FROM VISUAL INPUT TO VISUAL OUTPUT IN TEXTUAL
PROGRAMMING

MARIA SAMMER', ANTONIO LEITAO? and INES CAETANO?
L23 INESC-ID/IST, University of Lisbon

1,23 {maria.joao.sammer|antonio.menezes.leitao|
ines.caetano}@tecnico.ulisboa.pt

Abstract. Algorithmic Design is an approach that uses algorithms
to generate designs. These algorithms are built using either a Visual
Programming Language (VPL) or a Textual Programming Language
(TPL). In architecture, there is a clear propensity to the use of VPLs,
e.g., Grasshopper or Dynamo, over the use of TPLs, e.g., Python or
AutoLisp. In addition to all the user-friendly and interactive features
that make VPLs more appealing to architects, most of them already
integrate components for textual programming. In contrast, TPLs have
not been as successful in incorporating visual features. Given the
user-friendliness of VPLs and the relevance of TPLs for large-scale and
complex designs, we discuss Visual Input Mechanisms (VIMs) in the
context of TPLs. In this paper, we extend previous research in this
area by exploring and implementing the most valuable VIMs in a TPL
adapted for architectural design.

Keywords. Algorithmic Design; Metaprogramming; Textual
Programming Languages; Visual Input Mechanisms.

1. Introduction

Algorithmic Design (AD) is no longer a novelty in architecture. While this
paradigm shift is settling in the common practice of several architecture studios
worldwide, more practical questions regarding its implementation arise. Multiple
studies (Leitdo et al. 2012, Janssen 2014, Zboinska 2015, Leitdo and Santos 2011,
Davis et al. 2011) on the use of textual and visual programming languages in
AD have shown that each one has its own advantages and disadvantages. Visual
Programming Languages (VPLs) are more intuitive to non-programmers due to
user-friendly features that better adapt to the visual nature of architects. On the
other hand, Textual Programming Languages (TPLs) are less intuitive but offer
a clear advantage when dealing with more complex programs. Still, there is a
clear preference among architects to use VPLs. Not only do they provide visual
features that make them more appealing and easier to use, but they also support
textual programming. In contrast, TPLs have a steeper learning curve and do not
integrate the visual mechanisms that bring them closer to their users. In this paper,
we address this issue by proposing Visual Input Mechanisms (VIMs) for TPLs and
demonstrating their usefulness in the context of architectural design.

Intelligent & Informed, Proceedings of the 24™ International Conference of the Association for
Computer-Aided Architectural Design Research in Asia (CAADRIA) 2019, Volume 1, 645-654. © 2019
and published by the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA),
Hong Kong.

646 M. SAMMER, A. LEITAO AND I. CAETANO

2. VPLs vs TPLs

One of the biggest disparities between VPLs and TPLs in AD is related to
user interaction with both the AD program and the associated modeling tool.
In architecture, VPLs are currently more popular than TPLs because of their
friendlier programming environment and the available interactive features. The
use of VPLs is based on drag-and-drop of (1) graphical components, representing
geometry, functions, and other mathematical entities, and (2) the connections
between these components. Using predefined components, architects can focus
on devising the logic of the design exploration, instead of the intricacies of textual
programming abstractions. The resulting process is, therefore, more intuitive
and closer to the manipulation of objects in the real world (Clarisse and Chang
1986). Moreover, VPLs also provide visual interaction mechanisms to more
intuitively change the parameters’ values, e.g., Grasshopper’s Number Sliders
and Boolean Toggles. Finally, some VPLs also integrate useful features for
the development and debugging of AD programs: (1) traceability, to highlight
the geometry generated by a selected component in the modeling tool; and (2)
immediate feedback, to visualize in real time the effects of the changes being made
to the program.

Unfortunately, VPLs tend to suffer from scalability problems. In fact, for
complex programs, not only some of the components have performance problems,
but also the legibility of the AD program tends to deteriorate due to the excess
of components and tangled connections. In this regard, TPLs can improve upon
VPLs as (1) compilation allows an efficient use of computational resources and
(2) abstraction mechanisms aid the program understanding process.

Nevertheless, most TPLs neither provide traceability nor immediate feedback,
instead requiring a cycle where the user (1) writes the program, (2) runs it, and
(3) visualizes the result. However, there are exceptions, such as Processing (Reas
and Fry 2007), that only supports immediate feedback, and Luna Moth (Alfaiate
et al. 2017), a web-based AD Integrated Development Environment (IDE) for
TPLs, that provides (1) user-interaction mechanisms similar to Grasshopper’s
sliders, (2) immediate feedback, and (3) traceability mechanisms that improve
upon Grasshopper’s by being bi-directional. A more extensive but less performant
approach was presented by Leitdo et al. (2014), where the traceability mechanism
also illustrates the control flow of the program.

Furthermore, VPLs also support visual inputs, namely, the ability to use
geometric shapes, such as points, curves, and surfaces, as input of the program.
Unfortunately, this useful feature is absent in most TPLs. In this research, we
focus on the implementation of such mechanisms in the context of TPLs.

3. Visual input mechanisms

A VIM allows the use of manually created geometric shapes as inputs to the AD
program. VIMs are particularly helpful when the intended geometry is easier to
produce by hand or when it is necessary to use already existing geometry, e.g.,
a city plan. It is also possible to use, as input to an AD program, geometry that
was itself produced as output of another AD program, as it happened with the

FROM VISUAL INPUT TO VISUAL OUTPUT IN TEXTUAL 647
PROGRAMMING

development of the Morpheus Hotel (Heijden 2017).

In Grasshopper, there are specific components to import different kinds of
geometries, e.g., the Point component only stores points, which prevents input
errors and makes the program more understandable. These components then give
access to the information about the imported shapes, such as coordinates and center
points, length of lines and vectors, area of surfaces, or volume of solids.

While a program is running concurrently with the document that contains the
imported shapes, these can be changed by the user, who expects the program
to immediately assimilate the changes and recompute the results. However,
this might be a disadvantage, as the program becomes dependent on another
Computer-Aided Design (CAD) document, a drawback that can be overcome
by the Internalize Data option of Grasshopper. This mechanism processes
the geometry that was imported into the component and, assuming it is fixed, it
preserves its information directly in the AD program, thus freeing the latter from
depending on the document that contains the imported geometry.

4. Visual input mechanisms in a textual programming environment

To explore the implementation of VIMs within the textual programming context,
we use a novel textual AD tool, Khepri, that is based on the TPL Julia (Bezanson
et al. 2017). Khepri is a descendant of Rosetta (Lopes and Leitao 2011),
supporting multiple CAD and Building Information Modeling (BIM) backends,
while exploring a different software architecture.

4.1. IMPLEMENTATION

Khepri provides a set of pre-defined operations to facilitate the portable generation
and manipulation of geometry in a series of modeling tools, including Rhinoceros,
AutoCAD, and Revit, among others. More interestingly, Khepri provides
operations to treat shapes created in the modeling tool as an input to the designer’s
textual program, such as select position, select point, select curve,
and select _surface. When one of these operations is executed, Khepri asks
the user to select an entity of the corresponding kind in the modeling tool, which
will be provided as input to the AD program. This facilitates the creation of
programs that do incremental and/or repeated selection of input shapes, while
providing immediate feedback on the user choices. Differently from VPLs, such as
Grasshopper or Dynamo, this approach keeps the program independent from the
CAD documents containing the selected geometry. On the other hand, it does not
establish a live connection between that geometry and the AD program, meaning
that changes in the selected shapes are not taken into account unless they are
re-selected. When that live connection is intended, the AD program only needs to
inform Khepri that there is a dependency on a set of shapes, so that when the input
is changed in the modeling tool, the AD program is automatically re-executed,
reacting to those changes. An advantage of this approach is the ability to separate
two different features: having a dependency on a visual input and making that
dependency a live one.

Finally, for the cases where we want to establish a dependency that is preserved

648 M. SAMMER, A. LEITAO AND I. CAETANO

across different design sessions, Khepri relies on metaprogramming.

4.2. METAPROGRAMMING

Metaprogramming entails the use of programs that generate other programs. In
this research, metaprogramming is used to generate, in the AD program, fragments
that represent existing visual inputs. To that end, Khepri analyzes the visual input
and generates a textual program fragment that, when executed, reproduces that
same input. Thereafter, this fragment can be inserted in the original AD program,
replacing the fragment that asked the user to select the input. Additionally, this
can be done by the programming environment, relieving the designer from the
required textual changes.

There are two different use cases for this feature. The first one emulates
Grasshopper’s Set One... and Set Multiple... operations, where Khepri
generates expressions that designate shapes in some Computer-Aided Design
(CAD) document, making those shapes a permanent part of the AD program. To
that end, the operation capture shape can be used, possibly in combination with
just one selection operation. The result is an expression that univocally identifies
the selected shape. As Khepri supports multiple CAD tools, this expression
specifies, not only the identification of the captured shape, but also the tool being
used. For example, when using AutoCAD, the function generates an expression
similar to captured_shape(autocad, 49675). Given that the identification of
the shapes is preserved between different sessions of AutoCAD, this ensures that
the program references the exact same shape as long as it is executed in the context
of the same AutoCAD document. Similar identifications are used for other CAD
tools.

Finally, when the goal is to isolate the AD program from the document
containing the shapes upon which it depends, we can internalize the shapes
by generating expressions that reconstruct them. As an example, consider a
circle that was previously imported from a document, which the designer wants
to internalize in his AD program. By using Khepri’s internalize shape
operation, presumably after the select curve or capture shape operations,
the selected circle is inspected and then used to generate a program fragment,
e.g., circle(center = xyz(1,2,3),radius = 4). This functionality enables
internalization of imported geometry much alike the Internalize Data feature
of Grasshopper. Therefore, not only can we use the geometry in the modeling
tool directly in the AD program, but we can also incorporate its corresponding
algorithmic definition in other parts of the AD program, allowing the latter to
become independent of the CAD model.

Table 1 illustrates the different dimensions of visual inputs for TPLs and
the corresponding Khepri operations. Given that the dimensions are completely
orthogonal, the different operations can be used in arbitrary combinations, to suit
whatever user interaction is desired.

FROM VISUAL INPUT TO VISUAL OUTPUT IN TEXTUAL 649
PROGRAMMING

Table 1. Visual input operations in Khepri: there are single and multiple input versions of
these functions.

Operation Function in Khepri Dependency on the AD program
Select select_position, select point, select_curve, select surface X
Live Dependence with_shape_dependency v
Capture capture_shape v
Internalize internalize_shape X

5. Evaluation

To evaluate the use of VIMs within TPLs, we developed a case study using both
Grasshopper and Khepri, while considering the same set of parameters and visual
inputs. We exemplify two different moments of the AD process: (1) the use of
VIMs within the program’s definition and (2) the internalization of visual input
data.

The case study is inspired by the Quality Hotel Friends, whose facade design
results from the use of attractors to create a wave-like effect with windows of
different sizes. In this experiment, we consider three visual inputs previously
created in the CAD tool: (1) the surface of the facade, (2) a curve representing
the facade’s thickness, and (3) an attractor point.

5.1. VPL: GRASSHOPPER

Using Grasshopper, the Surface component is used as input to other components
to (1) compute a uniform grid of locations on the surface, (2) filter the outer
locations, (3) measure the distances between the locations and the attractor point,
(4) map the sinusoidal function over those distances, and (5) remap the results to
determine the windows’ radii. During this computation, number sliders can be
used to define the number of circles, the sinusoid’s frequency and amplitude, and
the windows’ minimum and maximum radii. Then, the circles are (6) extruded
along the input curve to create a set of cylinders, which (7) are subtracted from a
parallelepiped, also generated from (8) the extrusion of the imported surface along
the same curve.

Figure 1. Grasshopper program using a visual input mechanism. The imported geometries are:
(A) a surface, (B) a point, and (C) a curve.

650 M. SAMMER, A. LEITAO AND I. CAETANO

Figure 1 shows the Grasshopper program used, highlighting the three visual
inputs required. Figure 2 illustrates both the original design and several variations.

Figure 2. The original geometry generated from the program (A) and some variations: varying
the number of circles (B, C) and moving the point attractor (D, E).

To illustrate Grasshopper’s ability to use multiple geometries as input, the AD
program was adapted to receive six different points to define an attractor curve.
Figure 3 illustrates the application of this version of the program.

Despite the usefulness of Grasshopper’s traceability and immediate feedback,
the example also shows that the scalability of the program is already compromised
at the early stages of its development: any change in the parameters, such as the
attractor points, the number of windows, or their radii, blocks Grasshopper and
Rhino until the computation is finished, making the interaction tiresome.

Lia000009
c-:-uo...
ICXEEEEEL
LLEERREY])
LIEEREXY Y)
L LI

Figure 3. The new inputs of the adapted program: a list of points generating an attractor curve
(A), the original generated geometry (B), and geometrical variations (C and D).

5.2. TPL: KHEPRI

Like Grasshopper, Khepri provides functionalities to (1) process shapes, including
points, curves, and surfaces, and (2) create new geometric shapes, such as circles
and extrusions. In this section, we reproduce the same case study to explain the
options available in Khepri to process visual inputs. For this, we assume again
that a surface was manually created in the CAD tool.

To generate a grid of positions on the surface, we use the higher-order operation
map division that takes as arguments a function, a surface, and the number of

FROM VISUAL INPUT TO VISUAL OUTPUT IN TEXTUAL 651
PROGRAMMING

values in the u# and v dimensions and generates a matrix of positions similarly to
the Grasshopper’s version. Then, we identify the location of the attractor and use
the distance of each surface position to the attractor to influence the radius of each
window.

One of the advantages of using a TPL is the finer control it provides regarding
the computational process. In the case of a VPL based on the dataflow paradigm,
such as Grasshopper, it is harder to exercise that control because the output of a
component immediately affects the components to which it is connected. On the
other hand, with a TPL, it is possible to create computational stages where the
computation only moves to the next stage after some condition is achieved. In the
case of the Khepri implementation, this allows us to postpone the computationally
demanding operations that severely penalized Grasshopper’s performance, and
freely experiment changing the attractor, while immediately seeing the future
location and shape of the windows. When we commit to a final design, the AD
program moves to the next stage, which now creates the actual windows (Figure
4). Given that this stage does not require immediate feedback, it can take as long
as necessary. In the case of Khepri, this allows us to take advantage of its BIM
capabilities so that the same AD program can generate an actual BIM model in,
e.g., Revit. This is illustrated in Figure 5.

The following program fragment illustrates this approach:

output layer = create layer ("Output")

let p = nothing
while (new p = select position()) != nothing
P = new p
delete shapes (output layer)
with (current layer, output layer) do
create circles(facade surface, p)
end
end
create facade (facade_ surface, thickness curve, p)
end

The program uses two variables named thickness curve and facade surface
that reference the visual input being used. The previous program also illustrates
a technique to separate the visual input from the visual output based on the use
of layers: the generated shapes are placed on a dedicated layer named Output
whose contents are erased before each iteration of the attractor placement. Also
visible is the separation between the phase that repeatedly asks the user for the
attractor placement (the while loop) while giving immediate feedback of the
attractor effects, and the phase where the final placement is used to create the
wall and subtract the windows.

652 M. SAMMER, A. LEITAO AND I. CAETANO

B
cammAAAaaa
aaae

SRR ATA LS

cemma.

DA A MIA T S

Figure 4. Computational design stages of the facade: (A) selection of the surface; (B) selection
of different attractor positions and immediate visualization of the results; (C) final design
choice and the generation of a 3D model.

In case we want to faithfully emulate Grasshopper’s behavior, instead of
asking the user for the attractor location, we can ask him to select the point that
represents the attractor. We can then create a dependency between this point and
the creation of the fagade, as illustrated in the next program fragment:

let p = select point()
with shape dependency(p) do
delete shapes (output layer)
with (current layer, output layer) do
create facade (facade surface, thickness curve, p.position)
end
end
end

In this case, each change in the location of the point will trigger the execution of
the program, including the computationally demanding creation of the windows,
evidencing the same performance problems that were visible in Grasshopper.
Finally, to use an attractor curve similar to the one generated in the
Grasshopper program described previously (Figure 3), we can either use
the select positions operation, to ask the user to locate the different
points that define the curve, or we can combine both select points and
with shape dependency operations to create a dependency on all selected
points. In this last case, a change on any of these points will regenerate the fagade.

FROM VISUAL INPUT TO VISUAL OUTPUT IN TEXTUAL 653
PROGRAMMING

P o1 P Er—| V2 TR OB

P —

852 GREGS T QMmO < Y wreio MG GRBEY o BHETC >
PY-L] IR EROTa

Figure 5. BIM model generated by Khepri in Revit after the user decided the final location of
the attractor point.

6. Conclusions

Visual Programming Languages (VPLs) present several features that make them
more appealing to non-experts, such as traceability, visual feedback, and Visual
Input Mechanisms (VIMs). However, they suffer from a scalability problem, as
some of these features stop working for more complex programs. On the other
hand, Textual Programming Languages (TPLs) offer a better alternative to create
and manage complex Algorithmic Design (AD) programs, even though they do not
offer such appealing features. Nevertheless, their potential is a strong argument
to motivate the implementation of visual features within the textual programming
context.

This research demonstrates an implementation of VIMs within a textual
programming environment based on an orthogonal organization of the relevant
features. Besides implementing mechanisms similar to the ones offered by
VPLs, it extends their advantages by (1) supporting a greater design complexity,
(2) providing more flexibility in manipulating and integrating the data of the
imported geometry, (3) increasing the range of combinations of the available
operations, and (4) considerably improving the program’s performance when
dealing with computationally demanding operations by supporting sequential
interaction phases.

In this paper, we evaluated the application of VIMs in the context of VPLs
and TPLs by developing a case study using both scenarios. By comparing the
approaches, we demonstrated that VIMs for TPLs allow the integration of visual
inputs in two dimensions: in correlation with the modeling tool by selecting
or capturing the geometry in the tool, or separated from the modeling tool by
using metaprogramming to internalize the imported geometric data. We also

654 M. SAMMER, A. LEITAO AND I. CAETANO

demonstrated the ability of the chosen textual programming environment - Khepri
- to deliver the output of an AD program as a BIM model.

From the perspective of programming for architecture, we plan to extend the
presented research to also support the use of visual inputs from BIM tools, such as
ArchiCAD or Revit, making the AD programs capable of using the complex data
that is usually associated with BIM objects. These should also include the ability
to internalize this complex data.

Acknowledgements

This work was supported by national funds through Fundacdo para a
Ciéncia e a Tecnologia (FCT) with references UID/CEC/50021/2019 and
PTDC/ART-DAQ/31061/2017, and by the PhD grant under contract of FCT with
reference SFRH/BD/128628/2017.

References

Alfaiate, P., Caetano, I. and Leitdo, A.: 2017, Luna Moth: Supporting Creativity in the
Cloud, ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual
Conference of the Association for Computer Aided Design in Architecture (ACADIA),
72-81.

Bezanson, J., Edelman, A., Karpinski, S. and Shah, V.B.: 2017, Julia: A Fresh Approach to
Numerical Computing, SIAM Review, 59, 65-98.

Clarisse, O. and Chang, S.K. 1986, Vicon: A Visual Icon Manager, in S.K. Chang, T. Ichikawa
and P.A. Ligomenides (eds.), Visual Languages. Management and Information Systems,
Springer, Boston, MA, 151-190.

Davis, D., Burry, J. and Burry, M.: 2011, Understanding visual scripts: Improving collaboration
through modular programming, International Journal of Architectural Computing, 09(04),
361-376.

Heijden, R.V.D.: 2017, “The Morpheus Hotel: From Design to Production: Live Webinar” .
Available from <https://vimeo.com/203509846> (accessed Nov. 13, 2018).

Janssen, P.: 2014, Visual Dataflow Modelling: Some Thoughts on Complexity, Fusion -
Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture
and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne,
305-314.

Leitao, A., Lopes, J. and Santos, L.: 2014, Illustrated Programming, ACADIA 2014: Design
Agency, Proceedings of the 34th Annual Conference of the Association for Computer Aided
Design in Architecture (ACADIA), Los Angeles, USA, 291-300.

Leitdo, A. and Santos, L.: 2011, Programming Languages For Generative Design: Visual or
Textual?, Respecting Fragile Places: 29th eCAADe Conference Proceedings,, University
of Ljubljana, Faculty of Architecture (Slovenia), 139-162.

Leitdo, A., Santos, L. and Lopes, J.: 2012, Programming Languages For Generative Design: A
Comparative Study, International Journal of Architectural Computing, 10(1), 139-162.
Lopes, J. and Leitdo, A.: 2011, Portable generative design for CAD applications, Integration
Through Computation - Proceedings of the 31st Annual Conference of the Association for

Computer Aided Design in Architecture, ACADIA 2011, 196-203.

Reas, C. and Fry, B.: 2007, Processing: a programming handbook for visual designers and
artists, The MIT Press, Cambridge, Massachusetts & London, England.

Zboinska, M.A.: 2015, Hybrid CAD/E platform supporting exploratory architectural design,
CAD Computer-Aided Design journal, 59, 64-84.

