Using Processing with Architectural 3D Modelling

Inés Caetano’, Anténio Leitdo?

L2 INESC-ID/Instituto Superior Técnico

1

ines.caetano@tecnico.ulisboa.pt
2antonio.menezes.leitao@jist.utl.pt

Although programming was considered a specialized task in the past, we have
been witnessing an increasing use of algorithms in the architectural field, which
has opened up a wide range of new design possibilities. This was possible in part
due to programming languages that were designed to be easy to learn and use by
designers and architects, such as Processing. Processing is widely used for
academic purposes, whereas in the architectural practice it is not as used as
other programming languages due to its limitations for 3D modeling. In this
paper, we describe the use of an extended Processing implementation to generate
three 3D models inspired in existing case studies, which can be visualized and
edited in different CAD and BIM applications.

Keywords: Generative design, Programming, Processing, 3D modeling

INTRODUCTION

Only recently have architects considered the use of
programming in architecture, as they become aware
of its potential, thus introducing it in their design
practices (Burry 2011). This allowed the automation
of tedious tasks, the exploration of generative pro-
cesses, and the generation of complex solutions that
would be difficult and time consuming to produce
manually. Therefore, algorithms became extensions
of human thinking by overcoming its potential limita-
tions, allowing the exploration and experimentation
in an alternative realm (Terzidis 2003). The concept
of Generative Design (GD) can be defined by this al-
gorithmic and rule-based process, through which a
wide variety of solutions can be created in a short pe-
riod of time (Fasoulaki 2008).

However, programming is not a trivial task (Burry
2011). In order to facilitate the use of GD, some
programming languages were carefully designed or
adapted with the aim of teaching programming skills

GENERATIVE DESIGN | Design Concepts & Strategies - Volume 1 - eCAADe 34 | 405

to designers and architects. Such is the case of the
Processing language (Reas and Fry 2007).

BACKGROUND

Processing was created especially for designers with-
out any previous experience in programming. Nev-
ertheless, it has also been used in other fields, includ-
ing architecture. This programming language is con-
sidered as a pedagogical language and, in fact, it has
being taught in several academic courses. Therefore,
this language has grown over the years and has be-
come increasingly popular due to its simplicity, to the
academic community support, and to the excellent
documentation available (Fricker et al. 2008).

Still, in the architectural practice Processing is
not as used as other programming languages, such
as Python, Grasshopper, AutolLISP, and VisualBa-
sic. The main reasons for this unfortunate situation
are the inability of Processing to interact with the
Computer-Aided Design (CAD) and Building Informa-

tion Modeling (BIM) tools that are typically used by
architects, such as AutoCAD, Rhinoceros 3D, and Re-
vit, and also its shortcomings in 3D modeling oper-
ations and transformations, such as sweeping, loft-
ing or extruding. This is not surprising, as Processing
was originally intended for 2D drawings and anima-
tions, running in its own programming environment
and completely isolated from other applications.

Only recently was Processing extended with sim-
ple 3D operations and ways of exporting the gener-
ated designs. Some libraries were also developed to
add some of the required operations, such as increas-
ing the range of 3D primitives, creating and control-
ling irregular shapes, or dealing with some 3D shape
transformations. In the Related Work section we will
enumerate and describe some of these libraries with
more detail.

Unfortunately, these 3D operations are still lim-
ited in their capabilities. Therefore, the application
of Processing in the field of architecture remains dif-
ficult, even though it is easy to learn and use. In or-
der to overcome this situation, we propose an aug-
mented Processing for architects that deals with a
wider range of 3D modeling primitives (cylinders,
spheres, cones, etc) and transformations (extrusions,
lofts, sweeps, Boolean operations, etc), which are es-
sential in the architectural daily practice, and gener-
ates their results directly into a CAD or BIM tool.

AUGMENTING PROCESSING

In the past (Correia and Leitdo 2015), we proposed a
solution to join CAD and BIM tools with the Process-
ing language, allowing architects to develop new de-
signs using this programming language while gen-
erating their results directly into a CAD or BIM ap-
plication. This solution was implemented in Rosetta
(Lopes and Leitdo 2011), an Integrated Development
Environment (IDE) for generative design. One main
advantage of Rosetta is its emphasis on portabil-
ity and, unlike other development environments,
Rosetta supports scripts using different languages
(AutoLISP, JavaScript, Python, Racket, and Scheme)
and generates identical models in all supported
CAD and BIM applications (AutoCAD, Rhinoceros 3D,

Sketchup, Revit, and ArchiCAD).

In order to make Processing suitable for the
needs of architects, 3D modeling extensions to the
Processing language were also implemented in the
Rosetta IDE. These extensions include several opera-
tions for basic 3D modeling, such as boxes, spheres,
cylinders, cones, etc., as well as shape forming oper-
ations, such as lofting, sweeping and extruding, and
also Boolean operations, i.e. subtraction, intersec-
tion, and union of shapes.

In addition to supporting the traditional syntax
and semantics of the Processing language, our solu-
tion extended Processing in three directions:

1. Interactive evaluation, which allows designers
to evaluate small fragments of Processing pro-
grams in a Read-Eval-Print-Loop (REPL), en-
abling quick experimentation of the scripts
being developed;

2. 3D modeling, an essential extension in order
to improve the use of Processing for architec-
ture;

3. Professional CAD, a connection between Pro-
cessing and CAD/BIM tools, supporting the
generation of designs in those tools without
suffering from the problems that typically oc-
cur when designs are imported from different
applications.

The most significant advantage of the implementa-
tion of Processing for Rosetta is the ability to use, in
Processing programs, all the 2D and 3D modeling op-
erations available in Rosetta. Given that these op-
erations access the corresponding operations in the
CAD/BIM tool being used, this gives Processing the
capability to directly create shapes in that tool.

USING PROCESSING IN ARCHITECTURE
Our implementation of Processing is intended for ar-
chitects that learned Processing and want to use it
in their architectural practice. In this section, we de-
velop three architectural examples using Processing:

1. Al Bahar Towers;

2. Allianz Arena;

3. Quality Hotel Friends.

406 | eCAADe 34 - GENERATIVE DESIGN | Design Concepts & Strategies - Volume 1

Figure 1

Inner glass surface
(left-side); outer
surface organized
in groups of four
points (right-side).

Additionally, we discuss the advantages and draw-
backs of Processing for the architecture practice. For
each of the examples we use Processing running in
the Rosetta IDE, thereby allowing the visualization
and edition of the generated models in the sup-
ported backend applications, including Rhino and
AutoCAD.

Al Bahar Towers

Our firstexample is the Al Bahar Towers in Abu Dhabi,
design by Aedas Architects. These towers are char-
acterized by their responsive facade, which is com-
posed by several triangular units inspired in the tra-
ditional Islamic element "mashrabiya". Nevertheless,
in this paper we will simply focus on modeling these
towers facade design, and not on its kinetic proper-
ties.

Tk n e,
+

S e

tringriot
o

otty

S G G W W W S P G Y D S0 A S5 S S0 S S0 S S D A0 A A A S W W
¢ T
S N O Lo o o ol Sl S oo o o o ad

s
&
S S S G G W W G Y W S S S D D N W

We divided this example into two different stages.
Firstly, we created the inner glass surface with the
tower's shape and, then, we explored the outer skin,
which is composed by the triangular units. Before ex-
ploring each stage, we had to define the set of points
that corresponded to the tower's geometry, which
together with a surface creation operation produced
the inner glass surface (Figure 1, on the left). More-

GENERATIVE DESIGN | Design Concepts & Strategies - Volume 1 - eCAADe 34 | 407

over, these points were also used to generate the sur-
face mesh of the outer layer, which was then orga-
nized into groups of four points (i.e. a squared mesh)
so as to facilitate the future development of the tri-
angular units (Figure 1, on the right). In practical
terms, this first stage required operations like calcu-
lus of matrices and surface normal vectors, arrays of
coordinates, and surface creation.

The second stage was the creation of the tower's
outer skin with the triangular units. First of all, we de-
fined the geometry of these units and, then, we ap-
plied them on the squared mesh defined in the pre-
vious stage.

To create the units, we started by calculating the
vertices that defined their shape. Then, these ver-
tices were strategically linked using lines, which in
turn were used to produce the surfaces. This process
is synthetized in Figure 2 by the images A-B-C.

Secondly, the generation of the outer skin con-
sisted in mapping these triangular units along the
squared mesh. Finally, we overlapped both inner and
outer surfaces so as to produce the final model, which
is visible in Figure 2.

Note that, apart from the arrays of coordinates,
this second stage required surface creation between
curves, an operation that is not available in the origi-
nal Processing implementation.

Allianz Arena

Our second example is the Allianz Arena stadium in
Munich, designed by Herzog & de Meuron Architects
with ArupSport. As in the previous example, we had
to first define the overall shape of the stadium. There-
fore, in order to obtain this form we used the math-
ematical formula of the superellipse to produce the
cloud of points that corresponded to the stadium's
shape. This was then used to produce, first, the un-
derlying surface of the model and, then, to distribute
the diamond shaped cells which characterize the fa-
cade. Lastly, we produced each of these cells using:

1. an array of coordinates and a closed-line
defining the diamond-shaped curve of each
cell;

LR 5~ Type a command

—
[—

<>~

[

L=

L~

/‘\l/-v\‘/"\l
e S S S O S

=

'll‘f

)
‘ 4 \‘7\‘

@ allanz processingsid - DrRacket® - o

File &

Language Racket Insert Tabs Help

(efine.)” S @] Aworun D> treck syntax S Macro stepper DI Run B seop Il

#lang processing

}

Object losa;

losa = emptyShape();

for(int i = 0; i < matrix.length-1; i++) {
Object[] row0;
Object[] rowl;
rowd = i
rowl =
for(int j = 0;

j0%row0.length] ;
j1%row0.length] ;

rowl[(j1+1)%row0.length];

p3 = row0[(30+1)%row0.length];
Object pp = quadCenter (p0,pl,p2,p3) ;
Object nn = quadNormal (p0,pl,p2,p3) ;

[
[
[
[

float d = -0.1*min(distance (p0,pl),distance (p0,p3));

Object ppp = addC (pp, mulC(nn,d));
Object cell = loft(line(pO,pl,p2,p3),point (ppp));
losa = union(cell,losa);

Determine language from source™ 610 3018318

408 | eCAADe 34 - GENERATIVE DESIGN | Design Concepts & Strategies - Volume 1

Figure 2

The Al Bahar Tower
3D model using
Processing. On the
left — the units
generation process:
A. the main vertices
that define each
unit shape; B. lines
to link the main
vertices; C. the
creation of surfaces
between lines; In
the middle - One
instance of the
generated model;
On the right — two
shape variations of
its facade.

Figure 3

Allianz Arena
model: a print
screen of the
generated model,
visualized in
AutoCAD, and the
Rosetta IDE with
the corresponding
Processing code.

Figure 4

Quality Hotel
Friends model: A.
The creation of the
cylinders with
different sizes; B.
overlapping of the
cylinders with the
facade wall; C.
subtraction of the
cylinders from the
wall.

2. a loft operation between this curve and a
point placed perpendicularly to it.

To sum up, not only did this model use matrices and
vector calculations, it also required the loft operation
to generate the stadium envelope pattern. Figure 3
shows an instance of the generated model in Auto-
CAD and the corresponding Processing code.

Quality Hotel Friends

Quality Hotel Friends, in Stockholm, is our
last example, which was designed by Karolina
Keyzer+Wingardhs. This hotel has a straight facade
and it is composed by several circular windows of
three different sizes. Note that these three sized win-
dows are strategically placed to create the wave ef-
fect visible in Figure 4.

ds
O b
gitdy 30
O PN
CCely, ' - 7%,y
CONEEY , 5 ,°%4" 34"
CRe0Y . 29, %5 %30
((€09, % .29,
CEdn s c . 129009,
IR I N I
CEOT 99,2550 03
((“"“!.ﬂ“'\‘ ryo
B s .
LT
ccC 5, %
., L} &)
cecC ROEER PRI
r((‘:~.,~ IAER
'”~‘\"\'\‘M\Nn 'y
et 294 a0
(33 S84, 0830
SRR - . . | 599,
€eCBE0 s 5, | %998,

ceeegs s ..., ,
€e08E090500aa302""
LeEEEND0000904,, ..
909800 0...4049
o YT YY
€s995900000000
€0909000000s0.

C.

In practical terms, we generated this example in two
stages. Firstly, we created the hotel walls with a box
operation and, then, we produced the round win-
dows. For this, we had to produce the matrix of
points that shaped the facade, and then we orga-
nized them into arrays of coordinates. These arrays
were then used to distribute the cylinders over the
walls, and to control each cylinder radius size. More
precisely, each cylinder radius size was controlled by
the distance between its positioning point and the
attractor point. After generating all the cylinders,

GENERATIVE DESIGN | Design Concepts & Strategies - Volume 1 - eCAADe 34 | 409

they were subtracted from the walls previously cre-
ated, therefore creating the windows openings (Fig-
ure 4, A-B-Q).

Summarily, the modeling of this building re-
quired 3D primitives, such as boxes and cylinders, to
produce the walls and the circular windows, required
both matrices of points and vector calculations to
create and place the circular windows, and, finally,
the Boolean operation Subtraction to create the win-
dows openings. Figure 4 synthetizes this process and
shows one instance of the obtained model using Pro-
cessing.

Evaluation

In this section, we summarize the generation process
of all three examples and we demonstrate that the
modeling extensions added by our solution were cru-
cial in the exploration of these models.

First of all, we synthetized the operations that
were necessary for each example and, then, we com-
pared the availability of those operations in (1) the
Processing language and Processing Development
Environment (PDE), and (2) in our implementation of
Processing in Rosetta.

Although our sampling is limited, it revealed the
range of operations that are typically used in 3D mod-
eling. After analyzing the information presented in
Figure 5, we can conclude that the majority of the op-
erations that are essential for the generation of the
previous examples, are not available in the original
Processing implementation. Moreover, we predict
that models that are more complex than the ones
presented in this paper will require even more ad-
vanced 3D modeling operations. It is thus important
to fully support in Processing the operations that are
available in the CAD/BIM tool being used and that
is precisely one of the important features of our Pro-
cessing implementation in Rosetta.

PORTABILITY

Portability is the ability of a program to be compiled
or run in a different environment and, in our case,
it allows us to produce identical models in different

Matrix of points ®

Normal vector calculation ®

Array of coordinates ®
Superellipse shape

Surface creation

Surface from curves

3D Transformations:
Sweep ®
Loft ®

3D Primitives:
Cylinder ®

Box

Boolean Operations:
Subtraction

Union ® ®

Intersection ®

CAD tools, such as Rhino, AutoCAD, or SketchUp,
among others. Using our solution, it is now possible
to (1) explore 3D architectural models using the Pro-
cessing programming language, since the modeling
operations required are already available, and (2) to
visualize the obtained models in the different CAD or
BIM tools that are essential for architects. Moreover,
it allows the designer to easily change the CAD tool
that he wants to use (Figure 6).

Finally, Rosetta also promotes portability across
the supported programming languages, allowing

p .
° < <
) X <
° < <
X <
X <
X <
X <
X <
o X <
o < <
° X <
[X <
X <
[]
<
X

the combination of Processing with the other sup-
ported programming languages such as Autolisp,
Phyton, Racket and Javascript.

RELATED WORK

There are already some libraries that improved Pro-
cessing to deal with more 3D modeling extensions.
Shapes 3D [6]is a library that extends processing with
a set of 3D shapes, including ellipsoids, toroids, he-
lixes, and others. iGeo [5] is a 3D modeling soft-
ware library in Java, which has an interface special-

410 | eCAADe 34 - GENERATIVE DESIGN | Design Concepts & Strategies - Volume 1

Figure 5

Synthesis of the
needed operations
for each example,
and their
availability in both
Processing PDE and
in our
implementation of
processing to
Rosetta IDE.

Figure 6

The Al Bahar tower’s
model using
different CAD
applications
(SketchUP,
AutoCAD and
Rhino5).

" a5 <
NN
NN
S
BTN IN TN
NN/
NV

NN

VAN

ized for processing called piGeon. This library in-
cludes vector operations, NURBS curve and surface
geometries, polygon meshes, and 3D model file I/0.
ANAR+is ageometry library for Processing (Labelle et
al. 2010) that was intended to be a programming in-
terface supporting shape exploration based on para-
metric variations. Toxiclibs [4] is an independent li-
brary collection for computational design tasks with
Java and Processing, which supports 2D/3D vectors,
spline curves, 4x4 matrices, intersection tests, mesh
container, and OBJ and STL exporters. Finally, Com-
putationalGeometry library [3] allows Processing to
deal with dynamic mesh generation and rendering,
including isometric contours and surfaces, boundary
hulls and skeletons.

One of the problems with these libraries is that
none of them allows architects to directly interact
with the most used CAD/BIM applications. Therefore,
they have to resort to import procedures which, fre-
quently, loose some of the geometric information or
transform it into undesirable forms (e.g. converting
smooth surfaces into meshes). In addition, some 3D
operations are still missing, including Boolean oper-
ations and shape transformation operations. Our so-
lution, besides extending processing with 3D model-
ing operations and primitives, also allows the inter-
action between Processing and the CAD and BIM ap-
plications typically used by architects.

Dynamo [1] and Grasshopper [2] are program-
ming languages that are also quite popular among

GENERATIVE DESIGN | Design Concepts & Strategies - Volume 1 - eCAADe 34 | 411

22
>
)

)

the architecture community, mainly for those who do
not have any programming experience. Both have
the advantage of interacting with at least one of the
CAD or BIM tools that are used in architectural prac-
tice.

Grasshopper is a visual programming language
for Rhinoceros. This language is widely used by be-
ginners as it allows them to quickly develop, test and
visualise small programs due to the friendly and in-
tuitive environment. Recently, it was also extended
to interact with Revit and ArchiCAD via independent
plug-ins. Unfortunately, Grasshopper has scalabil-
ity problems: the more complex the user program
gets, the more difficult it becomes to understand and
maintain it. The use of clusters can mitigate this prob-
lem but, in practice, itis rare to see programs that take
advantage of the idea. The plug-ins for interacting
with other tools besides Rhinoceros are very experi-
mental and not yet widely used. For the purposes of
this work, the major drawback of Grasshopper is that,
although it also supports some textual programming
languages, the list does not include Processing.

Similarly, Dynamo is a plug-in for Revit strongly
influenced by visual programming languages. It is
also based on a workflow of nodes and connections
that creates BIM objects in Revit. Dynamo share the
same advantages of Grasshopper, but it also suffers
from the same limitations, including the scalability
problem and the fact that it does not support the Pro-
cessing language.

Comparing to Rosetta IDE, Grasshopper and Dynamo
might be more intuitive and user-friendly, partic-
ularly for those without programming experience.
Nevertheless, to overcome their limitations when de-
veloping more complex models, architects are forced
to use textual programming languages. As a conse-
quence, architects end up dealing with textual lan-
guages even when they were not supposed to. More-
over, programs that combine both visual and textual
programming languages tend to be less organized
and more difficult to understand.

On the other hand, although Rosetta requires a
more profound initial investment in learning the Pro-
cessing language, it allows the development of pro-
grams with higher complexity and more levels of ab-
straction.

CONCLUSION

Processing is a simple and pedagogical program-
ming language and, hence, easy to learn by design-
ers with no previous programming experience. How-
ever, when it comes to the architects' work, Process-
ing shows its limitations:

1. Lack of 3D modeling operations;

2. Difficult combination and interaction of Pro-
cessing with the most used tools in the archi-
tectural practice.

Our solution overcomes these two barriers, by aug-
menting Processing with new design abstractions
and operations, and by connecting it with several
CAD and BIM tools. The examples developed in the
paper illustrate the extension and adaptation of Pro-
cessing to the architectural practice, not only by en-
abling the use of the most needed 3D operations and
transformations, but also by allowing a direct con-
nection with the most used CAD and BIM applica-
tions.

Itis noteworthy that the majority of the 3D prim-
itives and operations used to develop the examples
presented in this paper could not have been done
using exclusively the features provided by the orig-
inal Processing language, as it does not provide lofts,
sweeps, cylinders, and other crucial operations for ar-

chitectural modelling.

A final advantage of our solution is that it also al-
lows architects to combine Processing with the dif-
ferent programming languages provided by Rosetta,
such as Python and Scheme. This allows Processing
to move from its comfort zone - the design environ-
ment - into the more complex and demanding archi-
tectural environment.

ACKNOWLEDGEMENTS
This work was supported by national funds through
Fundacgdo para aCiéncia e a Tecnologia (FCT) with ref-
erence UID/CEC/50021/2013.

REFERENCES

Burry, M 2011, Scripting Cultures: Architectural Design and
Programming, John Wiley & Sons, Ltd, Publication,
UK.

Correia, H and Leitdo, A 2015 'Extending Processing to
CAD Applications, Real Time: Extending the Reach of
Computation - Proceedings of the 33th eCAADe, Vi-
enna, Austria

Fasoulaki, E 2008, Integrated Design: A Generative Multi-
Performative Design Approach, Ph.D. Thesis, Mas-
sachusetts Institute of Technology (MIT)

Fricker, P, Wartmann, C and Hovestadt, L 2008 'Pro-
cessing: Programming Instead of Drawing;, Architec-
ture in Computro - Proceedings of the 26th eCAADe,
Antwerpen (Belgium)

Labelle, G, Nembrini, J and Huang, J 2010 'Geometric
programming framework, ANAR+: geometry library
for processing, Future Cities - proceedings of the 28th
eCAADe, ETH Zurich, Zurich, Switzerland

Lopes, J and Leitao, A 2011 'Portable Generative De-
sign for CAD Applications, ACADIA 11: Integration
Through Computation - Proceedings of the 31st ACA-
DIA, Banff, Alberta

Reas, C and Fry, B 2007, Processing: A Programming Han-
dobook for Visual Designers and Artists, MIT Press,
MIT, USA

Terzidis, K 2003, Expressive Form: A Conceptual APproach

to Computational Design, Spon Press, New York

http://www.dynamoprimer.com
http://www.grasshopper3d.com/
http://thecloudlab.org/processing/library.html
http://toxiclibs.org/

http://igeo.jp/p/

1
2
3
4
5
6] http://www.lagers.org.uk/s3d4p/index.html

(1]
(2]
(3]
(4]
(5]
(6]

412 | eCAADe 34 - GENERATIVE DESIGN | Design Concepts & Strategies - Volume 1

