes Leitao
INESC-ID, Instituto Superior Técnico,
Universidade de Lisboa
Rua Alves Redol 9
Lisboa, Portugal

antonio.menezes.leitao@tecnico.ulisboa.pt

der to attain the same performance as Python’s reference
implementation.

Categories and Subject Descriptors
D.3.4 [Programming Languages|: Processors

General Terms
Languages

Keywords
Python; Racket; Interoperability

1. INTRODUCTION

The Racket programming language, a descendant of Scheme,
has been used for introductory programming courses, partic-
ularly due to its focus on pedagogy. The Racket platform is
shipped with DrRacket [4], an integrated development envi-
ronment (IDE) specially tailored for inexperienced program-
mers, as it provides a simple and straightforward graphi-
cal interface. Furthermore, Racket and DrRacket support
the development of additional programming languages [14],
which allow users to write programs with modules in multi-
ple programming languages.

More recently, the Python programming language has been
replacing Scheme and Racket in many computer science cour-
ses. Among them, there is the rather infamous case of
MIT dropping its introductory programming course based
on Scheme (6.001 - Structure and Interpretation of Com-
puter Programs) and replacing it with a course based on
Python for robotics applications [9].

Python is a high-level, dynamically typed programming lan-
guage [16, p. 3]. It supports the functional, imperative and
object-oriented programming paradigms and features auto-
matic memory management. Python’s focus on readability
and its huge standard library have made it a very popu-
lar language in many areas, which has led to a great vari-
ety of libraries being developed for Python. Furthermore,
Python’s reference implementation, CPython, allows devel-
opers to write module extensions in the C programming
language, for high-performance libraries. This has led to
some interesting libraries, namely NumPy [10], a library for
high-performance array access widely used by the scientific
computing community.

Being able to take advantage of Python and its libraries
would be very valuable to the Racket platform. This was

ILC 2014

one of our main motivations for developing a Racket imple-
mentation of Python that allows interoperability between
Python and Racket [11].

So far, we have explored two alternative strategies for im-
plementing Python’s runtime. The first one relied on using
a foreign function interface [1] to map Python’s operations
into foreign calls to the Python/C API [18]. This allowed
us to access every library supported by CPython, but, on
the other hand, it suffered from two problems: (1) simple
operations need to perform a significant number of foreign
calls, which led to an unacceptably slow performance and
(2) Python values would have to be explicitly converted to
their Racket representation when mixing Python and Racket
code, resulting in a clumsy interoperability.

Our second and current strategy consists of reimplementing
Python’s semantics and built-in data-types in Racket. This
led to huge performance gains, even surpassing CPython’s
performance for certain programs. Also, since most Python
data-types map directly to the corresponding ones in Racket,
interoperability between both languages feels much more
natural. On the other hand, this strategy entails reimple-
menting all of Python’s standard library and it does not
provide us with access to Python libraries based on C mod-
ule extensions (such as NumPy).

In this paper, we present a mechanism for importing and
converting Python libraries from CPython’s virtual machine
to our current Racket-based data model. This way, we at-
tempt to get the best of both worlds, by keeping the en-
hanced performance and native Racket-Python interoper-
ability obtained from reimplementing Python’s runtime be-
haviour in Racket, while still being able to universally access
every library available for CPython.

2. RELATED WORK

Before we present our own solution, this section will briefly
describe other attempts to access CPython’s libraries on al-
ternative Python implementations.

2.1 TIronclad

Ironclad is an open-source project developed by William
Reade and supported by Resolver Systems [7], whose goal
is to make Python C module extensions available to Iron-
Python (an implementation of Python for Microsoft’s NET
platform [6]), most notably NumPy and SciPy.

This goal is actually very similar to ours. While Ironclad
tries to bring together a C and a C# implementations with
potentially very different internals, we are trying to bring
together a C and a Racket implementations which are also
potentially very different.

Ironclad tries to achieve this by replacing the library im-
plementing the Python/C API with a stub which intercepts
Python/C API calls and impersonates them using IronPython
objects instead of the usual CPython objects.

For objects whose types are defined in a compiled C mod-
ule extension, they have an IronPython type which wraps
around them and forwards all method calls to the real Py-
thon/C APL.

ILC 2014

NumPy and SciPy already work with Ironclad. No bench-
marks are provided, however the author mentions that per-
formance is generally poor compared to CPython. He claims
that ”in many places it’s only a matter of a few errant mi-
croseconds (...) but in pathological cases it’s worse by many
orders of magnitude” [3].

2.2 JyNI

JyNI is another compatibility layer, being developed by Ste-
fan Richthofer [8], whose goal is similar to Ironclad’s but it’s
meant for Jython instead of IronPython. Jython is an al-
ternative Python implementation, written in Java, and de-
signed to be able to interact with the Java Virtual Machine.

It is still in an early phase of development (alpha) and does
not yet support NumPy, but it already supports some of
Python’s built-in types.

It uses a mix of three strategies for bridging objects from
CPython to Jython and vice-versa [12]:

1. Like Ironclad, it loads a stub of the Python/C API li-
brary which delegates its calls to Jython objects. This
only works for types which are known to Jython and
where the Python/C API uses no preprocessor macros
to directly access an object’s memory (because the
stub would not know how to map these pointer off-
sets);

2. For the types where the Python/C API uses prepro-
cessor macros, objects created on the CPython side are
mirrored on the Jython side. For immutable objects
this is trivial because there is no need for further syn-
chronization. Mutable objects are mirrored with Java
interfaces which provide access to the object’s shared
memory;

3. Finally, types unknown to Jython (because they are
defined in a C module extension) or opaque types are
wrapped by a Jython object which forwards method
calls to the Python/C API and converts arguments
and return values between their CPython and Jython
representations.

2.3 CLPython

CLPython is another alternative Python implementation,
this one written in Common Lisp. It was being developed
by Willem Broekema since 2006, but the project has been of-
ficially halted since 2013. Its goal was to bridge Python and
Common Lisp development, as it allows accessing Python li-
braries from Common Lisp and vice-versa, as well as mixing
Python and Common Lisp code.

CLPython was one of the sources of inspiration for our sec-
ond strategy to the runtime implementation, as it also maps
Python objects to equivalent Common Lisp values when-
ever possible. Unfortunately, it does not provide support
for C module extensions, since it does not implement the
Python/C API [2].

33

3. SOLUTION

In this section we will describe the architecture and the ma-
jor decisions we took for bridging CPython with the Racket
platform. In order to agree on a common terminology and
make the trade-offs of our decisions clear, we will start by
briefly going over Python’s data model and how it is repre-
sented on our Racket runtime implementation.

3.1 Python’s Data Model

In Python, every value is treated as an instance of an object,
including basic types such as integers. Every object has a
reference to its type, which is represented by a type-object
(also a Python object). A type-object contains a tuple with
its supertypes and a dict (or dictionary, Python’s name for
a hash-table) which maps attribute and method names to
the attributes and methods themselves.

The way an object behaves to each of the language’s oper-
ators is stored in its type-object’s dict, as a method. For
instance, the expression a + b (adding objects a and b)
is equivalent to type(a).__add__(a,b). This technique is
used for all unary and binary operators, for getting/setting
an attribute/index/slice, for printing objects, for obtaining
their length, etc [17].

For user-defined types, these methods can be defined during
class creation (a class statement defines a new type-object),
but they may also be changed dynamically at runtime, by
adding, updating or removing these entries from the type-
objects’ dictionary, through reflection.

A Python source file can be imported into a module, which
is also a Python object and a first-class citizen. A Python
module contains a hash-table which stores the variables,
functions and classes which are defined in that file. As with
type-objects, these values can be accessed as if they were
fields or methods of the module.

For our implementation, we tried to map Python’s built-in
data-types directly onto Racket data-types whenever possi-
ble. To name some:

e Python’s numerical tower (int, long, float, complex)
is mapped to Racket numbers;

e Python’s Boolean values (True and False) are a sub-
type of int, but they are mapped to Racket’s Boolean
values (#t and #£) and converted to the integers 1 and
0 when needed;

e Python’s strings are directly mapped to Racket strings;

e Python’s dicts are directly mapped to Racket hash-
maps;

e Python’s tuples are immutable and have O(1) access
time, so they are mapped to Racket immutable vectors.

Other data types are mapped to structures whose first field
is a reference to their type object. For instance, Python’s
lists are mutable and also have O(1) access time, so they
are mapped to a structure containing a vector, so that op-
erations which alter the list’s size can allocate a new vector,
without affecting the object’s identity.

34

As mentioned before, most Python operations require com-
puting an object’s type in order to lookup a method in its
hash-table. Since the data-types which are directly mapped
to Racket data-types do not store a reference to their type-
objects, we compute them through a pattern matching func-
tion which returns the most appropriate type-object, accord-
ing to the predicates satisfied by the value.

3.2 Importing Modules from CPython
There are 3 possible syntaxes for importing a module’s bind-
ings in Python:

e import <module> - makes <module> available as a
new binding for a module object. The bindings de-
fined inside that module are accessible as attributes
and methods;

e from <module> import <id> - the <id> binding de-
fined inside <module> is made available as a new
binding. No binding is provided for the module ob-
ject;

e from <module> import * - similar to the above, but
provides all bindings defined inside <module>.

We have mapped these import statements to uses of Racket’s
require and dynamic-require forms. This works because
the imported Python modules are first compiled to Racket.

Importing a module directly from CPython requires a radi-
cally different approach, therefore, we now provide a slight
change to the syntax described above for explicitly import-
ing modules from CPython: replacing ”"import” with "cpy-
import”.

The module objects themselves are imported from the Py-
thon/C API using the Racket Foreign Function Interface
(FFI), which returns a C pointer to the module object allo-
cated by CPython in shared memory. In order to make it
compatible with our runtime operations, we convert this for-
eign object to our Racket representation of a module. This
entails recursively converting the contents of that module’s
hash-table to their Racket representations.

We achieve this by defining these two general-purpose func-
tions:

e cpy->racket, takes a foreign object C pointer as input
and builds its corresponding value according to our
Racket representation;

e racket->cpy, takes a Racket value as input and re-
turns a C pointer to its corresponding Python object
allocated in CPython.

Both functions start by figuring out the argument’s type and
then dispatch its conversion to a more specific function. An
excerpt of their implementations is presented below.

ILC 2014

(define (cpy->racket x)
(let ([type (PyString_ AsString
(PyObject_GetAttrString
(PyObject_Type x) "__name__"))]1)
(case type
[("bool") (bool-from-cpy x)]
[("int") (int-from-cpy x)]

OO0 ~NO O WN =

téise (proxy-obj-from-cpy x)]1)))

(define (racket->cpy x)
(cond
[(boolean? x) (make-cpy-bool x)]

[(proxy-object? x) (unwrap-proxy-object x)]
[else (error "racket->cpy: mnot supported:" x)1))

O O WN =

The following sections describe in detail how the different
types are converted.

3.3 Converting Basic Types

Basic immutable types (bool, int, float, complex and string)
are trivially converted to their Racket representations (the
Python/C API provides functions for these conversions).

Since these objects are immutable, their identity is not rele-
vant, therefore there is no need to keep track of the original
C pointers or to synchronize potential changes between the
Racket and CPython virtual machines.

3.4 Converting Type-Objects

Like with modules, it is essential that we convert type-
objects to a representation that is compatible with our run-
time operations, especially because most Python operations
rely on fetching attributes from these type-objects.

The structure of a type-object is constant and straightfor-
ward, even when that type was defined in the library we are
importing. Among other less important attributes, a type-
object contains a name, a tuple with its supertypes and a
hash-table containing its fields and methods.

Again, as with module objects, we convert imported type-
objects by building our own type-object according to Racket’s
representation, i.e., recursively converting the type-objects
that make up its supertypes tuple and the entries that make
up its hash-table.

We also keep a global hash-map as a cache for imported
type-objects. It maps a C pointer to its converted type-
object. This way, before attempting to convert a new type-
object from CPython, we first check the cache to see if its C
pointer is here, and if so, a reference to the already converted
type-object is returned.

3.5 Converting Opaque Objects

The default case when converting an object from CPython
is implemented by the proxy-obj-from-cpy function. This
one simply wraps the C pointer and its converted type-object
in a Racket structure that we call a proxy object.

Like its name suggests, a proxy object acts as a proxy, in
Racket, for the Python object in CPython’s shared mem-

ILC 2014

ory. It is especially suited for objects whose internal repre-
sentation we do not know, such as the types defined in the
libraries we are importing, but we also use them to wrap
around other opaque objects (e.g. Python functions) and
mutable objects which could be updated "behind our backs”
(e.g., lists and dicts).

Converting a proxy object back to its CPython representa-
tion is as easy as unwrapping its C pointer.

In order for proxy objects to be applied as Racket proce-
dures, we take advantage of the fact that structures are ap-
plicable in Racket. To this end, we define the following
prop:procedure structure property [5]:

(lambda (f . args)
(let ([ffi_call_result
(PyObject_CallObject
(unwrap-proxy-object f)
(list->cpy-tuple (map racket->cpy args)))])
(if ffi_call_result

(cpy->racket ffi_call_result)

(let ([cpy-exception (second (PyErr_Fetch))])
(raise (cpy->racket cpy-exception)))))))

© 0N WN-

In order for the object to be called (line 3), the C pointer
inside the proxy object is unwrapped (line 4) and the argu-
ments are converted to their CPython representations and
packed into a tuple (line 5).

This will return a C pointer to a Python object if the call is
successful or return #£ (false) if it resulted in an unhandled
exception. In the former case, the call result is converted
to Racket and returned (line 7), while in the latter one, the
exception is fetched, converted to Racket and re-raised (lines
8-9).

Notice that this strategy allows our implementation to trans-
parently handle any Python operation on imported objects
of any type known to CPython. When a type object is im-
ported and converted, its methods are converted and stored
as proxy objects.

For instance, adding two proxy-objects entails fetching the
__add__ method from the type-object (proxy-objects store
a reference to their converted type-objects) and calling it
with the two proxy-objects as arguments. This method call
is handled by CPython (via FFI) and its result is then con-
verted or wrapped in a proxy object, closing the cycle.

The semantics on exception handling is also well integrated
with our implementation. Since we keep a cache for the
converted type-objects, we assure that each type-object from
CPython is only converted once and all references to that
type will point to same object. Therefore, when determining
if an exception handling clause should handle an exception,
type-objects can be safely compared by eq?.

3.6 Dealing with Heterogeneity

As mentioned earlier, we convert collections (lists, tuples,
sets and dicts) by wrapping them as proxy objects. One
of the reasons for this is that in a scenario where the user
would need to pass a huge collection as argument or return

35

value of a proxy object call, converting such collection back
and forth would be a big bottleneck.

The strongest reason, though, is that copying a mutable
collection’s contents to a new collection would not respect
the object’s identity and would lead to implementing the
wrong semantics. Consider the example of importing the
following module, where a function logs its arguments to a
globally defined list.

log = []

foo(n):
log.append(n)
n*n

O wWwN e

This module provides the log list and the foo function. It
should be clear that the foo function should be imported as
a proxy object, so that its calls are handled by CPython’s
virtual machine.

Suppose that we import and convert log to our list repre-
sentation. When we call the foo proxy object, it updates
the log list in CPython’s shared memory, and not our con-
verted list. The only way to keep track of the changes to
log is by accessing its original C pointer via a proxy object.

This solution, however, leads to another issue: we now have
objects of the same type with two distinct and heterogeneous
representations. In the case of lists, we have the standard
representation as a boxed vector and the proxy object rep-
resentation. Even though both of them implement Python’s
semantics correctly when used independently, proxy object
lists cannot be transparently used for operations with stan-
dard lists.

We try to correct this by giving the user the power to ex-
plicitly convert proxy object collections to their standard
representation. Python type names generally act as con-
structors for converting or copying objects from other types
to that type. For instance, consider a tuple a and a list b.
The expression 1ist(a) returns a new list with the contents
of tuple a, while 1ist (b) effectively returns a shallow copy
of list b.

We can overload the list, tuple, set and dict constructors
for proxy object collections to act as explicit converters to
their standard representations. This is in accordance with
the original semantics of these constructors because it acts
both as a type conversion and a shallow copying mechanism.

3.7 Using Python Libraries in Racket

So far we have described how these imported libraries in-
teroperate with our Python implementation, however this
mechanism can also act as a standalone library for Racket,
simply by requiring this module:

> (require "cpy-importing.rkt")

The cpy-import... and from...cpy-import... syntaxes
are implemented by the cpy-import and cpy-from macros,
respectively. Let us import date from Python’s datetime
module [15].

36

> (cpy-from "datetime" import (["date" as datel]))

The identifier date is now available as a type-object. Let us
get today’s date (imagining that today is 14 August 2014,
International Lisp Conference’s first day). This is done by
getting the today function from the date type-object and
calling it without arguments.

> (define ilc ((py-get-attr date "today")))

The obtained value is a proxy-object, but we can print it
using Python’s string representation.

> ilc
(proxy-object ...
> (py-print ilc)
2014-08-14

#<cpointer:PyObject>)

We can also get its attributes and call its methods. Notice
that Python integers are seamlessly converted to Racket in-
tegers.

> (define ilc-year (py-get-attr ilc "year"))

> ilc-year

2014

> (integer? ilc-year)

#t

> (define ilc-weekday (py-method-call ilc "isoweekday"))
> ilc-weekday

4

> (integer? ilc-weekday)

#t

Let us count how many days are left until Christmas by
subtracting both dates. Python’s minus operator is available
as the function py-sub.

> (define christmas (date 2014 12 25))

> (define interval (py-sub christmas ilc))
> (py-get-attr interval '"days")

133

As mentioned previously, collections are converted to proxy-
objects by default, so the Python tuple returned below can-
not be directly manipulated in Racket.

> (py-method-call ilc "isocalendar")
(proxy-object ... #<cpointer:PyObject>)

However, we do provide the same functionality we use for
the 1ist, tuple, set and dict constructors to convert them
to Racket representations. Let us convert this Python tuple
to a Racket vector.

> (define iso-calendar

(tuple-from-cpy

(unwrap-proxy-object

(py-method-call ilc "isocalendar"))))

> (vector? iso-calendar)
#t
> iso-calendar
'#(2014 33 4)
> (vector-ref iso-calendar 0)
2014

ILC 2014

The bindings for the remaining collections are similar. Python
lists, for instance, would be converted with 1ist-from-cpy,
and since they are implemented as a structure wrapping a
vector, we further provide the bindings py-list->vector

and py-list->1ist for conveniently converting them to Racket

vectors or lists.

4. PERFORMANCE EVALUATION

In this section, we present some benchmarks for measuring
the overhead introduced by our type conversions when using
imported libraries from CPython.

These benchmarks were performed on an Intel® Core™ i7
processor at 3.2GHz running under Windows 7. The mea-
sured times represent the minimum out of 5 samples.

Consider the Python example below, using the NumPy li-
brary, where we define and call a function which adds a
given number of 100x 100 matrices with random integers up
to 100000.

1 numpy as np

2

3 add_arrays(n):

4 result = np.zeros((100,100))

5 i (n):

6 result += np.random.randint(0, 100000, (100,100))
7 result

8

9

add_arrays(10000)

To get this code running on the Racket platform, we simply
have to declare its language with #lang python as the first
line and replace import with cpy-import.

Using CPython, we get a minimum running time of 1890ms,
while using the Racket platform, we get a minimum running
time of 2464ms (about 30% slower).

While such an overhead is very acceptable for most use cases,
we realize that it may be an issue for high-performance ap-
plications. Fortunately, it is possible to come up with an al-
ternative which virtually eliminates the overhead from FFI
calls and type conversions.

We can define the add_arrays function as a CPython library
(arrays_example.py, in this case) and import it and call it
on the Racket platform, like this:

arrays_example cpy- add_arrays

S wWwN e

add_arrays(10000)

This way, instead of dealing with FFI calls and type conver-
sions on every iteration of the for cycle, we simply have one
foreign function call to deal with, since the computation of
add_arrays is handled by CPython. The minimum running
time measured for this example was now 1887ms, which is
identical to the one measured for CPython.

This is an impressive figure when compared to what can

be achieved with traditional Racket libraries. Using Typed
Racket, a statically typed dialect of Racket which provides

ILC 2014

enhanced performance [13], and math/matrix, a Racket li-
brary for processing matrices, an equivalent program would
be written as:

1 #lang typed/racket

2 (require math/matrix)

3

4 (: randint (Integer Integer Integer

5 -> (Matrix Integer)))

6 (define (randint x y limit)

7 (build-matrix x y (lambda (x y) (random limit))))
8

9 (: add-arrays (Integer -> (Matrix Integer)))

10 (define (add-arrays n)

11 (let: ([result : (Matrix Integer)

12 (make-matrix 100 100 0)1)

13 (for ([i nl)

14 (set! result

15 (matrix+ result

16 (randint 100 100 100000))))
17 result))

18

19 (add-arrays 10000)

For this program (running on the Racket platform), we get
a minimum running time of 25568 ms, about 13 times slower
than what is achieved with NumPy, using our import mech-
anism.

S. CONCLUSIONS

Our previous efforts to implement the Python language for
the Racket platform had resulted in:

(a) a runtime module based on CPython’s object repre-
sentation which had universal access to all Python li-
braries available to CPython, but suffered from very
poor performance due to the bottleneck caused by the
use (and abuse) of Racket’s Foreign Function Interface
and also did not allow for a native interoperability be-
tween other Racket languages since types had to be
explicitly converted;

(b) a runtime module based on Racket’s value representa-
tion, which had a very acceptable speed and native in-
teroperability with other Racket languages, but needed
a reimplementation of all of Python’s standard library
and could not access libraries based on C module ex-
tensions.

We have now developed a complementary import system
which imports modules from CPython’s virtual machine us-
ing the Python/C API and Racket’s FFI and recursively
converts each imported data-type to a Racket representa-
tion compatible with the runtime module from (b).

With this additional import system, we are now able to ac-
cess any library installed on CPython while keeping a good
integration with other languages for the Racket platform,
since basic data-types are automatically converted to Racket
when imported, and keeping an acceptable performance for
the remainder of the Python language, since our runtime
module remains unchanged.

Furthermore, it is possible to minimize the number of FFI
calls and type conversions on computationally intensive blocks

37

of code by moving their computation to CPython and ex-
pressing them as function calls, therefore obtaining the same
performance as in CPython.

Finally, it is worth mentioning that while these features were
designed to be used for a Python runtime implementation,
it is possible to use them as a stand-alone Racket library
which acts like an API for accessing Python libraries on
Racket programs.

6. ACKNOWLEDGMENTS

This work was partially supported by Portuguese national
funds through Fundag&o para a Ciéncia e a Tecnologia under
contract Pest-OE/EEI/LA0021/2013 and by the Rosetta
project under contract PTDC/ATP-AQI/5224/2012.

7. REFERENCES

[1] E. Barzilay. The Racket Foreign Interface, 2012.

[2] W. Brokema. CLPython Manual, chapter 10.6
Compatibility with CPython C extensions. 2011.

[3] J. D. Cook. Numerical computing in IronPython with
Ironclad. http://www.johndcook.com/blog/2009/03/
19/ironclad-ironpytho/. [Online; retrieved on May
2014).

[4] R. B. Findler, J. Clements, C. Flanagan, M. Flatt,

S. Krishnamurthi, P. Steckler, and M. Felleisen.
DrScheme: A programming environment for Scheme.
Journal of functional programming, 12(2):159-182,
2002.

[5] M. Flatt. The Racket Reference, chapter 4.17
Procedures. 2013.

[6] J. Hugunin. IronPython: A fast Python
implementation for .NET and Mono. In PyCON 200/
International Python Conference, volume 8, 2004.

[7] Ironclad - Resolver Systems. http:
//www.resolversystems.com/products/ironclad/.
[Online; retrieved on May 2014].

[8] JyNI — Jython native interface. http://www.jyni.org/.
[Online; retrieved on May 2014].

[9] L. Kaelbling, J. White, H. Abelson, D. Freeman,

T. Lozano-Pérez, and 1. Chuang. 6.01sc introduction
to electrical engineering and computer science i, spring
2011. http://ocw.mit.edu/courses/electrical-
engineering-and-computer-science/6-01sc-
introduction-to-electrical-engineering-and-
computer-science-i-spring-2011. [Online; retrieved
on June 2014].

[10] NumPy. http://www.numpy.org/. [Online; retrieved on
May 2014].

[11] P. P. Ramos and A. M. Leitdo. An implementation of
Python for Racket. In 7th Furopean Lisp Symposium,
page 72, 2014.

[12] S. Richthofer. JyNI - using native CPython-extensions
in Jython. In FuroSciPi 2013, Brussels, Belgium, 2013.

[13] S. Tobin-Hochstadt and V. St-Amour. The Typed
Racket Guide, 2013.

[14] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper,

M. Flatt, and M. Felleisen. Languages as libraries.
ACM SIGPLAN Notices, 46(6):132-141, 2011.

[15] G. van Rossum and F. L. Drake. Python library

reference, chapter 8.1 datetime - Basic date and time

38

types. Centrum voor Wiskunde en Informatica, 1995.
[16] G. van Rossum and F. L. Drake. An introduction to
Python. Network Theory Ltd., 2003.
[17] G. van Rossum and F. L. Drake. The Python
Language Reference, chapter 3. Data model. 2010.
[18] G. Van Rossum and F. L. Drake Jr. Python/C API
reference manual, 2002.

ILC 2014

