
Rethinking Traditions and Envisioning the Future in
Architecture Through the Use of Digital Technologies 95

Teaching Computer Science
for Architecture
A PROPOSAL

ANTÓNIO MENEZES LEITÃO
Instituto Superior Técnico, Technical University of Lisbon /INESC-ID
antonio.menezes.leitao@ist.utl.pt

ABSTRACT:
Computers have profoundly changed the way architects work. Computer science is nowadays
recognized as one of the fundamental sciences that must be taught in architecture. Unfortunately,
computer science is usually taught just like Physics or Probability Theory, without really preparing
the students for the tremendous impact that it will have in architecture in the near future. In this
paper we analyze that impact and we discuss some of the approaches that are currently being used for
teaching computer science in architecture. Our main contribution is a proposal for teaching computer
science in architecture using the principles of functional programming and, particularly, higher-order
programming, while avoiding being dependent of specific CAD tools. We claim that this approach
gives the student the ability to think, design, and explore designs more effectively than using previous
approaches. We validate our claims using data from our own teaching experience during the last five
years.

KEYWORDS:
Architecture, Generative Design; Computer Science; Learning

FUTURE TRADITIONS
1ST eCAADe Regional International Workshop 96

1. Introduction

Computer science is changing the way architects design. Instead of going directly from the idea to the
design, computer science allows for an intermediate step, where an algorithmic description of a design
is produced by the architect. This algorithmic description, which can be either a textual program or a
visual program or both, is then executed by a computer, producing the design.

One might wonder if this intermediate step is not actually slowing down the design process and, in fact,
for very straightforward designs, it does slow down the process. On the other hand, there are many
other situations where this step provides considerable advantages, for example (a) when there are tasks
of a repetitive nature, (b) when the designer wants geometric shapes that are not directly available in
the CAD tool, (c) when the designer wants to inject some randomness in the design, (d) when the
designer wants to quickly experiment different variations of the same design, and (e) when the design
is also dependent of a performative process. In all these (and many other) cases, programming provides
the designer with a very powerful tool for achieving better designs with smaller costs.

Unfortunately, programming is not an innate capability. It is, however, a learnable skill and, as long as
computer science courses are properly designed, everybody can learn it. In this paper, we discuss this
learning process in the context of architecture. In the next section, we describe some of the computer
science courses that are already available for the architecture curricula. We will then explain our own
proposal for teaching a computer science course for architecture.

2. Computer Science Courses for Architecture

Nowadays, there are several universities offering architecture courses that include computer science
techniques. MIT, for example, offers several different courses in this area, including Introduction to
Computation in Architectural Design and Design Scripting. The first one teaches building information
modeling, generative methods, prototyping, shape calculation and simulation, focusing on the use of
Revit. In the final part of the course, students learn shape grammars in the context of AutoCAD (using
the NITRO plug-in). The second course teaches basic programming concepts and representation
of formal design knowledge, including parameterized objects, procedural representation of form,
typology and architectural grammar, and related topics. This course is divided into two parts, one
where students learn RhinoScript in order to work with Rhinoceros 3D and the other where they learn
Processing so that they can work with Arduino.

In most cases, these courses take advantage of the programming languages that are available in
most CAD tools, namely RhinoScript and Grasshopper for Rhinoceros 3D, VBA and AutoLISP for
AutoCAD, MEL for Maya, GDL for ArchiCAD, etc. This has the obvious advantage of providing the
students with a working environment that is directly attached to a tool that, supposedly, they know how
to use. On the other hand, this is also the cause of an important problem that affects all these courses:
students learn how to program for a specific CAD tool but, in general, it is very difficult for them to
program for a different CAD tool. In other words, they cannot easily migrate to different programming
environments.

There are at least three aspects to this migration problem. The first aspect is that students tend to become
addicted to the first language they learn. This means that students that learn, for example, RhinoScript,
cannot easily program in, for example, AutoLISP. This problem becomes even bigger for programming
languages that have different syntactic paradigms, as it happens between visual programming
languages, such as Grasshopper, and textual programming languages, such as RhinoScript. In order
to avoid this problem, some schools teach more than one programming language or CAD tool. The
University of Campinas, for example, is currently experimenting teaching both VBA and Grasshopper
(Celani, 2011). The University of East London teaches NetLogo 3D, VBA, RhinoScript, AutoLISP,
and MEL. Unfortunately, this requires additional teaching time or, alternatively, less teaching material
related to computer science.

Rethinking Traditions and Envisioning the Future in
Architecture Through the Use of Digital Technologies 97

The second aspect of the migration problem is related to the modeling primitives. Each CAD tool
provides different modeling primitives with different expressive power and this explains why certain
CAD tools are known for its good capabilities in, e.g., mesh modeling, while others are known for its
bad capabilities in, e.g., boolean operations. In general, users quickly learn which modeling primitives
are most effective and which modeling primitives should be avoided. This has the nasty consequence
that users tend to adopt the modeling techniques that they know are a good bet for the particular CAD
tool they are using, instead of focusing on the modeling techniques that better solve the design problem
they have. Again, this makes it more difficult for designers (and their programs) to migrate to different
environments. The obvious solution is, once more, to expose students to several different CAD tools
and some schools follow this approach.

The third aspect of the migration problem is related to the use of libraries. It is not cost-effective to
write every generative design program from scratch. Instead, as it happens in other areas, designer
should use libraries that provide a significant part of the needed functionality. This is already visible,
for example, in Grasshopper and Rhinoceros 3D, where many programs depends on plug-ins such
as Karamba, for structural analysis, or Galapagos, for optimization. Unfortunately, these libraries are
deeply attached to some particular CAD program and are very difficult to use in other CAD tools.

In this paper, we discuss the first two aspects of the migration problem in the context of introductory
computer science courses. The third aspect is still highly relevant but it is not usually addressed in
such introductory courses, becoming important only in more advanced courses. Nevertheless, we will
address it in the conclusion.

In short, the problem we want to address is the following: by using a particular CAD tool and the
programming language provided by that particular CAD tool, many computer science courses currently
available for architecture become focused on teaching a specific tool, instead of the relevant computer
science concepts. Moreover, this problem cannot be properly solved by teaching even more languages
and tools, as this requires time that would be more useful for teaching computer science concepts.

3. Teaching Computer Science for Architecture - A Proposal

The previous section presented courses intended to teach computer science concepts to architects. It
should be clear that teaching computer science without relating it to any task considered useful by the
architects is condemned to be a failure (Duarte, 2005): students learn best when they see a connection
between what they are learning and their current or future needs. Most of the courses we reviewed
address this point by adapting the subject matter to the architecture field and by providing computer
science examples related to architecture.

There is one problem, however, with almost all of those courses: they teach programming languages
(either textual or visual) that are strongly dependent on a specific CAD application. As a result,
students are capable of using that language and the modeling capabilities of that CAD application but
it is usually very difficult for them to adapt to different languages and tools.

In order to solve this problem without introducing even more languages and tools, we have been
developing a one-semester computer science course for architecture students that focuses on computer
science concepts and avoids being dependent on CAD-specific capabilities. To this end, we have been
using a carefully selected subset of the AutoLISP language, and a carefully selected subset of AutoCAD
capabilities that are available (in similar forms) in other programming languages and CAD tools.
The selected subset is, obviously, not as convenient as the entire set but it provides three important
advantages: (1) we can spend more time on computer science concepts and less on specific language
features, (2) students are motivated to extend the language with additional constructs definable in
terms of the already existent ones, which is an important computer science skill, and (3) it reduces the
inevitable mismatch students will face when migrating to a different programming language. In the
next section we will document several examples of this approach.

Teaching Computer Science for Architecture

FUTURE TRADITIONS
1ST eCAADe Regional International Workshop 98

It is important to note that the choice of AutoCAD was purely pragmatic: it was a request from the
architecture department, as learning AutoCAD would be put to good use in subsequent courses. The
choice of AutoLISP was less pragmatic and more pedagogical: of all programming languages available
for AutoCAD, AutoLISP is the one where it is easier to explain fundamental computer science concepts
such as abstraction, functions, recursion, and data structures. It is obviously possible to explain these
concepts in other languages such as VBA but, in our opinion, it takes more time and certain concepts,
such as higher-order functions are much more difficult to use.

We will now describe and illustrate the topics of the course we propose.

3.1 Fundamental Concepts

We begin by teaching the significance of algorithms for the rigorous description of processes and of
programming languages as the medium for such descriptions. We then explain the syntax and semantics
of programming languages and, particularly, of a restricted subset of AutoLISP that includes the parts
that contribute for the recognized pedagogical capabilities of the Lisp family of languages (Chen, 1992;
Berman, 1994; Felleisen, 2002). In fact, we present the AutoLISP language as a syntactical variation of
the language of mathematics and we avoid all those AutoLISP constructs that do not contribute to this
view, such as assignment.

3.2 Data Abstraction

We then move on to data structures and data abstraction. This is an important topic that paves the way
for a clearer explanation of coordinates and coordinate systems. In spite of its basic representation as
lists of numbers, we intentionally avoid using list operations to manipulate coordinates. Instead, we
teach abstract data types and its realization as constructor and selector operations. Students learn how
to describe positions in space and how to operate them in geometric terms, using rectangular, polar,
cylindrical and spherical coordinate systems defined by the students themselves. It is also in this topic
that we explain basic modeling operations, first in two dimensions (lines, circles, rectangles, etc.) and
then in three dimensions (spheres, boxes, cylinders, etc.). Again, instead of focusing on the AutoCAD
primitives, we immediately abstract these operations in functions, so that students do not need to
remember the particular AutoCAD incantations needed for the implementation of the operations.

3.3 Functional Abstraction

This topic explains parameterized functions, using the Doric order as a motivating example. Here,
students learn how to parameterize shapes and how to establish dependencies between parameters so
that a particular architectural canon is achieved. As an example, Figure 1 shows several columns in the
Doric style but where only one of them follows the proportions of the Doric order.

Rethinking Traditions and Envisioning the Future in
Architecture Through the Use of Digital Technologies 99

Figure 1 – Fully parameterized Doric columns. Only the fourth one follows the Doric order proportions.

In this part of the course, the only control structures that we teach are function calls, if expressions,
and recursion. Note that we postpone teaching while-, repeat-, and for-loops, as these depend on
assignment and assignment breaks the mathematical properties of the programs, making them harder
to understand. In fact, recursion is strictly more powerful and, in many cases, easier to use that any
specific looping construct, so that is what our students learn.

3.4 State and Randomness

Immediately after recursion, we teach computational state, in the sense of named values that affect a
computation but that are also affected by that computation. This requires assignment but we restrict its
use to functions that really benefit from it, such as random number generators. We also teach students
to hide the assignment operations behind abstraction barriers so that they can forget that they are
being used. As usual, students experiment these concepts in the context of some architectural problem.
In this case, we ask them to model a (very simplified) city, exemplified in Figure 2.

Figure 2 –Recursive and randomized generation of cities.

Teaching Computer
Science for ArchitectureTeaching Computer Science for Architecture

FUTURE TRADITIONS
1ST eCAADe Regional International Workshop 100

In this modeling exercise, students combine several levels of recursion with the use of randomness,
so that no two buildings are exactly identical. Besides learning how to use randomness, our students
also learn how to control randomness. This is also visible in Figure 2: only a predefined fraction of the
buildings are cylindrical towers and the height of each building, in spite of being a random value, is
capped by a Gaussian distribution.

3.5 Recursive Data Structures

After acquiring some practice in the use of recursion, students learn recursive data structures, such
as lists. We place a strong emphasis on the use of lists for separating the generation of geometrical
coordinates from its use for some particular purpose. As examples, students are asked to implement
sinusoidal curves and space frames, such as the one presented in Figure 3, where both concepts are
used.

Figure 3 –A space frame with a circular arc whose radius follows a sinusoidal function.

3.6 Constructive Solid Geometry

The next topic in the course is Constructive Solid Geometry (CSG). Instead of explaining the specific
operations provided by the CAD tool being used, we concentrate our efforts in describing a solid as an
(infinite) set of points in space, so that modeling operations can be explained in terms of set operations
such as union, intersection and subtraction. In order to allow a mathematical treatment of the subject
matter, we also introduce the concepts of empty shape and universal shape, as identity elements of the set
operations. We also demonstrate that without these special elements, that do not have correspondence
in any CAD tool, it becomes more difficult to define CSG operations over sequences of shapes. This
approach makes it clear to the students that algorithmic descriptions become easier to develop when
we follow a mathematically correct approach instead of just using what is provided by the scripting
languages of the CAD tools being used. Figure 4 shows an example of the use of the CSG operations
for modeling a shelter.

Rethinking Traditions and Envisioning the Future in
Architecture Through the Use of Digital Technologies 101

Figure 4 –A shelter made using cylinders, a sphere, and CSG operations.

Besides the basic CSG operations, we also introduce shape forming operations such as revolving,
extrusion, sweeping, and lofting, as always, by teaching functional abstractions of the actual operations
provided by the CAD tool and by providing actual architectural examples, such as the columns idealized
by Gaudi for the Sagrada Familia cathedral.

3.7 Geometrical Transformations

We then briefly discuss geometric transformations, such as, translation, rotation, scaling, and
mirroring. This is a relatively simple topic and we concentrate our teaching efforts in exemplifying its
use in architecture. As an excellent case study, we explain the modeling process of the Sydney Opera
House, presented in Figure 5.

Figure5 –The Sydney Opera House as the result of geometric transformation of sliced sphere shells.

Teaching Computer
Science for ArchitectureTeaching Computer Science for Architecture

FUTURE TRADITIONS
1ST eCAADe Regional International Workshop 102

3.8 Higher-Order Functions

At this point of the course, students already acquired a strong set of modeling approaches and they
have been practicing them in the laboratories. It is then time to teach more advanced programming
techniques, particularly, those that depend on the use of higher-order functions. These are functions
that accept other functions as inputs or return other functions as output. Figure 6 illustrates this
powerful concept: all presented balconies are modeled by the same higher-order function that accepts
as argument the function that defines the shape of the balcony.

Figure 6 –Balconies modeled by a single higher-order function.

Instead of explaining the semantically incongruent predefined higher-order operations of AutoLISP,
we explain their derivation from first principles, thus giving students the ability to define their own
higher-order functions. Students also learn higher-order operations over collections, such as mappings,
filterings, and reductions, a skill that becomes very useful to understand other languages, such as MEL
or Grasshopper, that provide operators applicable both to scalars and collections.

As an application of higher-order operations, we explain a process for the automatic generation of
three-dimensional models, a task that, previously, students had to painfully do by hand. One example
of the outcome of this process is presented in Figure 7.

Figure 7 –Automatic generation of three-dimensional models from site data.

3.9 Parametric Curves and Surfaces

The final topics of the course are parametric curves and surfaces, which become trivial applications of
higher-order functions: a function describing a mathematical curve or surface is repeatedly applied over
a range of coordinates. Particular emphasis is placed in teaching students some useful mathematical
curves and surfaces used in architecture that are not available in most CAD tools, such as the catenary,
or the hyperbolic paraboloid. We also explain how to map functions over these curves and surfaces to
produce more sophisticated shapes, such as the ones exemplified in Figure 8.

Rethinking Traditions and Envisioning the Future in
Architecture Through the Use of Digital Technologies 103

Figure 8 –Shapes that result from mapping simpler shapes over parametric surfaces.

4. Conclusion

In the last five years we have been teaching (and evolving) the course described in the previous section.
The course structure was initially influenced by (Sussman, 1985) but we gave it an almost extreme bias
towards applications in architecture. This is also the approach taken by (Woodbury, 2010) but where
he prefers to embrace the modeling techniques promoted by the CAD tool being used (Generative
Components), we opt for a more formal treatment of programming, with smaller emphasis on the
CAD tool capabilities.

With time, the course we described has evolved to become ever more independent of specific CAD
features, liberating students from becoming addicted to the CAD tool or the programming language
being used. One might argue that this liberation is only apparent as, in fact, students were still working
with AutoCAD and AutoLISP. This is partially true, of course, but there are two important points to be
made here.

The first one is that we avoid AutoCAD-specific features by hiding them behind a functional abstraction
barrier. This means, for example, that there is a single function to create a circle, with a specific set of
parameters (center and radius), and students cannot use the many different ways that are available in
AutoCAD (center and radius, two points, three points, etc.) but that might not be available in other
CADs. We believe we have succeeded in this goal: some of our students are currently developing
programs that work with Rhino without major problems in the use of the modeling primitives.

The second point is related to the use of AutoLISP. As we mentioned previously, we only use a subset of
AutoLISP, avoiding all features that have unusual semantics, such as dynamic scope or operators with
awkward evaluation rules. Forcing students to work with a restricted language might seem like a severe
limitation but there are two important advantages: (1) by not teaching the intricacies of AutoLISP we
have more time available to teach important computer science concepts, and (2) students become less
dependent on specific details of AutoLISP and, thus, more apt to learn other programming languages.
Although we do not have yet conclusive evidence regarding the second point, we already have some
supporting data gathered from a survey involving 16 of our former students that were also enrolled in
a RhinoScript workshop. At the end of the workshop, they were asked to evaluate not only the effort
needed to migrate from AutoCAD to Rhino and from AutoLISP to RhinoScript but also their relative
preferences regarding both the CAD tools and the programming languages. Table 1 presents the results.

Table 1 – Evaluating the migration effort.

Teaching Computer
Science for ArchitectureTeaching Computer Science for Architecture

FUTURE TRADITIONS
1ST eCAADe Regional International Workshop 104

Although the number of enrolled students was not statistically significant it is still possible to draw
some conclusions from the survey: (1) our students could easily migrate from AutoCAD to Rhino and
they ended up preferring Rhino; (2) our students prefer Rhino’s interactive development environment
(IDE) but consider AutoLISP slightly preferable to RhinoScript; (3) for our students, migrating from
AutoLISP to RhinoScript is not as easy as migrating from AutoCAD to Rhino but it is not difficult.

In spite of these results, we still find that most of our students become somewhat addicted to our
AutoLISP subset. This seems to be unavoidable: learning the syntax of any programming language
requires considerable effort and students tend to value that effort by always using similar languages.
This is the reason why new programming languages, such as Java or C#, tend to adopt a syntax that is
similar to those already established, such as C and C++. In the architecture field, however, programming
languages are still very much attached to specific CAD tools and this creates a problem for architects
that want to migrate to a different CAD tool but do not want to migrate to a different programming
language.

We plan to address this problem by becoming even more independent of any CAD language and CAD
tool. To this end, we plan to teach the same course topics but using Rosetta (Lopes, 2011), a multiple
front-end, multiple back-end generative design tool that allows a choice of different programming
languages, including Scheme, Racket, JavaScript and others, and a choice of different CAD tools,
including AutoCAD and Rhino. By being independent of specific programming languages and CAD
tools, Rosetta allows designers to use their preferred programming language to write programs for their
preferred CAD application. Although still in its infancy, there are plans for providing Rosetta with a set
of libraries usable by all front-end languages. This means that Rosetta will address all three aspects of
the migration problem, namely, language independence, CAD tool independence and, finally, library
independence.

Acknowledgements

We thank our students by the invaluable feedback they have given us since 2007. We also thank the
anonymous reviewers for the insightful comments. The work reported in this article was supported by
national funds through FCT under contract Pest-OE/EEI/LA0021/2011

References

Berman A., 1994: “Does Scheme enhance an introductory programming course?: some preliminary
empirical results”, ACM SIGPLAN Notices, 29(2), 44-48.
Celani G., Vaz C, 2012: “Cad Scripting and Visual Programming Languages for Implementing
Computational Design Concepts: A Comparison From a Pedagogical Point of View”, in International
Journal of Architectural Computing, 1(10), 122-137.
Chen N., 1992: “High School Computing: The inside Story, in The Computing Teacher”, 19(8), 51-52.
Duarte J., 2005: “Towards a New Curricula on New Technologies in Architecture”, in Giaconia, P. (ed.),
Script: Spot on Schools, Editrice Compositori, September 2005, 40-45.
Felleisen M., Findler C., Flatt M., Krishnamurthi S., 2002: “The Structure and Interpretation of the
Computer Science Curriculum”, in Functional and Declarative Programming in Education, 21-26.
Abelson H., Sussman G., 1985: Structure and interpretation of computer programs, MIT Press.
Woodbury R., 2010: Elements of parametric design. Routledge.
Lopes J., Leitão A., 2011: “Portable Generative Design for CAD Applications, in Integration through
Computation”: Proceedings of the 31st Annual Conference of the Association for Computer Aided
Design in Architecture (ACADIA), 196-203.

