
Programming for Architecture: The Students’ Point of
View

Rita Aguiar1, Afonso Gonçalves2
1,2INESC-ID, Instituto Superior Técnico, University of Lisbon
1rita.aguiar@tecnico.ulisboa.pt 2afogoncalves@gmail.com

The following paper presents a reflection on computational design education in
Architecture schools. For approaching this subject, the specific case of the
Programming for Architecture course taught at Instituto Superior Técnico -
Universty of Lisbon is presented and analyzed through the students' point of view.
The aim of the course is to focus on representation methods through
programming, introducing the fundamentals of computational approach to
architectural design. We will explain and discuss the subject teaching methods,
the structure of the course and the school environment. Also we will express the
students' opinion regarding the class organization, the contents of the program
and the usefulness of programming, as well as suggestions for an improved
strategy for teaching computational methods to Architecture students.

Keywords: Programming classes, Students opinion, Learning methods, Rosetta,
3D modelling

INTRODUCTION
The pace at which CAD tools have crept up on the
workflow of architects and designers alike in later
years has meant that the teaching of such tools are
now an integral part in most, if not all, university cur-
ricula. However, the road to implementing these new
tools in a pedagogical context, with many of them
requiring different ways of thinking and problem-
solving strategies, has not been without its setbacks
and obstacles (Duarte, 2007). Divergent opinions are
even greater on the subject of introducing subjects
related to the field of Computer Science, leading to
a discussion on the importance and to what extent
programming courses support architecture students'
way of thinking (Wurzer et al 2011).

The most logical way to understand the suc-
cesses and failures of programs that have tried to im-

plement this new approach to architectural design
is to know how students feel about them. Knowing
andunderstanding thewayArchitecture students are
receptive to these relatively new concepts is an im-
portant step towards guaranteeing the success and
future motivation of young designers in using these
tools.

The aimof this study is, thus, to understand, from
the students' point of view, the way such concepts
are received by students, using for that purpose a
specific case studyobservedat Instituto Superior Téc-
nico (IST). IST is an Engineering institution in Lisbon
where every year students from the Integrated Mas-
ter's Degree in Architecture take a course on Pro-
gramming for Architecture (PA).

The study tries to focus on structural aspects of
teaching programming and computational design,

CAAD Education - Tools - Volume 2 - eCAADe 33 | 159



especially on the difficulties and expectations of the
students regarding what they experience every year
as part of their school curricula. Many issues reported
by the students might often be more conjectural
and/or too tied to the institutional nature wherein
these subjects are taught so trying to keep the study
focused on the structural issues behind their opin-
ions was of major concern for us.

The students were approached with open infor-
mal questions during interviews in addition to a for-
mal survey answered by 30 students. Based on their
opinions and in the observation of what happened
during the semester, we tried to do a synthesis of
what we consider essential and more representative
of what students think and feel. After this reflection
on the case study, we present some suggestions of
possible improvements that could contribute to mo-
tivate Architecture students to have more interest in
programming and to use it in their future activity.

CASE STUDY
Programming Language
The programming language taught to students in
PA is Racket, a general purpose, multi-paradigm pro-
gramming language of the Lisp/Scheme family. The
language is used in a variety of contexts such as
scripting, general-purpose programming, computer
science education, and research [1]. The students use
Racket native programming environment - DrRacket,
to write their programs with the aid of a specific li-
brary of pre-defined functions called Rosetta. With
Rosetta, students have access to a multitude of func-
tions that they can embed in Racket code to create
andmanipulate geometry in a CAD application, such
as AutoCAD or Rhinoceros. Rosetta is a program-
ming environment that supports multiple program-
ming languages (known as front-ends) and multiple
CAD tools (known as back-ends) (Lopes 2012).

Course subjects
During the theoretical component of this course, stu-
dents are confronted with several concepts neces-
sary for programming and creating relevant architec-

tural projects. These include recursion, constructive
geometry, understanding and using data structures,
higher-order functions and parametric representa-
tion and processing of surfaces and curves. Figures
1 and 2 are some examples of what students should
be able to accomplish by the end of the semester.

Figure 1
Example of
implementation of
recursion and
randomness
behavior

Figure 2
Example of
processing data
structures

Figure 3
The final project of
the 2014/2015
academic year.

Class structure
The PA course is taught weekly in three units of one-
hour theoretical lectures, and one unit of two-hour
laboratorial lectures.

The theoretical lectures are administered in the
traditional method supported by interactive slides

160 | eCAADe 33 - CAAD Education - Tools - Volume 2



containing demonstrations that result in the direct
application of the subjects. The teacher explains the
way the computer processes the code exhibited in
the slides, helping students understand its execution.

The laboratorial lectures are administered at one
of the university's computer labs where students are
challenged to solve exercises related to what they
learned during the theoretical lessons. A detailed
guide with illustrations of the intended results is
given to students. The semester ends with a final ex-
ercise where students are paired and asked tomodel
a parameterized version of a well known building,
previously chosen by the students themselves. Fig-
ure 3 is an example of this exercise

STUDY RESULTS AND FIRST IMPRESSIONS
Raised interest and experienced difficulties
The conducted study showed that, generally, stu-
dents were impressed with the potential of pro-
gramming. As observed in Figure 4, most students
showed great interest on the covered subjects when
asked about the "interest that the subject raised" on
a scale of 0 to 10.

On Figure 5we also notice that students under-
stood and accepted the importance that program-
ming can have on the Architecture curricula.

However, the results of Figure 4 show a greater
dispersion than Figure 5. It is possible that this has
to do with the fact that students expressed some ini-
tial difficulty in using an algorithmic language that
is described through textual code with demanding
syntactic and semantic rules. These difficulties were
well expressedby the interviewees, including the stu-
dents with higher grades. This is increased by the
fact thatmost of themhadnoprior contactwith such
subjects: in 30 students, only 7 had previous contact
with programming. This leads them to show some
difficulty in developing the ambiguity-free thinking
perspective that is required forworkingwith comput-
ers.

Figure 4
Level of interest
showed by the
students

Figure 5
Importance of
programming in
architectural
curricula

Figure 6
Difficulty in
assimilating the
concepts

Figure 7
Rhythm of the
presentation of the
contents

CAAD Education - Tools - Volume 2 - eCAADe 33 | 161



On Figure 6 we can observe that the answers col-
lected do not seem to demonstrate that there has
been a great difficulty assimilating the concepts
taught in class but again we notice some dispersion
in the answers.

The interpretationof this resultmightbeonwhat
studentsunderstandas assimilation. If they are think-
ing in the context of the theoretical lectures, then
the clarity with which the teacher exposes the issues
might be an important factor that leads to amore fa-
cilitated assimilation of the contents, not necessarily
meaning students do not find them difficult.

Understanding what the teacher says does not
mean that the knowledge is internally understood
and interiorized since this can only occur when the
information is organized and processed according to
the mental structure of the student.

This is where difficulties can appear. According
to what we observed, in the beginning there were
notmajor difficulties although it is amatter that gen-
erally students do not consider to be easy. The exer-
cises were simple and the results of the first test were
reasonable.

The difficulties started to appear in exercises that
involved the use of more elaborate and demanding
concepts having a great demand in terms of devel-
oping a greater analytic capacity in interpretingwhat
is being asked and also in finding strategies for prob-
lem solving. Given the way the question was asked,
the possibility of bias in thematter of a psychological
issue of personal self-esteemmust be also taken into
account.

According to Figure 7, when we asked if stu-
dents found the course timeframe appropriate, the
results show the general opinion that the program is
too extensive for the class time. This, then, requires
an accelerated rhythm that, for many students, does
not provide enough time for developing and inte-
grating the information received in class. The con-
sequences may lead to students feeling discouraged
to keep attending class, especially considering how
demanding and time consuming the rest of the Ar-
chitecture degree is. If for whatever reason a student

skips a lesson, it is much more difficult for him to fol-
low the next classes.

Students expressed a great emphasis on the im-
portance of practical classes since they feel the need
to interact with the computer in order to verify the
effect of the code they elaborate.

One of the obstacles encountered regarding the
final project was how to manage time efficiently and
apply the knowledge learned in class, as well as
knowing how to organize the programmatic content
in a systematic way. Starting is where students feel
the greater hardships since they have to take what
is complex and simplify it to the point that it can
be translated into code. There should also be a pre-
viously understanding of the geometry and mathe-
matics involved in the project design. The elabora-
tion of a more complex project benefits from the use
of functions that are introduced at latter stages of the
course.

If the students start thinking in the project early,
they do not have the most important means to elab-
orate it. If they start it very late, then the time they
have left is short. This resulted in the teacher giving
a good help, presenting in classes the key functions
for its elaboration.

When asked their opinion on "Should this sub-
ject be extended to another semester?", 12 students
answered "yes" while 17 answered "no". Naturally,
their position towards this question is dependent
on many factors, such as the interest that the sub-
ject provoked on them, the difficulties they felt and
the perception of the importance that this will have
in their future careers. According to the interviews
there seems to be a consensus that if the subject was
divided in two semesters the course would be much
easier to follow, especially in regards to the final
project which could be done in a second semester.

Opinions on the impact of programming in
architectural design
In general, students were deeply impressed by the
subject of programming, to the point where they
look at design in a new perspective.

162 | eCAADe 33 - CAAD Education - Tools - Volume 2



Students realized the potential of programming
in architectural design, especially in the extent to
which with a few lines of code they can draw shapes
that are intangible by either their manual abilities
or the restrictions imposed by CAD tools (Leitão et
al 2010). The ease with which, through variation
of function parameters, students can produce varia-
tions of a model is also a very helpful feature when
searching for the ideal form to their designs. But
here the students' impression is that programming is
only useful when designing and drawingmonumen-
tal, complex and exotic buildings. Students doubt
that programming can be useful for the type of work
which has to be elaborated during the Architecture
degree.

Potential use in other subjects
Oneof the aspects towhich students expressedgreat
interest was the integration of what they learn at PA
and the other courses they attend, especially with Ar-
chitecture Project. In 30 students inquired, 20 an-
swered positively to this integration. Obviously this
requires that professors in charge of these courses
show acceptance and willingness to having students
make use of programming in their classes. But the re-
ality shows that many are used to a more traditional
modus operandi for architectural design and remain
skeptical and not receptive to such integration. How-
ever, if the teaching of computer science subjects is
tohaveany success in theArchitecture curricula, then
they must be tailored to the needs of the architects.
Students learn best when they see a connection be-
tween what they are learning and their current or fu-
ture needs (Duarte 2005).

The use of programming in other disciplines will
have to come from students' own initiative regard-
ing their own projects, but there is also a time pres-
sure to consider in the equation. During the pro-
gramming course, students learn how to elaborate
small independent projects but they do not exercise
their integration into broader projects. Studentswho
had the subject recently do not yet feel confident
enough to risk using methods that are still not com-

monly used on academic design disciplines. If stu-
dents had the programming course a long time be-
fore, unless they continued their training with pro-
gramming since then, they fear they will have forgot-
ten much of what they learned, feeling even less se-
cure to integrate this knowledge in their projects.

Use of programming in their future career
as architects
Figure 8 synthesizes the answers to a question re-
garding the students' thoughts on using program-
ming on their future Architecture projects.

The dispersion of the answers may reveal some
degree of uncertainty regarding the perspectives
while mode 5may indicate a certain hesitation in the
answers. Themean value is 5.2 while themedian is 5.

Through informal talks with the students we
could conclude that, generally, students feel that the
way Architecture is practiced in Portugal does not
create high expectations for the use of programming,
while in other countries, several studios already seek
professionals with programming skills.

Wealso concluded fromthe interviews that there
were students interested in the possibility of pro-
gramming for other backends such as Revit and
ArchiCAD because sometimes AutoCAD is simply
unfeasible. The team behind the development of
Rosetta has already understood this importance and
is actively working on having this integration.

Figure 8
Thoughts on using
programming on
future Architecture
projects

CAAD Education - Tools - Volume 2 - eCAADe 33 | 163



SUGGESTIONSANDREFLECTIONSON THE
RESULTS
The focus of academic education is the student,
hence the importance of hearingwhat students have
to say. It is crucial to understand the educational
background inorder for a teacher to employ themost
appropriatemethods and communication strategies.
With the proper methodology students feel more in-
terest in further extending their knowledgeand skills.

What follows now are a set of suggestions that
the authors consider to be relevant in addressing the
issues presented previously taking into account the
profile of Architecture students.

Program and teachingmethods
Initial motivation.We consider of great importance
that, from the very beginning, students be amazed
with the potential of programming. Consequently, in
order to motivate students to become interested in
programming, the teacher should find ways to capti-
vate the students' interest, probably through images
of great visual impact during the very first lesson, and
showing how few lines of code can produce surpris-
ing results, and give examples of the powerful effect
that parameter variation can have in the resulting im-
age and its usefulness in the search of the desired
shape.

Typeof lectures.Considering thatproficiency inpro-
gramming requires practice it seemsmore suitable to
have a mixed system of theoretical-practical classes,
instead of the traditional method of entirely theoret-
ical lessons separated frompractice. Students under-
stand programming concepts better if they have the
opportunity to test their programs right away.

The suggestion is not to undermine the impor-
tance of theory but rather understanding the bene-
fits of interconnection with practice. Switching be-
tween more expository stages and more experimen-
tal stages will help keep the interest of students and
motivate them at later stages.

Timemanagement. It is important to tailor the pro-
grammatic content of a programming course to the
time students have available. This adjustment can be

made in extent and/or in depth.
With respect to extent, without undermining a

general knowledge of all the capabilities of program-
ming, there could be a selection of what is more
important in Architecture use. In what concerns
depth, the best solution would be beginning with
very simple examples and deepening with progres-
sively more complex examples till the available time
for the theme is reached. Thus, the depth attained
would depend on the ease with which students are
learning.

Presentation of the various themes in parallel to
the conception of a more elaborate project. Dur-
ing classes, students learn through small exercises
the various components of the program.

It could be more beneficial if, from the begin-
ning, students were presentedwith amore extended
exercise instead, that also made sense as an archi-
tectural whole, especially conceived for this purpose.
This exercise could incorporate the various concepts
that are to be learned through the subject. This
means that some of the smaller exercises executed
during the semester could be directly incorporated
in this project. This way, students could be taught
from the beginning about how to approach a more
complex exercise in addition to preparing them for
the final project.

Selection of exercises oriented to a future use.
The study that we conducted shows that students do
not feel very encouraged to use what they learned in
their works on other project subjects.

One specific exercise the students are shown
during class is how to take an urban site plan (Figure
9), provided by municipal services or topographers,
anddevelop the equivalent 3Dversionwith the aid of
programming. This involves cleaning spurious data
from the drawing and extracting relevant geometry
information from a CAD application to use it in the
programming environment.

After a study of what students normally do in
these subjects, some of the exercises in practical
classes could be conceived so that they could be ap-
plied in the project subject.

164 | eCAADe 33 - CAAD Education - Tools - Volume 2



Figure 9
Exercise of taking a
2D site plan and
turning it into a 3D
model. Downtown
of Lisbon City.

From the visual to the abstract. During the last
decade, it has been discussed how far programming
courses support the architecture students' way of
thinking (Wurzer et al 2011). It has alsobeen reported
that Architecture takes on a much more problem-
oriented approach to design than the algorithmic
thinking behind programming (Lawson 2005). What
seems certain is that Architecture students have a
very strong visualmindset so focusing on visual com-
munication during the teaching process should be
privileged. The visual representation may even be
the starting point for understanding more abstract
concepts, as illustrated farther in connectionwith the
concepts of recursion and higher-order functions.

Regarding what has been mentioned, we think
that for an Architecture student it is preferable to
start presenting the concept in a visual form first, us-
ing for that purpose a simple example that is more
relatable to Architecture rather than presenting com-
plex or purely mathematical examples.

Simple examples have the advantage of captur-
ing the maximum attention of the student on the
new concept, saving them the effort to understand
other complex aspects of the example. This could
eventually constitute a kind of backgroundnoise and
prevent the student from looking clearly at the new
concept.

Sequence of the presentation of the contents. The
suggestions we present in this section take into ac-
count what we proposed before and are intended
for a type of course where students use a front-end
programming languagewhere they can embed func-
tions from a library that produces objects in a CAD
tool as backend.

After the initial motivation we referred before,
students could have their first contact with the com-

puter by means of elaborating a simple program in
which they would experiment and use the program-
ming language and functions from the library to gen-
erate a simple image in the CAD tool. Then, after the
students had elaborated this, the teacher could ex-
plain, in a schematic way, the architecture of the soft-
ware being used.

In connection to this, the teacher could begin
teaching the language in a more formal way. When
appropriate, students can execute examples and ex-
ercises in the computer improving the comprehen-
sion and helping maintaining a good mood.

We think there is an advantage of presenting
functions and the associated concepts from the li-
brary as soon as possible to beused inmore visual ex-
amples that may help students to understand more
formal and abstract concepts of the language.

During the semester, the choice of contents and
the way they are presented should take into account
that this course is aimed at Architecture students and
not Computer Science students. Although many ef-
forts have been made in the past to do so, we con-
sider that this matter could still be improved.

Concepts more difficult to achieve. As previously
stated, several powerful concepts that we commonly
use in programming, such as recursion and higher-
order functions, are more difficult to assimilate, con-
sidering that they represent a newwayof thinking for
most students.

In the case of recursion, the immediate percep-
tion of the spectacular effect and usefulness of its use
in solving architectural problems would facilitate a
quicker apprehension of this concept by the student.
The concept of higher-order functions is more diffi-
cult to grasp and so more time and observation of
newuseful examples have to convince the student of
its potential.

Recursion. In order to contextualize the matters be-
ing discussed, let us look at the concrete example of
a simplified drawing of a staircase. The intention is to
draw the representation of this staircasewith n steps,
starting at a point P and with a riser length of r and
a tread length of t. The recursive construction can

CAAD Education - Tools - Volume 2 - eCAADe 33 | 165



be well understood according to figure 10 retrieved
from the teacher's book.

In reality, the concept of recursion is visually well
represented in the figure which translates verbal lan-
guage describing the process of drawing an n-step
staircase the same as drawing one step first and then
based on it draw a staircase with n-1 steps.

The representation of the algorithm and its im-
plementation and coding should follow, so that the
students feel the effect immediately, in particular the
variation of the parameters.

Higher Order Functions. Before presenting it in an
abstract way, the concept could be apprehended in
an experimental way through the elaboration of a se-
quence like the following:

The teacher asks the students to define a func-
tion that, given a point, creates a cylindrical single
column of certain dimensions centered at point P.

Next, the teacher asks the students to define a
function that uses the previous one, but not given
as argument to this new function, and creates an
alignment with a certain orientation of n cylindrical
columns at a certain distance from each other.

The execution of the program for 5 columns
would produce an effect as can be seen in Figure 11.

Continuing, the teacher would then ask the stu-
dents to repeat the same steps but for creating pris-
matic columns. The execution would produce the ef-
fect in Figure 12.

Finally, the teacherwould present the solution of
a single function capable of producing the same re-
sult as before but with the particularity that it would
receive as argument any of the two previously de-
fined functions to create a single column as opposed
to having to use two different functions to produce
alignments, one for each type of column.

Thisway, and simultaneouslywith the apprehen-
sion of the concept, the students would realize the
benefits of the use of higher order functions.

Next, a very simple mathematic example could
be showed like the following.

Let us define a function named shift1 that re-
ceives as argument a real functionof real variable and

produces as image, another function whose graph is
obtained from the graph of the first function by a ver-
tical translation applied by the vector (0,1).

The visual illustration of the function shift1 ap-
plied to the function square would be such as in Fig-
ure 13.

Figure 10
A simplified stair
and the recursive
process of how it is
drawn.

Figure 11
A series of
cylindrical columns

Figure 12
A series of prismatic
columns

Figure 13
Visual
representation of
the function shift1
applied to the
function (1)

166 | eCAADe 33 - CAAD Education - Tools - Volume 2



A very suggestive description in mathematical lan-
guage is:

(f → (x → f(x) + 1)) (1)

This type of description could also be used to visu-
ally illustrate the semantics of the execution of com-
mands of the given language.

As an example, and to illustrate the semantic be-
hind Racket's code execution, the usage of the func-
tion shift1, when given as argument the function
square and the result applied to the value 5 could be
suggestively presented as in Figure 14.

Figure 14
Visual
representation of
the semantics of
the use of shift1 in
Racket language

Continuation of the theme in new courses
The students' general opinion is that one semester is
not enough time for the extent and level of demand
in the course's program, and if it was divided and
complemented in two semesters it would be more
accessible. Yet, when confronted with the prospect
of an additional semester, 12 students expressed a fa-
vorable opinion and 17 unfavorable.

This can be explained by the fact that, according
to what we have stated throughout this work, stu-
dents show interest in regards to programming but
the difficulties experienced and the unmet expecta-
tions do not motivate them to go further. If that is in-
deed the case, then we can legitimately assume that
the reorganization of the course's program into two
semesters may allow the first semester to be much
less overwhelming, more attractive and could moti-
vate students to continue in a second semester.

Envisaging a scenario of a programming course
divided in two semesters, a more introductory but

motivating first semester could prepare students
for the second semester. Throughout the second
semesters, students would then elaborate a project
using the propermethodology, possibly even explor-
ing the application of programming in other areas
of their curriculum. A second semester could even
be optional as not to force students, who are clearly
not interested in the theme of programming, to con-
tinue.

The question is whether the proposal to add a
second semesterwould, in this context, bewelcomed
by the body responsible for coordinating the Archi-
tecture course.

Integration in other disciplines of learned
methods
Finally, it is very important to settle for convinc-
ing those responsible for architecture courses and
faculty the importance of increasing programming
nowadays and especially in the future so that there
is an openness and willingness to reinforce learning
these methods and to introduce its use in other sub-
jects.

CONCLUSION
A study of a particular case was presented. All the in-
formation regarding this study was based on the ex-
perienceof students that attended thePAcoursedur-
ing the 1st semester of the school year of 2014/2015,
at Instituto Superior Técnico.

Weconcluded that, although students expressed
their interest in programming and accepted the im-
portance that programming can have on the aca-
demic Architecture curricula, they felt it is unlikely
they would continue using and integrating what
they learned in other subjects or in their own de-
sign projects. This is due to many factors among
which we consider most relevant the lack of applica-
bility the subjects haveon the students' work in other
courses, the difficulty in managing the time needed
for elaborating the final project, and the lack of en-
couragement shown in other courses in trying to in-
tegrate new digital design tools in their educational

CAAD Education - Tools - Volume 2 - eCAADe 33 | 167



programs.
We hope this study provides useful reflections

on this subject and that will contribute with rele-
vant suggestions geared towards an improved strat-
egy for teaching computationalmethods toArchitec-
ture students. For a broader view on teaching meth-
ods and other stories of success and failure this study
would need to be expanded to other contexts. As
for future work, it seems pertinent to approach stu-
dents from other backgrounds, other educational in-
stitutions and possibly even professionals whomake
daily use of these technologies in their practice. It
may also prove useful to compare the results of our
studies with other similar analysis that have already
been developed in other institutions.

ACKNOWLEDGMENTS
This work was partially supported by national funds
through Fundação para a Ciência e a Tecnolo-
gia (FCT) with reference UID/CEC/50021/2013, and
by the Rosetta project under contract PTDC/ATP-
AQI/5224/2012.

We thank our colleagues who contributed to the
elaboration of the survey and attended the inter-
views, although they may not agree with all of the
interpretations/conclusions of this paper. We would
also like to thank Ana Rita Santos and Sandra Mon-
teiro for their help in the revision phases.

REFERENCES
Celani, G and Vaz, C 2012, 'CAD Scripting and Visual Pro-

gramming Languages for Implementing Computa-
tional Design Concepts: A Comparison From a Ped-
agogical Point of View', International Journal ofArchi-
tectural Computing, 18, pp. 122-137

Duarte, J. 2005 'Towards a New Curricula on New Tech-
nologies in Architecture', Giaconia, P. (ed.), Script:
Spot on Schools, Editrice Compositori, pp. 40-45

Duarte, J. 2007 'Inserting New Technologies in Under-
graduate Architectural Curricula', Predicting the Fu-
ture 25th eCAADe Conference Proceedings, Germany,
pp. 423-430

Lawson, B 2005, How designers think: the design process
demystified, Architectural Press, Burlington

Leitão, A. 2013 'Teaching Computer Science for Architec-

ture', 1ST eCAADe Regional International Workshop
Leitão, A., Cabecinhas, F. and Martins, S. 2010 'Revisit-

ing the Architecture Curriculum: The programming
perspective', FUTURECITIES [28th eCAADeConference
Proceedings, Switzerland, pp. 81-88

Leitão, A. and Proença, S. 2014 'On the Expressive Power
of Programming Languages for Generative Design -
The Case of Higher-Order Functions', Proceedings of
the 32nd eCAADe Conference, England, pp. 257-266

Lopes, J. 2012, Modern Programming for Generative De-
sign, Master's Thesis, Instituto Superior Técnico/Uni-
versity of Lisbon

Wurzer, G., Alaçam, S. and Lorenz, W. 2011 'How to Teach
Architects (Computer) Programming: A Case Study',
29th eCAADe Conference Proceedings, Slovenia, pp.
51-56

[1] http://racket-lang.org/

168 | eCAADe 33 - CAAD Education - Tools - Volume 2


