ReAD

Algorithmic Design (AD) creates designs through algorithms. AD allows flexible exploration and optimization of complex designs. However, the development of AD programs requires considerable time and expertise. ReAD introduces four mechanisms to help develop AD programs. Mockups are presented below, showcasing the generation of the tilted beams of the Isenberg Innovation Hub building (BIG Architects, 2016).

The AD program, on the left, illustrated on the right

Traceability
Identification of the model parts produced by selected program parts, and vice-versa, to better perceive the program-model relationship

Modeling Tool
line(xy(-25.0, -1.7), xyz(-24.9, -1.7, 9.0)) line(xy(-25.0, -3.3), xyz(-24.8, -3.3, 9.0)) line(xy(-25.0, -5.0), $x y z(-24.5,-5.0,9.0))$ line(xy(-25.0, -6.7$), \operatorname{xyz}(-24.1,-6.7,9.0))$ line(xy(-25.0, -8.3), xyz(-23.6, -8.3, 9.0)) line(xy(-25.0, -10.0), xyz(-22.9, -10.0, 9.0)) line (xy(-25.0, -11.7), xyz(-22.1, -11.7, 9.0)) line(xy(-25.0, -13.3), xyz(-21.1, -13.3, 9.0)) line(xy(-25.0, -15.0), $x y z(-20.0,-15.0,9.0))$ line(xy(-25.0, -16.7), $x y z(-18.6,-16.7,9.0))$ line (xy(-25.0, -18.3), $x y z(-17.0,-18.3,9.0))$ line (xy(-25.0, -20.0$), \operatorname{xyz}(-15.0,-2 \theta .0,9.0))$
AD Tool

line($x y(-25.0,-1.7), x y z(-24.9,-1.7,9.0))$ line($x y(-25.0,-3.3), x y z(-24.8,-3.3,9.0))$ line(xy(-25.0, -5.0), xyz(-24.5, -5.0, 9.0)) line(xy(-25.0, -6.7), xyz(-24.1, -6.7, 9.0)) line(xy(-25.0, -8.3), xyz(-23.6, -8.3, 9.0)) line(xy(-25.0, -10.0), xyz(-22.9, -10.0, 9.0)) line(xy(-25.0, -11.7), xyz(-22.1, -11.7, 9.0)) line(xy(-25.0, -13.3), xyz(-21.1, -13.3, 9.0)) line(xy(-25.0, -15.0), xyz(-20.0, -15.0, 9.0)) line(xy(-25.0, -16.7), xyz(-18.6, -16.7, 9.0)) line(xy(-25.0, -18.3), xyz(-17.0, -18.3, 9.0)) line(xy(-25.0, -20.0), xyz(-15.0, -20.0, 9.0)) AD Tool

beams(radius, amplitude, height, n_beams, thickness) = for $i \in 1: n _$beams
let $\mathrm{d}=$ radius/n_beams*
$\alpha=\arcsin (\mathrm{d} /$ radius $)$
P1 = perpendicular(pol(radius, amplitude), d)
P2 $=\operatorname{cyl}($ radius, amplitude $+\alpha$, height)
rectangular_prism(P1, P2, vy(d* 0.1), thickness)
end
end
1 beams(25, pi, 9, 15, 0.4)
2 beams(25, pi, 9, 10, 0.4)
3 beams(25, pi, 15, 15, 0.4)
4 beams(25, pi, 15, 10, 0.4)
AD Tool

Selecting a beam (on the left) highlights the corresponding program parts (on the right)

The program on the right was extracted from the model on the left
eams(radius, amplitude, height, n_beams, thickness) $=$ for i \in 1:n_beams
let d = radius/n_beams*i
$\alpha=\arcsin (d /$ radius $)$
P1 = perpendicular(pol(radius, amplitude), d) P2 $=$ cyl(radius, amplitude $+\alpha$, height) rectangular_prism(P1, P2, vy (d* $\theta .1$), thickness) end
end
beams(25, pi, 9, 15, 0.4)

AD Tool

The program on the left, which is the refactoring of the extracted program (above), can generate variations of the building (on the right)

