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ILLUSTRATED PROGRAMMING

ABSTRACT 

In the area of Generative Design, programs are becoming increasingly complex and harder to under-

stand, communicate, and share, enlarging the gap between them and the architectural concepts 

they implement. To overcome this problem, we need to develop documentation techniques and 

program comprehension tools targeted to the Generative Design domain. This paper proposes 

Illustrated Programming as a coherent approach for improving program documentation and program 

comprehension, by establishing a correlation between the intended design, the Generative Design 

program, and the generated model. This correlation is achieved by the inclusion of sketches within 

programs and by bidirectional traceability and immediate feedback between programs and models.

On the left, the geometric structure and system 
of proportions of Milan’s cathedral, depicted by 
Cesare Cesariano in his translation and illustra-
tion of Vitruvius’ De Architectura (1521). On the 
right, Peter Eisenman’s (1961-1971) diagrams 
for House III (Miller House) show the evolution of 
the concept through a sequence of rotations of 
orthogonal grids.
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INTRODUCTION

Architects have always been concerned with explaining their designs and, given that most of 

the architectural work has a strong visual component, it is not surprising that drawings are the 

preferred media for those explanations. In fact, ever since the invention of linear perspective by 

Brunelleschi (Tsuji, 1990), the act of projectum (interpreted here in its Latin sense of anticipating a 

reality) has been being quintessential to the architectural practice. As an example, consider (Figure 

1), which shows two sets of drawings separated by 440 years of architecture, proving that the im-

portance of drawing has not changed over time in this field.

Drawings are powerful design tools because they convey complex ideas in a compact medium. 

Although the creative process in architecture is not linear, architects can synthesize the different 

design steps into a logical sequence of diagrams/sketches, which in the end clearly document the 

design decisions, the relationships between different parts of the design, and the impact of exter-

nal factors in the final shape. This kind of illustrated narrative is extremely effective in telling the 

story of a specific design as well as a way of thinking about and solving design problems (Do et al., 

2001), therefore, it has been extensively used, namely, in pedagogical books, empirical studies of 

drawing in design, and architectural publications and competitions. (Figure 2) shows a sequence of 

manually sketched diagrams from Louis I. Khan’s Goldberg House.

The need for documenting the design process is evident, particularly in architectural projects 

developed (partially or fully) through Generative Design (GD) programs. By Generative Design, we 

refer to the use of algorithms, implemented through programming languages, to create geometric 

shapes. Due to the increased complexity of both GD programs descriptions and the shapes those 

programs can achieve, explaining a program’s structure, behavior, and parameters, is critical.

By definition, the GD program can itself be considered a description of a design, as it formally 

specifies the modeling process of the design. Unfortunately, this formal specification can only be 

easily understood for simple design problems. For any sufficiently complex program, it is addition-

ally helpful to have program documentation and tools for program comprehension. (Storey, 2006)

Series of annotated sketches for the Gold-
berg House design in Rydal, Pennsylva-
nia, United States, by Louis I. Kahn
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PROGRAM DOCUMENTATION

Program documentation is very important for software development and maintenance (Souza et al., 

2005). Unfortunately, writing documentation is perceived as a tiresome task and thus avoided. This 

negatively affects software development in general and GD in particular. In the current state of 

GD, program documentation is generally poor, making it very difficult not only to understand any 

non-trivial GD program, but also to share, adapt, and extend such programs.

In fact, the little documentation that does exist comes in books and research papers, where frag-

ments of programs (McCullough, 2006, Silver, 2006, Preisinger, 2013, Hemmerling, Marco and Lemberski, 

2012) or even entire programs (Williams, Chris J. K. and Kontovourkis, 2008) are proudly presented as il-

lustrations or even used as background images. While in many cases these do achieve interesting 

aesthetic results (Miller, 2011), as is visible in (Figure 3), their explanatory power is limited, and the 

program that is being illustrated is, in general, much larger than what can reasonably fit in one or 

two pages. This forces authors to drastically zoom out the program, rendering it unreadable (Castro 

e Costa, 2012) or to present only a handful of small program fragments (Buell et al., 2011), leaving the 

rest undocumented. In the end, these programs are not useful as program documentation: they 

are merely used to show the kind of programming that is used (for example, textual or visual) or 

the degree of complexity reached in the elaboration of the GD program.

When program documentation is poor, obsolete, or absent, the remaining option is to study the 

program itself, a process known as program comprehension.

PROGRAM COMPREHENSION

Program comprehension is the process of acquiring knowledge about a program (Rugaber, 1995), 

which allows us to create a mental model of the program’s structure and behavior. This is a 

necessary step before making any modifications to the program. When there is not enough docu-

mentation, this mental model must be constructed from reading the program. Unfortunately, due 

to the large amount of detail required by current programming languages, designers must spend 

a significant mental effort to extract the relevant architectural ideas from the irrelevant details.

ILLUSTRATED PROGRAMMING

The complete Grasshopper program for 
the Hangzhou Tennis Stadium
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In the field of GD, the relevant architectural ideas are conveyed in 

the form of geometric models. In order to adapt the program to 

generate a different geometry, it is first necessary to understand 

the relationship between the program and the generated model.

It is thus important to correctly identify which part of the program 

is responsible for a given part of the generated model and which 

parts of the model were generated by a given part of the program. 

This identification is normally not trivial, but, as we will show, it 

can be drastically improved with adequate tools.

ILLUSTRATED PROGRAMMING

In order to (1) mitigate the problem of lack of documentation 

and (2) improve program comprehension, this paper proposes 

Illustrated Programming (IP), a programming approach that estab-

lishes a correlation between the intended design, the correspond-

ing GD program, and the generated models. This correlation 

encompasses two independent but related ideas:

1. Sketch-program correlation, where sketches embedded direct-

ly in the program document the correlation between architectural 

concepts and the corresponding parts of the GD program

2. Program-model correlation, where the Integrated Development 

Environment (IDE) allows the user to identify which parts of the 

program are responsible for which parts of the generated model 

and vice-versa

In short, the sketch-program correlation provides an explanation 

for the structure of a GD program whereas the program-model 

correlation provides an explanation for its behavior. In the next 

sections we detail these two aspects of IP and explain its imple-

mentation in Rosetta, a development environment for portable 

Generative Design (Lopes, José and Leitão 2011).

SKETCH-PROGRAM CORRELATION

In the past, there were attempts in the field of software engi-

neering to improve the quality of program documentation, most 

prominently, literate programming, a programming paradigm that 

promoted the fact that programs are written for people first and 

foremost, and that documentation should be emphasized just as 

much as code. Unfortunately, these attempts did not reach the in-

tended goals, mainly because writing good documentation takes 

a considerable amount of time and effort. 

However, the reality in architecture is quite different from that in 

software engineering: it is part of the design process to produce 

documentation in the form of sketches. This means that it is not 

necessary to write huge amounts of textual documentation to ex-

plain a GD program. We only need to annotate the already existing 

sketches and combine them with the program, thus providing 

visual explanations of what the program is supposed to do.

(Figure 4) shows Rosetta, which runs in DrRacket (a descendant of 

DrScheme (Findler et al., 2002), implementing this process. In the image, 

we can see sketches developed by the designer for the Atomium 

building, that explain to the programmer the intended design, along-

side the program that implements it. Note the annotations on the 

sketches, which clearly identify the parameters of the program.

Although, in many cases, a designer and a programmer are a same 

person, this is not strictly necessary. Actually, this approach also 

promotes collaborative design processes, where each participant 

assumes a different role (Santos et al., 2012). In the presented case, the 

designer and the programmer were in fact in two different continents.

Using sketches as documentation and combining them with the GD 

program allows us to establish a Sketch-program correlation. However, 

this correlation does not tie in any way the program code with the pro-

duced 3D model, which we discuss in the following section.

PROGRAM-MODEL CORRELATION

In GD, the designer interacts with a computer program, which 

can be seen as an intermediary between the concept the design-

er wants to achieve and the geometric model produced by that 

Two strips of an illustrated program containing the initial sketches, the source code, 
and also a final rendering

4



295

program. However, current programming languages require a large amount of details, which are 

directly related to the programming language and not to the design. Therefore, they complicate 

programs and interfere with their comprehension, making it harder to understand the relationship 

between program and the generated geometric model. In order to overcome this problem, we 

resort to the concepts of traceability and immediate feedback.

TRACEABILITY

Traceability is the ability to establish a relationship between the elements of the program and those 

of the model, and it is particularly important for program comprehension, maintenance, and debug-

ging. Without it, it can be difficult to understand the causes of errors, the changes needed to adapt a 

GD program to different purposes, or the impact of changes to a program.

Various techniques have been employed to improve traceability in GD. For example, in Grasshopper, 

when the user selects a component that generates geometry, the corresponding part in the model 

is highlighted. Even more helpful would be the converse association, that is, selecting a shape in the 

model to automatically highlight the corresponding program component, but, unfortunately, this is 

not supported.

Moving from visual to textual programming languages, such as, RhinoScript or AutoLisp, the situ-

ation becomes considerably worse. In general, there is no traceability at all, at least, not one that 

relates the program with the model.

ILLUSTRATED PROGRAMMING

Relating program expressions to the gen-
erated shapes. The highlighted cylinders 
(on the left, in yellow) are generated by 
the highlighted program text (on the right, 
in blue).
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In order to improve GD traceability, we implemented in Rosetta a bidirectional link between the 

program and the model. Starting from the model, it is possible to point to some shape element and 

immediately identify the part of the program that was responsible for its creation. Starting from the 

program, it is possible to identify which elements of the model were generated from each element 

of the program. This is shown in (Figure 5) and (Figure 6).

(Figure 5) illustrates a typical scenario where the user selects an expression in the program and 

Rosetta shows the set of shapes that resulted from that expression. Note that this set contains all 

shapes that were created by the expression during the complete execution of the program.  

(Figure 6) shows navigation in the opposite direction: selecting an element of the model in the CAD 

tool instructs Rosetta to highlight the program elements that were responsible for its creation.

 

Note that the correlation between the program and the generated model allows the designer to 

use both approaches at the same time, moving from one to the other as he sees fit, thus speeding 

up the comprehension process. Moreover, traceability can be selectively enabled on a per-module 

basis. As a result, modules for which traceability is enabled highlight the entire trace, whereas, mod-

ules for which traceability is disabled are treated as a black-box, that is, only the entry/exit points are 

shown. This is especially useful for reducing the amount of visual noise in the highlight and focus 

only on the parts of the program that are relevant.

The current implementation of traceability uses instrumentation, which consists of adding instruc-

tions to the program such that each entry/exit point of a function can be recorded and later recon-

structed to show a trace. Program performance is sensitive to this technique because the more 

entry/exit points exist the more instrumentation is used. For example, a program that produces hun-

Relating shapes to the program expres-
sions that generated them. The highlight-
ed cylinders (on the left, in yellow) are 
generated by the highlighted program 
flow (on the right, using red arrows).
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dreds of shapes in a single function will run faster than a similar program that produces the same 

shapes spread across hundreds of functions. At the moment, we are working on this problem and 

intend to improve performance in the future.

IMMEDIATE FEEDBACK

Traceability allows an architect to understand the correlation between a GD program and the generat-

ed model. However, it does not allow the designer to easily understand the correlation between the 

program inputs and outputs. To this end, the program must be re-executed for each different set of 

inputs and the model re-visualized, a slow-pace process that will bore even the most patient architect. 

Immediate feedback attempts to solve this problem by allowing the designer to quickly visualize the 

impact of changes to the program inputs. With this mechanism, the designer adjusts the program in-

puts, which have an immediate effect on the generated model, until this model reflects his intentions. 

This not only allows for better correlation between the program and the model but also allows design-

ers to endeavor in design exploration.

Many design tools acknowledge the usefulness of immediate feedback. This can be seen in the abili-

ty of some GD tools, such as, Grasshopper and Rosetta, to connect program inputs to specialized wid-

gets, such as sliders, that react to changes by recomputing the generated design. Each change in a 

slider causes Rosetta to recompute the design. However, this re-computation process only operates 

in real time for very simple GD programs. Complex programs can take a considerable amount of time 

to re-compute and the interactive use of input widgets can become annoying, a problem that affects 

both Grasshopper and Rosetta.

ILLUSTRATED PROGRAMMINGLEITÃO, LOPES, SANTOS

Using sliders to interactively generate 
different models. The examples are, from 
left to right, Orthogonal Cones, Moebius 
Truss, and ScrIPtecture.
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Unfortunately, this problem cannot be easily solved because not all 

program operations can compute in constant time. A more reason-

able assumption is that computation time grows linearly with the 

input size. This is what happens, for instance, with Grasshopper com-

ponents that map a given operation over a sequence of values: we 

can expect the computation time to be at best proportional to the 

length of the sequence. However, in the case of multiple sequences 

operated in cross-reference, the computation time becomes at best 

polynomial, making it difficult to have immediate feedback. Adding 

recursion to the program can make it more difficult still, as it opens 

the door for computations that require exponential time (or worse). 

As a result, immediate feedback will never scale to arbitrarily large in-

puts, particularly when we depend on CAD tools that were designed 

for the speed of human operation, and not for the large volume of 

operations generated by GD programs.

This situation can be improved by sidestepping most of the func-

tionality of traditional CAD tools and focusing only on the generation 

and visualization of a geometric model. To this end, Rosetta includes 

a backend that does not depend on a full-fledged CAD application. 

Instead, it connects almost directly to the graphics device of the 

computer, using the OpenGL graphics library. (Figure 7) shows sever-

al Rosetta programs and the corresponding models in this backend.

This backend allows much faster rendering and, as a result, the 

designer can enjoy immediate feedback for larger inputs and more 

complex designs. Once satisfied with the design, he or she can then 

switch to a normal CAD backend, such as, Rhinoceros or AutoCAD, 

and continue working as before. Note that, by using Rosetta, switch-

ing backends does not entail any change to the GD program being 

developed. (Table 1) presents the time needed by different backends 

for updating identical geometry, clearly showing that the OpenGL 

backend is considerably faster than the others.

 

Example/

Backend

AutoCAD Rhino OpenGL

Orthogonal 

Cones

1022 191 1

Moebius 

Truss

24253 6094 217

ScrIPtecture 10712 2994 67

Table 1: Time (in milliseconds) needed to update the generated design. 

At this moment, the OpenGL backend is still being developed and 

only supports a subset of the functionality that is provided by the 

other backends. However, our evaluation which is summarized in 

(Table 1) shows promising results.

RELATED WORK

The idea of Illustrated Programming was inspired both by Literate 

Programming (Knuth 1984) and Learnable Programming (Victor 

2012a, 2012b). 

Literate Programming (LP) is a programming paradigm invented by 

Donald Knuth in 1984. At that time, substantial improvements 

had been made in programming methodology but little progress 

had been made in program documentation. To significantly 

advance this aspect of programming, Knuth advocated that pro-

grams should be considered works of literature, written using 

prose and a good presentation order, for a human audience. 

Then, two different tools were used: weave produced a nicely 

formatted and indexed document for human consumption, while 

tangle extracted and composed the source code so that it could 

be compiled and executed by a computer.

LP was not widely adopted due to the considerable effort need-

ed to write good prose and a good explanation of a program. 

However, GD is a specific domain where sketches already carry 

an important explanatory role and usually exist beforehand. By 

including them in GD programs, we make those explanations 

easily available to anyone that wants to understand the program, 

while avoiding the considerable effort needed for writing exten-

sive textual documentation.

There are other domain specific languages for GD, such as 

Grasshopper, which, given their visual nature, allow to treat the 

development environment as a canvas where both drawings and 

programs can coexist. Unfortunately, for non-trivial programs, 

this canvas tends to become huge, making it difficult to navigate 

within the program and understand its structure and behavior 

(Leitão et al., 2012). It is possible to reduce the apparent size and 

complexity of a program through the use of clusters and wire-

less connections, but it still remains difficult to understand large 

and complex programs.

In the case of textual programming languages used in GD, such 

as RhinoScript, AutoLisp, and DesignScript, they do not support 

the inclusion of images in the code. Rosetta does not have 

this limitation, as it takes advantage of the support provided 

by DrRacket for literate programming (Flatt et al., 2009) and for 

inclusion of images in programs, thus significantly improving 

sketch-program correlation.
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Regarding program-model correlation, we observe that some vi-

sual GD programming languages support, at least partially, trace-

ability and immediate feedback. In the case of traceability, both 

Grasshopper for Rhino and Dynamo for Revit/Vasari can highlight 

the particular geometry generated by a selected set of compo-

nents/nodes. However, the opposite, for example, selecting the 

geometry and highlighting the parts of the code that generated it, 

is still not possible.

Immediate feedback is also supported in Grasshopper and Dynamo 

via sliders and live programming. Each change in a slider re-ex-

ecutes the program using, as input, the values of all sliders, 

allowing the visualization of the impact of different inputs in the 

final output. Live programming re-executes the program on each 

program change, allowing the designer to build the program in-

crementally while visualizing its output. In the domain of textual 

languages for GD, both Autodesk’s DesignScript (Aish, 2012) and 

Rhino’s Yeti (Davis et al., 2012) support live programming. Although 

DesignScript does not fully support sliders, its integration with the 

Dynamo platform overcomes this limitation.

Compared to the previous languages, Rosetta provides almost the 

same features but goes even further in the case of traceability, 

by providing full bi-directionality. Regarding immediate feedback, 

Rosetta contains an OpenGL backend, which is much faster than 

the usual CAD software at the expense of only providing visualiza-

tion services. Rosetta currently does not allow live programming, 

but there are live programming experiments using DrRacket 

(McLean et al., 2010) that we plan to explore in the future.

There are other studies that confirm our point of view, for exam-

ple, Programming-in-the-model (PIM) (Maleki, Maryam and Woodbury, 

2013). PIM uses three views over a single design, namely, the 

model, graph, and the script. The model view is the one normally 

shown in CAD software, the graph view shows the dependencies 

through a node-link diagram similar to that of visual languages, 

and the script view shows the code. These views are synchro-

nized such that changes in one view are reflected in the others. 

Also, the correspondence between elements is highlighted in the 

different views when a component is selected.

There are two important differences between Rosetta and PIM. First, 

PIM promotes live programming, which requires either very simple 

GD programs or inordinate amounts of computational power, while 

Rosetta only uses traceability and immediate feedback on demand, 

thus supporting more complex programs in common computers. 

Second, in spite of the use of multiple views, PIM does not seem to 

allow the inclusion of sketches in the code.

CONCLUSION

Generative Design is reaching a point where the programs are 

becoming so complex that it is now important to develop good 

tools for program documentation and program comprehension.

Based on Literate Programming and Learnable Programming, 

we introduce the concept of Illustrated Programming. This concept 

states that a good GD Programming Environment should help 

the designer in establishing a strong correlation between the de-

sign, the GD program, and the generated model.

To this end, we extended Rosetta, a tool for portable GD, to allow 

the integration of sketches in the GD program and to provide 

traceability and immediate feedback. Sketches are used as pro-

gram documentation, establishing a link between the intended 

design and the program. Traceability allows the visualization of 

the bi-directional link between the GD program and the gener-

ated geometry. Finally, immediate feedback allows the user to 

quickly visualize the impact of changes to the program inputs.

With Illustrated Programming, we improve the quality of GD 

programs by offering a visual explanation of the structure and 

behavior of the program. This facilitates development, under-

standing, and maintenance of programs. Moreover, it promotes 

program sharing, communication, and collaborative work 

throughout the design process.

We are currently evaluating Illustrated Programming in large case 

studies to understand the extension of its benefits and to diag-

nose and correct its limitations. We plan to improve the Sketch-

program correlation with a better mechanism for updating a 

sketch (currently, the updated sketch needs to be manually 

reinserted in the program) and with a visual notification of the 

up-to-date status of program fragments and corresponding 

sketches. Regarding the Program-model correlation, we will 

improve immediate feedback by optimizing the OpenGL backend 

implementation and by introducing live programming. However, 

we believe that the live programming mode should be optional 

and only available in the OpenGL backend so that it can have an 

acceptable performance for larger GD programs
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