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Abstract

This work examines how human problem solving can be modeled by neural net-
works. Within cognitive science there are two approaches of modeling cognition:
the symbolical and the pictorial or vectorial approach. In the symbolical approach
cognition is viewed as symbol manipulation. Symbolical representation offers the
advantage of flexible representation of structural knowledge, which is essential
for problem solving. Because of this, symbolical representation is mainly used
for modeling problem solving. However, symbolical representation has several
weaknesses: an inability to deal with information that is fuzzy, probabilistic or
noisy; a lack of robustness when processing information; difficulties to perform
work in parallel. Symbolical representation is also particularly weak at learning
from experience. These weaknesses of the symbolical approach are, on the other
hand, advantages of the vectorial representation used by neural networks. How-
ever, vectorial representation is weak in the area of representation of structural
knowledge. Consequently vectorial representation is primarily used in the domain
of pattern recognition, rather than in the domain of problem solving.

To answer the question of how the human brain, which is composed of real
neural networks, can solve problems, one can either try to map the symbolical
approach to neural architectures, or try to build a bridge between the symbolical
and vectorial approach used by neural networks. This bridge must offer flexibility
of symbol manipulation and the advantages of computation in geometrical space.
Categorial representation fuses the properties of symbolical and vectorial repre-
sentation, providing a structure of knowledge which allows its manipulation, as
well as containing a holistic vectorial representation of knowledge which enables
the principle of similarity. Categorical representation offers the linkage between
both approaches and enables the modeling of human problem solving behavior
with artificial neural networks, which are models of the real neural networks of
the human brain.

An important symbolical model of human problem solving is the production
system. It is composed of a set of rules which models human long term memory,
and a working memory which contains a description of the state in a problem
solving process and which models human short term memory. States are described
symbolically. Whenever a rule is applicable, it changes the contents of the working
memory. A problem is described by the rules in the long term memory, by the
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initial state, and by the desired state. The solution to the problem is represented
by a chain of the rules which successively change the state from the initial state
to the desired state. To find this solution a search for the right sequence of rules
is performed.

Neural networks model associations in which a mapping from one vector space
to another is performed. By usage of categorical representation which allows the
representation of structural knowledge, it is possible to describe the transition
between such represented states by associations. In this case, a problem is de-
scribed by the associations in the long term memory, by the initial state, and
by the desired state. The solution to the problem is represented by a chain of
the associations which successively change the state from the initial state to the
desired state. The associative computer model is a new model which is able
to successfully determine the correct chain of associations which represent the
solution to the problem.

The associative computer distinguishes itself from the pure production system
in to ways.

e First, because it offers not only the hypothesis of how human problem solv-
ing is performed, but also the additional hypothesis of how this is actually
performed in the real human brain.

e Secondly, it distinguishes itself significantly from the symbolical approach
by additional abilities which result from the usage of neural networks and
distributed representation, abilities which improve the algorithmic behavior
of the model.

The model of the associative computer is developed in evolutionary steps.
Simpler models are examined first and after their examination, they are integrated
into more complex models. The behavior is examined empirically.

First, the neural associative memory is examined, because it is the basic build-
ing block of the succeeding models. An initial model composed of associative
memories which performs associative categorization is introduced. Already even
in this uncomplicated application, the main advantages of associative computa-
tion principles are demonstrated, namely fast computation linked with toleration
of errors.

Categories are shown to be the basic building blocks of knowledge representa-
tion when human problem solving is simulated by neural networks. Distributed
representation and similarity are the natural properties of categorical representa-
tion and it is these properties which distinguish categorical representation from
symbolical representation. Verbal categories are represented by features of dif-
ferent salience. The quality criterion represents a rating in the presence of a
category. Visual categories represent the state of the world by pictures. Simi-
larity is used when uncertain knowledge is represented, without the need of an
additional calculus. A heuristic function which can speed up the search during



the problem solving stage also results from the similarity principle of categorical
representation.

A neural model for a deduction system based on the assembly theory is in-
troduced. The system consists of several neural associative memories which are
organized in a hierarchical way. The problem space is represented by static
connections between them. The knowledge is represented by a taxonomic ar-
rangement of verbal categories. An availability heuristic is defined which models
the effects of priming emphasis and forgetting. An availability heuristic offers
a combination of the frequency with the actual likelihood of the presence of a
verbal category. The model learns to favor those categories which often lead
to a successful goal and this may help to speed up the search. Three applica-
tions are presented. The representation and access of large knowledge bases is
demonstrated by the system Jurassic composed of 423 rules arranged in a directed
acyclic graph of a depth of five. The system helps the paleontologist to determine
creatures from uncertain knowledge. Experiments with the availability heuristic
in which parts of the knowledge base are primed or forgotten are performed.

A neural model for a reaction system based on the biological and psycho-
logical assembly theory is introduced, the associative computer. The associative
computer uses picture representation rather than symbolic representation to per-
form planning. Picture representation allows for the presence of noise and also
enables learning from examples. The introduced permutation associative mem-
ory recognizes and executes associations. It solves two important problems which
arise in the domain of neural networks. First, the traditional associative memory
can not learn several possible associations which arise from a single input. The
second problem is the binding problem which determines how to connect all sepa-
rated fragments of a complex object. Picture representation leads to the pattern
heuristic which speeds up the search. The intuitive idea that a state represented
as a picture is nearer to a desired state represented also as a picture, the more
similar those pictures are, is confirmed statistically. The solved problems are
used to significantly speed up the search of related problems. Due to picture rep-
resentation, learning from examples can be performed. The information supplied
by sensors during problem solving can often be “noisy” or incomplete. Noise can
also result from faulty hardware. For example, the cameras of a robot can supply
noisy pictures, such as when the sensors of a space probe have a malfunction.
In this case, it is important that the computing system does not collapse. It is
shown that the associative computer is a robust model and can tolerate noise to
some extent.

A model which attempts to explain the process of human problem solving
must not be constrained to only one area. It should have the same behavior in
different domains. Several exemplary domains which are well known and exten-
sively studied in Artificial Intelligence are examined. It is shown that the used
representation of the associative computer is not constrained to a special domain
through examples of three different domains.
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The human ability to process images and understand what they mean in
order to solve a problem holds an important clue to how the human thought
process works. This clue is examined by empirical experiments with the associa-
tive computer. One general conclusion from the experiments is the claim that it
is possible to use systematically associative structures to perform reasoning by
forming chains of associations. In addition, besides symbolical problem solving,
pictorial problem solving is possible. It is, however, often helpful to use picture
representation which orients itself on the real world when human behavior is sim-
ulated. This predication is motivated by interpretation of uncertainty with noise
in pattern representation and by the three theses which sustain themselves by
the experiments presented in this work.

Thesis 1 Shape similarity between representation of states through visual cate-
gories is significantly similar to the distance in the problem space.

Thesis 2 Representation of states through visual categories enables the access of
knowledge which was formed by learned experience during problem solving.

Thesis 3 An adequate model of human thought uses the flexibility of similarity-
based inference and the compositionality and certainty of rule-based inference.

A coherent research program is presented which resulted from the synthesis of the
methods of Artificial Intelligence and Neurocomputation. This research program
could be used as a basis for further examination.



Zusammenfassung

In dieser Arbeit wird untersucht, wie man das menschliche Problemlésen mit
neuronalen Netzen simulieren kann. Innerhalb der Kognitionswissenschaft gibt es
zwei Ansatze, mit denen man die kognitiven Leistungen des Menschen modelliert:
den symbolischen Ansatz und den bildlichen oder vektoriellen Ansatz.

Der symbolische Ansatz identifiziert die kognitiven Leistungen des Menschen
mit der Manipulation von Symbolen. Die symbolische Repréasentation bietet den
Vorteil einer flexiblen Darstellung des strukturierten Wissens, welche eine not-
wendige Voraussetzung fiir das Problemlosen ist. Sie wird deshalb vorwiegend zur
Modellierung des Problemlosens verwendet. Die symbolische Reprasentation zeigt
jedoch einige Schwachen: z.B. beim Umgang mit ungenauer oder verrauschter In-
formation sowie beim Lernen aus Erfahrung. Die symbolische Reprasentation ist
auch weniger geeignet flir eine robuste und parallele Informationsverarbeitung.

Diese Schwéchen sind die Starken der vektoriellen Repréasentation, wie sie
von den neuronalen Netzen verwendet wird. Die vektorielle Reprasentation zeigt
jedoch Schwichen bei der Repréasentation des strukturierten Wissens und deshalb
wird sie vor allem in dem Gebiet der Mustererkennung und nicht in dem Gebiet
des Problemlosens verwendet.

Um die Frage zu beantworten, wie das menschliche Gehirn, das aus neuro-
nalen Netzen aufgebaut ist, Probleme losen kann, konnte man entweder versu-
chen, den symbolischen Ansatz auf die neuronalen Netze abzubilden, oder eine
Verbindung zwischen dem symbolischen und dem vektoriellen Ansatz, der von
neuronalen Netzen verwendet wird, zu finden. Diese Verbindung sollte die Fle-
xibilitdt der Manipulation der Symbole und die Vorteile des Rechnens in einem
geometrischen Raum beinhalten. Die kategorielle Reprasentation verbindet die
Eigenschaften der symbolischen und der vektoriellen Reprasentation, sie liefert
sowohl eine Strukturierung des Wissens, so das es manipuliert werden kann, als
auch eine ganzheitliche vektorielle Reprasentation des Wissens, welche das Prin-
zip der Ahnlichkeit impliziert. Die kategorielle Reprasentation erméoglicht durch
die Verbindung zwischen den beiden Anséitzen die Modellierung des menschlichen
Problemlosens mit kiinstlichen neuronalen Netzen.

Ein Produktionssystem ist ein wichtiges Modell des menschlichen Problem-
l6sens. Es ist zusammengesetzt aus der Menge der Regeln, die das menschli-
che Langzeitgedachtnis modellieren, sowie dem Arbeitsspeicher, welcher die Be-
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schreibung des Zustandes wiahrend des Problemlosens enthalt und das mensch-
liche Kurzzeitgedachtnis modelliert. Zusténde werden mit Hilfe von Symbolen
dargestellt. Immer wenn eine Regel ausfithrbar ist, verandert sie den Inhalt des
Arbeitsspeichers. Ein Problem wird durch die Regel im Langzeitgedéachtnis, so-
wie durch den Anfangszustand und den gewiinschten Zustand, beschrieben. Die
Losung eines Problems wird durch eine Folge von Regeln dargestellt, die den An-
fangszustand nacheinander in den gewiinschten Zustand iiberfithren. Um diese
Losung zu finden, wird eine Suche nach dieser Folgensequenz durchgefiihrt.

Neuronale Netze modellieren Assoziation durch eine Abbildung von einem
Vektorraum zu einem anderen. Durch kategorielle Reprasentation, die die Re-
prasentation des strukturierten Wissens ermoglicht, kann man die Ubergénge zwi-
schen den so reprasentierten Zustdnden durch Assoziationen beschreiben. In die-
sem Fall wird ein Problem durch Assoziation im Langzeitgedéachtnis, sowie durch
den Anfangszustand und den gewtinschten Zustand beschrieben. Die Losung eines
Problems wird durch eine Folge von Assoziationen dargestellt, die den Anfangs-
zustand nacheinander in den gewtinschten Zustand tiberfiihren.

Der assoziative Computer ist ein neues Modell, welches eine Folge von Asso-
ziationen, die die Losung eines Problems darstellt, erfolgreich bestimmen kann.
Der assoziative Computer unterscheidet sich von einem reinen Produktionssystem
in zwei Punkten.

e Erstens liefert er zusatzlich zu der Hypothese, die aussagt, wie das mensch-
liche Problemlosen durchgefiihrt wird, eine zusatzliche Hypothese driiber
wie dieses tatsachlich im menschlichen Gehirn durchgefiihrt wird.

e Zweitens unterscheidet sich der assoziative Computer hauptsachlich von
dem symbolischen Ansatz durch die zusétzlichen Fahigkeiten, die aus der
Verwendung der neuronalen Netze und der verteilten Reprasentation re-
sultieren: Diese Fahigkeiten verbessern das algorithmische Verhalten des
Modells.

Das Modell des assoziativen Computers wird durch einen evolutiondren Ansatz
entwickelt. Einfachere Modelle werden zuerst untersucht, danach werden sie in
komplexere Modelle integriert. Das Verhalten wird dabei empirisch untersucht.

Zuerst wird der neuronale Assoziativspeicher untersucht, weil er der Grund-
baustein der nachfolgenden Modelle ist. Das erste Modell, welches eine assoziative
Kategorisierung durchfiithrt und welches aus neuronalen Assoziativspeichern auf-
gebaut ist, wird vorgestellt. Bereits diese einfache Anwendung demonstriert einige
der wichtigsten Vorteile des Ansatzes der assoziativen Berechnung, namlich die
schnelle Berechnung verbunden mit der Korrektur von Fehlern.

Falls das menschliche Problemlosen mit neuronalen Netzen simuliert wird,
stellen die Kategorien die Bausteine der Wissensreprasentation dar. Die verteilte
Darstellung und die daraus resultierende Ahnlichkeit sind wichtige Eigenschaf-
ten der kategoriellen Reprasentation, und es sind diese Eigenschaften, die sie
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von der symbolischen Reprasentation unterscheiden. Verbale Kategorien werden
durch Merkmale unterschiedlicher Gewichtung reprasentiert. Das Qualitatskrite-
rium stellt ein Vertrauensmafl in das Vorhandensein einer Kategorie dar. Visu-
elle Kategorien repriisentieren die Zustédnde der Welt durch Bilder. Ahnlichkeit
wird verwendet, um das unsichere Wissen darzustellen, ohne daf} eine zusatzli-
che Rechenvorschrift, die die Unsicherheit separat behandelt, bendtigt wird. Aus
dem Ahnlichkeitsprinzip der kategoriellen Reprasentation ergibt sich auch eine
heuristische Funktion, die die Suche wahrend des Problemlosens entscheidend
beschleunigen kann.

Ein Modell eines neuronalen Deduktionssystems, welches auf der Assemblie-
Theorie beruht, wird vorgestellt. Das System besteht aus einigen hierarchisch
angeordneten neuronalen Assoziativspeichern. Der Problemraum wird durch die
Verbindungen zwischen den neuronalen Assoziativspeichern reprisentiert. Wissen
wird durch die taxonomisch angeordneten verbalen Kategorien repréasentiert. Die
Verfiigbarkeitsheuristik wird definiert, die die Effekte des Priming, der Vorakti-
vierung und des Vergessens des Wissens modelliert. Die Vefligharkeitsheuristik
vereint in sich die Wahrscheinlichkeit fiir das aktuelle Vorhandensein einer verba-
len Kategorie und die Haufigkeit ihres vorherigen Vorhandenseins. Das Modell,
lernt die Kategorien zu bevorzugen, die oft erfolgreich zum Ziel fithrten. Die-
ses kann die Suche beschleunigen. Drei Anwendungen werden vorgestellt. Die
Reprasentation und der Zugriff auf das Wissen einer grofien Wissensbasis wird
durch das System Jurassic demonstriert, welches aus 423 Regeln, die in einem azy-
klischen Graph der Tiefe fiinf angeordnet sind, aufgebaut ist. Das System hilft
einem Paldontologen, Spezies mit unsicherem Wissen zu bestimmen. Experimen-
te mit der Verfiigbarkeitsheuristik, in welchen Teile der Wissensbasis voraktiviert
oder vergessen werden, werden durchgefiihrt.

Mit dem assoziativen Computer wird ein neuronales Modell eines Reaktionssy-
stems vorgestellt, basierend auf der biologischen und physiologischen Assemblie-
Theorie. Dieser assoziative Computer verwendet eine bildhafte Repréasentation
anstatt der symbolischen Repréasentation, um Planungsaufgaben durchzufiihren.
Die bildhafte Reprasentation erlaubt das Vorhandensein von Rauschen, zusatzlich
wird das Lernen aus Erfahrung ermdoglicht. Der eingefithrte Permutationsassozia-
tivspeicher fiihrt erkannte Assoziationen aus. Er 16st zwei wichtige Probleme der
Neuroinformatik. Das erste Problem besagt, dafl gewohnliche Assoziativspeicher
nicht unterschiedliche Assoziationen lernen konnen, die zu einer bestimmten Ein-
gabe gehoren. Das zweite Problem ist das Bindungsproblem, welches bestimmt,
wie unterschiedliche Teile miteinander verbunden werden sollen, um ein Objekt
zu reprasentieren. Bildhafte Reprasentation fithrt zu einer Musterheuristik, die
die Suche beschleunigt. Wenn man einen Zustand durch ein Bild représentiert,
dann besagt eine intuitive Idee, dafizwei verschiedene Zustande umso naher an-
einanderliegen, je ahnlicher sich ihre beiden Bilder sind. Diese Idee wird mit Hilfe
statistischer Untersuchungen bestéatigt. Das Wissen iiber geloste Probleme wird
verwendet, um die Suche dhnlicher Probleme signifikant zu beschleunigen. Durch



die bildhafte Reprasentation wird namlich das Lernen aus Erfahrung ermdglicht.
Falls Sensoren Informationen liefern, die wahrend des Problemlésens benétigt
werden, konnen diese Informationen oft verrauscht oder unvollstandig sein. Rau-
schen ergibt sich zur Zeiten durch fehlerhafte Bauteile, so kénnen die Kameras
eines Roboters verrauschte Bilder liefern oder die Sensoren einer Raumsonde
konnen teilweise defekt sein. Es ist wichtig, dafl das Rechnersystem in diesem
Fall nicht zusammenbricht. Es wird gezeigt, dafi der assoziative Computer ein
robustes Modell ist, welches Rauschen bis zu einem bestimmten Grad toleriert.
Falls man das menschliche Problemlosen erklaren will, darf ein dazugehoriges
Modell nicht nur auf eine Anwendung eingeschrénkt sein. Das Modell soll in der
Anwendung auf unterschiedlichen Gebieten das gleiche Verhalten aufweisen. Es
werden Beispiele aus sehr bekannten Gebiete der Kiinstlichen Intelligenz unter-
sucht. Durch Anwendungen aus drei unterschiedlichen Gebieten wird gezeigt, dafl
die verwendete Reprasentation nicht nur auf ein bestimmtes Gebiet eingeschrankt
ist.

Die menschliche Fahigkeit, Bilder in Zusammenhang mit ihrer Bedeutung fiir
das Prolemlosen zu verstehen, beinhaltet einen wichtigen Wegweiser, der zeigt
wie das menschliche Denken aufgebaut ist. Diesem Wegweiser wird durch em-
pirische Experimente mit dem assoziativen Computer nachgegangen. Ein allge-
meines Ergebnis dieser Experimente ist die Aussage, daff durch den systemati-
schen Gebrauch assoziativer Strukturen das Schluflfolgern durch die Bildung von
Ketten aus Assoziationen durchgefithrt werden kann. Zuséatzlich zu dem symbo-
lischen Problemlosen ist das bildhafte Problemlosen moglich. Bei der Simulation
des menschlichen Problemlosens ist es oft hilfreich eine bildliche Représentation
zu verwenden, welche sich an der wirklichen Welt orientiert. Diese Aussage ist
durch die Interpretation der Unsicherheit mit dem Rauschen in der bildhaften
Reprasentation und durch die drei Thesen motiviert, die sich auf die Ergebnisse
der Experimente dieser Arbeit stiitzen.

These 1 Die Ahnlichkeit, die sich aus der Form der Zustinde ergibt, die durch
visuelle Kategorien reprdasentiert werden, entspricht signifikant hdufig ihrer Ent-
fernung in dem Problemraum.

These 2 Die Reprasentation der Zustande durch visuelle Kategorien ermaoglicht
den Zugriff auf das Wissen, welches aus der Erfahrung des Problemlosens stammi.

These 3 FEin angemessenes Modell des menschlichen Denkens verwendet die Fle-
xibilitat des ahnlichkeitsbasierenden Folgerns und die Sicherheit des regelbasieren-
den Folgerns.

Ein abgeschlossenes Forschungsprogramm wird dargestellt, welches sich aus der
Synthese der Methoden der Kiinstlichen Intelligenz und der Neuroinformatik er-
gibt. Es kann als das Fundament fiir weitere Untersuchungen angesehen werden.



Résumé

Ce mémoire étudie comment il est possible de modéliser la capacité humaine de
la résolution de problemes avec des réseaux de neurones. Dans les sciences cogni-
tives il y a deux approches de modéliser la performance cognitive d’'un homme:
une approche symbolique et une approche image ou vectorielle. L’approche sym-
bolique identifie la performance cognitive avec la manipulation de symboles. La
représentation symbolique a l'avantage d’une flexible description de connaissances
structurées. C’est une condition indispensable pour la résolution de problemes.
Pour cette raison la représentation symbolique est utilisée surtout pour modéliser
la résolution de problemes. La représentation symbolique a pourtant des fai-
blesses: Des faiblesses quand une information inexacte, accidentelle ou bruitée
est présente; la possibilité de modification par I'apprentissage; le manquant de
la robustesse dans le traitement de 'information; le manquant de traitement pa-
rallele de 'information. Les manquants d’une approche symbolique sont d’autre
part les atouts d'une approche vectorielle utilisé par les réseaux de neurones. La
représentation vectorielle a pourtant des manquants dans la représentation de
connaissances structurées. Donc la représentation vectorielle est utilisée essen-
tiellement dans la reconnaissance des formes.

Pour répondre a la question comment le cerveau humain, qui est composé
des réseaux de neurones, résoud des problemes, on pourrait essayer de reproduire
I’approche symbolique par les réseaux de neurones, ou de trouver une liaison
entre la représentation symbolique et la représentation vectorielle utilisée par
des réseaux de neurones. Cette liaison doit contenir une flexibilité de manipu-
lation de symboles et les avantages d’un calcul dans l'espace géométrique. La
représentation catégorielle réunit les qualités de la représentation symbolique et
de la représentation vectorielle, livrant la structure de connaissances qui per-
mettent leur manipulation, mais également une représentation vectorielle globale
de connaissances qui permet le principe de la similarité. Par liaison de ces deux
approches, la représentation catégorielle permet de modéliser la capacité humaine
de résolution de problémes avec des réseaux de neurones artificielles, qui sont des
modeles des réseaux de neurones de cerveaux.

Le systeme de production est un modele important de capacité humaine de
résolution de problemes. Il est composé d’un ensemble de regles, qui modélisent
la mémoire humaine longterme, ainsi que la mémoire vive avec la description
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de 1’état pendant la résolution de problemes, qui modélise la mémoire a court
terme. Les états sont représentés par des symboles. Chaque fois une regle est
exécutable, elle change le contenu de la mémoire vive. Un probleme est décrit par
les regles dans la mémoire a long terme, par 1’état initial et par I'état désiré. La
solution d’un probleme est représenté par une séquence de regles qui transforment
I’état initial dans I’état désiré. Pour trouver la solution une recherche pour cette
séquence a lieu.

Les réseaux de neurones modélisent les association par une transformation
d’un espace vectoriel dans un autre. Parce que une structuration de connais-
sance est possible avec la représentation catégorielle, il est possible de décrire
des transitions entre états avec des associations . Dans ce cas, un probleme est
décrit par les associations dans la mémoire a long terme, par 1’état initial et par
I’état désiré. La solution d’un probleme est représenté par une chaine d’ asso-
ciations qui transforment I’état initial dans I’état désiré. L’ordinateur associatif
est un modele nouveau qui détermine avec succes la chaine d’associations qui
représentent la solution d’un probleme. L’ordinateur associatif se distingue en
deux points du systeme de production.

e En premier lieu il livre une hypothese supplémentaire a I’hypothese qui
explique comment les hommes résoudent des problemes, I’hypothese qui
explique comment actuellement le cerveau humain résoud des problemes.

e En second lieu l'ordinateur associatif se distingue essentiellement d’une
approche symbolique par des facultées additionnelles, qui résultent de
I'utilisation de réseaux de neurones et d’une représentation distribuée. Fa-
cultées qui améliorent la conduite algorithmique.

Le modele d’ordinateur associatif est développé par une approche évolutive.
D’abord les modeles simples sont examinées, apres ¢a ils sont intégrés dans des
modeles plus complexes. La conduite est examinée par une approche empirique.

D’abord la mémoire associative de neurones est examinée, parce qu’elle est un
élément de base des modeles suivants. Le premier modele composé de mémoires
associatives, qui réalise une catégorisation associative, est introduit. Déja cette
utilisation facile démontre plusieurs avantages importants d’une approche du cal-
cul associatif, calcul rapide avec correction des fautes.

Les catégories représentent les pierres de construction au cas ou la
résolution humaine de problemes avec les réseaux de neurones est modélisée.
La représentation distribuée et la similarité sont des qualités importantes
d’une représentation catégorielle. Ce sont ces qualitées qui la distinguent d’une
représentation symbolique. Les catégories verbales sont représentées par des ca-
ractéristiques de différente force. Le critere de qualité représente une mesure de
confiance de la présence d’une catégorie. Des catégories visuelles représentent les
états d'un monde par des images. La similarité est utilisée pour représenter des
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connaissances incertaines, sans utiliser un calcul additionnel qui représente cette
insécurité. Le principe de similarité de la représentation catégorielle est aussi une
fonction heuristique, qui accélere la recherche.

Un modele d’une systeme da déduction neuronale inspiré par la “assem-
bly” théorie est introduite. Le systeme est composé de plusieures mémoires as-
sociatives de neurones arrangées hiérarchiquement. L’espace de problemes est
représenté par les liaisons entre les mémoires associatives. Les connaissances sont
représentées par des catégories verbales qui sont arrangées dans une taxonomie.
La définition heuristique de disponibilité exprime la préactivation (“priming”) et
I’'oubli. L’heuristique de disponibilité réunie la probabilité de la présence d’une
catégorie verbale avec la probabilité antérieure de la présence de cette catégorie
verbale. Le modele apprend a préférer des catégories qui étaient souvent couronné
de succes. Cette préférence accélere souvent la recherche. Trois applications sont
introduites. La représentation et ’acces a une grande base de connaissance est
démontrées par le systeme Jurassique, qui est compose de 423 regles ordonnées
dans un graphe acyclique de profondeur cing. Le systeme serve au paléontologue
pour déterminer une espece a partit de connaissances incertaines. Expériences
avec ’heuristique de disponibilité avec la base de connaissance préactive ou ou-
blie sont réalisées

Un modele d'un systeme da la réaction neuronale inspiré par la biologie
et psychologie “assembly” théorie est introduite. C’est 'ordinateur associatif.
L’ordinateur associatif utilise la représentation avec des images et non pas une
représentation symbolique pour sauver des problemes de la planification. La
représentation avec des images permet la présence d’une information inexacte
ou bruitée et la possibilité de modification par apprentissage. La mémoire asso-
ciative de la permutation exécute des associations. Elle résoud deux problemes
importants des réseaux de neurones. Premier: La mémoire associative traditio-
nelle n’est pas capable d’apprendre différentes associations pour une entrée. Le
deuxieme probleme est le probleme du lien, de déterminer comment joindre les
différentes parties de 'objet. La représentation avec des images conduit a une
heuristique d’images, qui accélere significativement la recherche. L’idée intuitive
que I’ état représenté avec une image est plus proche a un état désiré représenté
également par une image, quand les deux images se ressemblent, est confirmé sta-
tistiquement. La connaissance de la solution de problemes est utilise pour trouver
une solution plus vite pour d’autres problemes similaires. Avec une représentation
qui utilise des images ’apprentissage est possible. Des informations sensorielles
sont souvent inexacte ou bruitée. Les pieces sont souvent plein de fautes, les ca-
meras d’un robot donnent des images avec du bruit, les senseurs d’'une sonde
spatiale sont en panne. C’est important en ce cas qu’un calculateur automatique
ne s’effondre pas. On montre que l'ordinateur associatif est un modele robuste,
un modele qui tolere 'information bruitée jusqu’a un certain degré. Un modele
qui explique la capacité humaine de résolution de problemes ne doit pas étre
restreint & un domaine. Le modele doit avoir la méme maniere d’agir dans des



Xiv

domaines différents. Des exemples de domaines de l'intelligence artificielle tres
connus sont examinés. Par les trois applications de différents domaines on montre
que la représentation n’est pas limitée a un seul domaine. La capacité humaine
de comprendre les images en relation avec leurs signification pour la résolution
de problemes est un guide qui montre comment les hommes pourraient penser.
Ce guide est examiné par les expériences empiriques avec l'ordinateur associa-
tif. Inférer par les chalnes des associations est possible, c’est le premie résultat
général.

En plus de la résolution de problemes symbolique, la résolution de
problemes avec des images est possible. C’est souvent plus favorable d’utiliser
la représentation orienté sur le monde véritable, quand on simule la résolution
de problemes par hommes, la représentation avec des images. Cette déclaration
est motivée par l'interprétation de l'insécurité dans la représentation distribuée
et par les trois theses, qui sont supporte par les expériences de ce mémoire.

These 1 La similarité des images qui représentent des états par des catégories
visuelles correspond leur distance dans l’espace de problemes.

These 2 La représentation des états par des catégories visuelles permet accés
a la connaissance, qui était formée durant la résolution de problemes.

These 3 Un modeéle convenable de la pense humain utilise la flexibilité de la
similarité pendant l'inférence et la certitude de ['inférence avec des régles.

Un domaine de recherche est préparé, construit de la synthese des méthodes
de l'intelligence artificielle et des réseaux de neurones.



Acknowledgements

It has been a very long way from original sketchy ideas to the publication of this
work. I would like to thank the following people, and offer all of them deepest
gratitude. 1 thank my adviser Prof. Dr. Giinther Palm who has influenced my
research in a large way. 1 am very grateful to his support for exploring topics far
away from the mainstream. I thank Prof. Dr. von Henke and Prof. Dr. Miroslav
Kubat for their valuable comments and their commitment to act as referees for
this work, despite their faculty duties. I am grateful to Dr. Wilko Ahlrichs from
the section for biosystematic documentation for discussions about systematics
and biosystematic research databases.

I thank to all my colleagues from the Department of Neural Informatics, they
made the department a fun place to work.

Finally, I would like to thank Christiane, whose patience and encouragement
knows no bounds. My family has been an endless source of support, thanks.

XV



Xvi



Contents

1 Introduction
1.1 Prologue . . . . . . ..
1.2 Motivation and Goals . . . . . . ... ... .. ... ... ...
1.3 Empirical Methods . . . . . . .. ... ... ... .. ... ...,
1.4 Guide to the Reader . . . . . . . .. ... ... L.
2 Associative Neural Memory
2.1 The Lernmatrix . . . . . . . . . .. ...
2.1.1 Learning and Forgetting . . . . .. . ... ... ... ...
2.1.2 Retrieval . . . . .. ...
2.1.3 Analysis . . . . ..
2.1.4 Implementation . . . . . . ... ... oL
2.2 Applications . . . . . ...
2.2.1  Word Recognition . . . . . . ... ... oL
2.2.2  Associative Categorization . . . . . . . .. ... ... ...
2.3 Conclusion . . . . .. ...
3 Representation
3.1 Symbolic representation . . . . ... ... L
3.1.1 Logic and representation . . . . ... ... ... . .....
3.1.2 Operators . . . . . . ...
3.1.3 Rules. . . . .. o
3.1.4 Frames . . . . . . . .. e
3.1.5  Similarity . . . ... ..
3.2 Categorial representation . . . . . . . . ... ...
3.3 Verbal categories . . . . . . . ... ...
3.3.1 Feature Approach . . . . . . . ... ... ... ... ..
3.3.2  Uncertainty and salience . . . . . .. .. ... .. .....
3.3.3 Representation by Associative Memory . . . . . . ... ..
3.3.4 Table of belief values . . . . . . ... ... ... ... ...
3.35 Example . . . .. ...
3.4 Visual Categories . . . . . . . . . .. .. ...
3.4.1 Shape similarity . . . . . ...



xviii CONTENTS
3.4.2 State representation . . . . . ... ... ... ..., 44
3.4.3 “What” and “Where” . . . . .. ... ... ... ... . 45
3.4.4 Associations . . . . ... ... 46

3.5 Conclusion . . . . . . . ... 47
3.5.1 Quality criterion . . . . . . ... ... 48
3.5.2  Verbal categorization . . . . . . ... ... ... ... .. 49
3.5.3 Visual representation . . . . . . ... ... ... ... ... 49

4 Hierarchical Categorization 53

4.1 Production Systems . . . . . ... ... 53
4.1.1 Heuristic function . . . . . . . .. .. ... L. 54

4.2 Deduction systems . . . . ... ... 54

4.3 Hierarchical Categorization . . . . . . . .. ... ... . ... ... 56
4.3.1 Neural deductions system . . . . .. ... ... ... ... 56
4.3.2 Representation by associative memories . . . . . . . . . .. 57
4.3.3 Categorization. . . . . . . . ... ... 59
4.3.4  Availability heuristics . . . . . . . ... 62
4.3.5 Implementation . . . . .. .. .. ... ... ... ..... 64
4.3.6 Query-Reply . . . .. ... .. ... 65

4.4 System Jurassic . . . . . ... 67
4.4.1 Categorization . . . . . . . .. ..o 71
4.4.2 Hypothesis. . . . . . .. ... 72
4.4.3 Priming . . . .. .. 73
4.4.4 Emphasis and forgetting . . . . . .. ... L. 80

4.5 Conclusion . . . . . . . . . 81

5 The Associative Computer 85

5.1 Reaction systems . . . . . . . ... 85

5.2 Problem solvers as parts of bigger systems . . . .. ... .. ... 86
5.2.1 Intelligent planning systems . . . . . . . .. ... ... .. 86
5.2.2  The Production system as a model of human problem solving 86

5.3 Neural reaction system . . . . . . ... ... 87
5.3.1 Permutation associative memory . . . . . ... ... ... 87
5.3.2 Searchchain . . .. ... ... ... ... . ......... 100
5.3.3 Controller . . . . . . . . ... 103
5.3.4 The Associative Computer . . . . . . . ... ... ... .. 105
5.3.5  Pattern heuristics . . . . ... ..o 112
5.3.6 Prediction heuristic . . . . . . . ... ... L. 113
5.3.7 Summary of the first results of the prediction heuristic . . 136
5.3.8 Noise. . . . .. 138
5.3.9 Additional associations . . . . . ... ... 146

54 Conclusion . . . . . . . ... 153



CONTENTS xix

6 Experiments 155
6.1 ABCblocksworld . . . . . ... ... ... ... ... .. ..., 155
6.1.1 Permutation associative memory . . . .. . ... ... .. 155
6.1.2 Pattern heuristics . . . . . . ... ... 157
6.1.3 Tower, few initial states . . . . . . .. ... ... ... .. 160
6.1.4 Tower, most important initial states . . . . . . . . ... .. 171
6.1.5 Additional blocks . . . . .. ... 189

6.2 8-Puzzle . . . . . .. 193
6.2.1 Pattern representation of the 8-puzzle. . . . . . . . . . .. 193
6.2.2 Permutation associative memory . . . .. .. ... .. .. 197
6.2.3 Supervised learning . . . . . ... ... 203
6.2.4 Generalization after supervised learning . . . . . . . . . .. 204
6.2.5 Observations . . .. .. . .. ... ... ... 207

6.3 Robot . . . . . .. 208
6.3.1 Pattern representation . . . . . ... ... ... ... ... 209
6.3.2 Permutation associative memory . . . .. . ... ... .. 212
6.3.3 Unsupervised learning . . . . . . ... .. ... .. .... 216
6.3.4 Generalization after unsupervised learning . . . . . . . .. 222
6.3.5 Learning of all examples . . . . . .. ... ... ...... 223
6.3.6 Noise . . . . . . . . e 227

6.4 Conclusion . . . . . . . ... 229
6.4.1 Associative memories . . . . .. ... L 229
6.4.2 Pattern heuristic . . . . ... ... ... .. 231
6.4.3 Prediction heuristic . . . . .. .. ... 231

7 Comparison to Related Works 233
7.1 Techniques . . . . . . . . . . L 233
7.1.1 Representation . . .. ... ... .. ... .. ....... 233

7.1.2 Binding problem . . . ... ..o 234
7.1.3 Learning search control knowledge . . . . . . . .. .. ... 235

7.2 Neural Systems . . . . . . . ... 237
7.2.1 Statistical methods . . . . . . ... ... L. 237
7.2.2 Partially recurrent networks . . . . . ... ..o 238
7.2.3 Expert networks . ... ... 239
7.2.4 Neural query-reply system . . . . . .. ... ... ... .. 240
7.2.5 First-order predicate calculus neural network . . . . . . .. 241
7.2.6 Dual representation . . . . . .. ... 241
7.2.7 Neural Production systems . . . . . . . ... ... ... .. 241
728 Neurosolver . . . . . . . .. ... .. .. ... . ..., 242
7.2.9 Neural Assembly models . . . . . ... ... ... ... .. 242

7.3 Conclusion . . . . . . . . 243



XX

8 Conclusion
8.1 Summary of central principles and contributions

8.2 Implications . . . . . . .. ... ... ... .....
8.3 Looking ahead . . . . . . . .. .. ... ...
83.1 Search . . ... ... ... ... ........
8.3.2 Speculations . . . . ... ... ... L.
8.4 Associative Computation . . . . . . ... ... .. ..
84.1 Summary . . .. .. ... ...
8.4.2 Epilogue . . . .. ..o

A.1 Statistical tools . . . . . .. ... ...
A.1.1 Hypothesis testing . . .. .. ... ... ...
A12 Thettest . . ... .. .. ... ... .....
Al13 pValue . ... ... ... ...
A.1.4 ¢t statistic for two means . . . . . ... .. ..
A.1.5 Paired t statistic . . . .. .. ... ... ...
A1.6 ErrorBars. . ... ...............

A.2 Object oriented laboratory . . . . . . ... ... ...

A.3 Hierarchical Categorization in System Jurassic . . . .
A3.1 Maiasaura . . . . ... ...
A.3.2 Stenonychosaurus . . . . . .. ... ... ...
A.3.3 Parasaurolophus . . . ... ... ... ....
A.3.4 Structure of the taxonomy . . . . . . .. ..

CONTENTS



CONTENTS xxi



xxil CONTENTS



Chapter 1

Introduction

1.1 Prologue

In this work we will examine how human problem solving [179] can be modeled
by neural networks. Examples of the types of problems adressed include the
determination of some consequence from vague and fuzzy knowledge or the outline
of a sequence of actions which lead to some desired goal. Problems of this kind are
solved by algorithms studied by artificial intelligence. The key idea behind these
algorithms is the symbolic representation of the domain in which the problems are
solved. Symbols are used to denote or refer to something other than themselves,
namely to other things in the world (according to the pioneering work of Tarski
[204, 205, 206]). They are defined by their occurrence in a structure and by a
formal language which manipulates these structures [177, 178, 132, 133]. In this
context symbols do not by themselves, represent any utilizable knowledge. For
example, they could not be used for a definition of similarity criteria between
themselves. The use of symbols in algorithms which imitate human intelligent
behavior led to the famous physical symbol system hypothesis by Newell and
Simon (1976) [135]: “The necessary and sufficient condition for a physical system
to exhibit intelligence is that it be a physical symbol system.”

Artifical neural networks which are simple models of real neural networks of
living animals use mainly vector representation, as it mirrors the way the bio-
logical sense organs describe the world [31]. Vectors define a space in which the
similarity between themselves can be computed. Because of this property, vec-
tor representation stands in contrast to the physical symbol system hypothesis
[45, 36]. Consequently, neural networks are mostly used in the domain of pattern
recognition [70], rather than in the domain of problem solving. Of course, it is
also possible to use a symbolic representation in neural networks, but then some
important properties which characterize neural networks are lost. These proper-
ties include: the ability to deal with information that is fuzzy, probabilistic or
noisy; the ability of adjustment by learning; robustness and parallel work. There-

1
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fore, this work does not examine the reimplementation of symbolic algorithms in
the domain of problem solving by neural networks, but rather examines the use
of vector or pattern based representation and the resulting consequences.

1.2 Motivation and Goals

Currently neural networks are used in many different domains. But are neural
networks also suitable for modeling problem solving, a domain which is tradi-
tionally reserved for the symbolic approach? This central question of cognitive
science is answered in this work. It is affirmed by corresponding neural network
models. The models have the same behavior as the symbolic models. However,
also additional properties resulting from the distributed representation emerge.
It is shown by comparison of those additional abilities with the basic behavior
of the model, that the additional properties lead to a significant algorithmic im-
provement. This is verified by statistical hypothesis testing. The division of the
behavior of the model into basic behavior and additional property behavior cor-
responds to the Michalskis two tier philosophy of concept meaning [120, 121, 89].

This work is motivated by several important theories from the fields of biology,
computer science and psychology. These theories include the biological neural
assembly theory, the psychological categorical representation theory, the biolog-
ical and psychological mental representation theory, and the production system
theory from the domain of computer science. The goal of this work is a neural
problem solving model which gives some insights into how the brain solves certain
problems by forming chains of associations.

Neural assembly theory, which was first suggested by Donald Hebb (1949)
[65], describes the bridge between the structures found in the nervous system
and in a high level cognition such as problem solving. An assembly of neurons
acts as a closed system, and therefore can represent a complex object. Activation
of some neurons of the assembly leads to the activation of the entire assembly,
so that manipulations on the representation of a complex object is performed
(66, 2, 52, 146]. These complex objects are correspond to thoughts. The process
of problem solving is described as the transformation of thoughts by a group of
assemblies [24, 143]. Thoughts are propagated from one assembly to another until
a desired thought, which represents a goal, is reached. The “Associative memory”
is a formal neural net model of this assembly concept [143]. It is formed from a
group of neurons. With these neurons patterns can be stored in such a way that,
when a new pattern is presented, a pattern is formed which closely resembles
the stored patterns by the activation of the whole corresponding assembly. By
forming associations, an associative memory can link together patterns which are
represented by vectors. The idea of describing the human reasoning process as
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the formation of associations is an old idea which can be traced back to Aristotle
(de Memoris et Reminiscenta) [11]. However, even now at the very beginning of
the 21st century, research on complex associative systems is still at the forefront
of research in cognitive science [7].

Thoughts can be understand as the description of complex objects. These
complex objects are structured and formed by different fragments which can
be represented by categories according to cognitive psychology [185]. Categori-
cal representation offers an explanation of how to deal with similarity between
objects. There are two different types of categories: verbal categories and visual
categories. It is a straight forward matter to represent verbal categories by vec-
tors. Vector representation of complex visual categories, however, must adress
the “binding problem”. This is the problem of maintaing the structure neces-
sary for the formation of correlation between different fragments. The biological
“what” and “where” system [88, 156] suggests a solution to this issue.

Productions systems theory describes how to form a sequence of actions which
lead to a goal, and offers a computational theory of how humans solve problems
[133, 229]. Production systems are composed of if-then rules which are also called
productions. The complete set of productions constitute long term memory. Pro-
ductions are triggered by specific combinations of symbols which describe items.
These items represent a state and are stored in short term memory. A compu-
tation is performed with the aid of productions by the transformation from an
initial state in the short term memory to a desired state.

This complex of ideas led the direction of preceding research to the neural net-
work associative computer model. This model solves problems by forming a chain
of associations. The associations are stored in a new assembly concept model,
the “permutation associative memory”, which also solves the binding problem
during problem solving. To allow for learning from experience, an additional as-
sociative memory is used. Learning from experience and the information which
give hints as to which associations should be used (heuristics) result from the
visual categorical representation of the problems. This information is lost if sym-
bolic representation is used instead, and a programmer must append it to the
architecture to achieve the same informed behavior. This additional step is not
always an easy task due to the lack of a corresponding formal method.

Two examples of problems which are solved by the associative computer from
the robot domain follow:

The first example consists of the task of building a tower from a collection of
blocks [136]. A robot arm can stack, unstack, and move the blocks within a
plane on eight different positions at a table. There are two different classes of
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blocks: cubes and pyramids. While additional blocks may be stacked on top of
a cube, no other blocks may be placed on top of a pyramid. The robot arm,
which is represented in the upper right corner, has a gripper that can grasp any
available block. It can move the block to eight different positions on the tabletop
or place it on top of another cube. The states are represented by patterns which
correspond to two-dimensional visual categories. A sequence of the plan is shown
in fig. 1.1.
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Figure 1.1: Planning of the tower building task, guided by similarity of resulting
patterns.

Similarity of resulting patterns to the desired state description pattern of
the tower guides the choice of the robot arm actions. Thus, information which
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guides the robot arm actions is represented in the patterns and would be lost in
a symbolical representation of the states.

The second example shows the world of the robot Clotaire, a robot which can
move from one position to another [43]. One can represent this state symbolically,
for example as position (Clotaire,2), north(1,2), south(2,1), east(1,4). For such
a representation, noise which results from the sensorial map description of the
labyrinth must first be eliminated. The associative computer can deal with noise
in the state description by patterns, as shown in the pattern representation of
Clotaire’s tour from Hangar to Atelier (fig. 1.2).
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Figure 1.2: Planning of the robot task to go from Hangar to Atelier with noise
after learning.

In our example the shortest path is chosen because Clotaier had previously
explored and already learned the labyrinth before.

The associative computer model is a universal neural network model which
can solve many different problems, including some of the well known problems
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from the domain of AI. Among the examples is the “8-puzzle” problem which is
difficult due to nearly “9!” (=362880) configurations [111].

The associative computer model techniques resulted from experiments on ver-
bal categorical representation of hierarchical categorization by neural networks.
The verbal categorical representation by associative memories is an alternative
to other well known uncertainty calculi [76]. During hierarchical categorization
one moves from a more general category to a more specific category until a goal
is reached. One of the tested systems, a system from the field of paleontology for
the determination of dinosaur species out of nearly 340 species, is presented.

Figure 1.3: Tyranonosaurus.

In the example fig.1.3 the observer specified the species by seven features. The
hierarchical categorization is performed by associative memories until no match
of the features to a verbal category is good enough. The match is shown by a
quality criteria (qc) which is a numerical value of the range from -1 (no match)
to 1 (perfect match).

1. certainly two legged

2. certainly not four legged

3. certainly flesh eating

4. certainly big

5. certainly large head

6. certainly dagger like teeth

7. very probably length ten to fourteen m
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! MODULE SAURISCHIAN with qc=-0.33, <1> !¥%x
2) ! MODULE THEROPODS with qc=0.33, <2> !x
I
I

3) ! MODULE CARNOSAURS with qc=0.26, <3> !x*x
4) ! MODULE TYRANNOSAURIDS with qc=0.22, <4> !x
RESULT

TARBOSAURUS with qc=0.26
TYRANNOSAURUS with qc=0.26

5) ! MODULE MEGALOSAURIDS with qc=0.19, <4> !
6) ! MODULE ALLOSAURIDS with qc=0.19, <4> !

7) ! MODULE TERATOSAURIDS with qc=0.18, <4> !
8) ! MODULE SEGNOSAURIDS with qc=0.18, <4> !
9) ! MODULE SPINOSAURIDS with qc=0.17, <4> !
10) ! MODULE CERATOSAURIDS with qc=0.17, <4> !
11) ! MODULE DRYPTOSAURIDS with qc=0.16, <4> !
12) ! MODULE OTHER with qc=0.11, <4> !x

DIMETRODON REPTILE with qc=0.13

13) ! MODULE THERIZINOSAURIDS with qc=0.11, <4> !
14) ! MODULE COELUROSAURS with qc=0.22, <3> !

10)

! MODULE IGUANODONTIDS with qc=0.08, <4> !
41) ! MODULE STAURIKOSAURIDS with qc=0.06, <3> !
42) ! MODULE STRANGE_KILLERS with qc=0.03, <2> !
43) ! MODULE ORNITHISCHIAN with qc=-0.33, <1> !x¥x

sorry, I have no more acceptable answer for You.....

A concern with hierarchical categorization is the use of inexact, missing, or
poorly defined information. This problem is solved in our example by the pattern
representation of the verbal categories. One way which symbolic expert systems
have to address this issue is to attach a numeric weight to the conclusion of each
symbolic rule and to use an uncertainty calculus [76].



8 CHAPTER 1. INTRODUCTION

1.3 Empirical Methods

This work demonstrates how human problem solving can be modeled by neural
networks with the aid of empirical experiments. The experiments were based on
programs generating data which describe the behavior of the simulated models
[33]. Hypotheses about the behavior of the models were tested by statistical
analysis with collected data. The programs were implemented by a software
laboratory which was built using an object oriented approach. Simpler models
were developed and tested first. After their analysis, more complex models were
designed using the resulting knowledge. This approach led to the reduction of
problems in the design phase of the models and software, and also to a notable
reduction of software errors which typically occur in such complex simulations.

1.4 Guide to the Reader

Associative Neural Memory - Chapter 2 This chapter explains the asso-
ciative neural memory, which models the behavior of neural assemblies and is the
basic part of the associative computation models. Its usage is demonstrated on
simple models. For example, the fast associative categorization model offers an
alternative approach to the storage of large amounts of data.

Representation - Chapter 3 This chapter begins with the representation
formalisms which are traditionally used in Al. Predical Calculus, Frames, and
Rules representation offer a way to represent knowledge symbolically. The prin-
ciple of similarity is the core of the verbal- and visual-categorical representation.
Both categorical neural representation formalisms and the resulting principles of
similarity are demonstrated by examples.

Hierarchical Categorization - Chapter 4 Production systems are described
in this chapter. They are the basic working principles of many expert systems.
Based on these techniques, an initial associative computation model which offers
a foundation for a more general model is introduced. The hierarchical categoriza-
tion model is composed of associative memories which are organized hierarchi-
cally. Uncertain knowledge is used in this model for the determination of some
desired verbal categories by moving from more general verbal categories to more
specific verbal categories. During the hierarchical categorization the model learns
to favor these verbal categories which often lead to a goal. This system is illus-
trated by a diagnostic system for the determination of the disorders of a car. The
idea of usage of hierarchical categorization as an interactive instruction system is
demonstrated on a small system for the diagnosis and medical treatment of re-
animation. Finally, a system from the field of paleontology for the determination
of dinosaur species demonstrates the learning of habits by favoring the categories
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which often lead to a goal. In addition, it shows the usage as an expert system
in the biological field of systematics. At the end of the chapter, the drawbacks
which result from the static representation of the search space by the hierarchical
categorization model are described. In addition, the demand for a more flexible
associative computation model is expressed.

Associative Computer - Chapter 5 The hypothesis that production systems
are a model of human-problem solving behavior is the basis of the associative com-
putation model, the associative computer. The associative computer represents
the search space dynamically. It is composed of permutation associative memory
which allows the representation of structured knowledge as well as of a neural
search chain which represents the problem space. The behaviors of the model
such as backtracking, tolerance of noise, representation defined heuristics, and
learning from examples is demonstrated by empirical experiments in a geometri-
cal block world. This block world is composed of two cubes and a pyramid which
are manipulated by a robot arm.

Experiments with the associative computer - Chapter 6 The ABC block
world is demonstrated in this chapter. It is shown that the use of representation
defined heuristics and learning improves the behavior of the model in a statis-
tically significant manner. The associative computer’s representation of the 9
puzzle problem is shown as well as resulting learning from experience. The final
experiments are on a robot in a labyrinth.

Comparison to Related works - Chapter 7 The associative computer
model is compared to connectionistic models. The comparison of the connection-
istic models is structured in localistic connectionistic models, distributed conec-
tionistic models and assembly models.

Conclusion - Chapter 8 In the conclusion the results are highlighted in a
compact form. At the end of the work, the ideas which may guide possible
future research on associative computation and assembly theory are presented.
In Appendix A.1 the statistical tools which are used in the empirical experiments
are explained. Appendix A.2 illustrates the organization of the object oriented
laboratory describes information concerning the implementation of the associative
computer. Appendix A.3 shows some examples of heirarchical categorization.
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Chapter 2

Associative Neural Memory

“Human memory is based on associations with the memories it contains. Just
a snatch of well-known tune is enough to bring the whole thing back to mind.
A forgotten joke is suddenly completely remembered when the next-door neighbor
starts to tell it again. This type of memory has previously been termed content-
addressable, which means that one small part of the particular memory is linked -
associated -with the rest.” Cited from [28], page 104. The advantages of associa-
tive memory compared to the random access memories arise from the following
abilities [143, 70, 8, 85]:

e The ability to correct faults if false information is given.
e The ability to complete information if some parts are missing.

e The ability to interpolate information, in other words if a pattern is not
currently stored the most similar stored pattern is determined.

Associative memory models human memory [144, 32, 50, 192].

2.1 The Lernmatrix

The Lernmatrix, also simply called “associative memory”, was developed by
Steinbuch in 1958 as a biologically inspired model from the effort to explain the
psychological phenomenon of conditioning [193, 194]. Later this model was stud-
ied under biological and mathematical aspects by G. Palm [143, 144, 47, 219].
It was shown that Donald Hebb’s hypothesis of cell assemblies as a biological
model of internal representation of events and situations in the cerebral cortex
corresponds to the formal associative memory model. We call the Lernmatrix
simply “associative memory” if no confusion with other models is possible. The
associative memory is composed of a cluster of units which represent a simple
model of a real biological neuron (see fig. 2.1).

11
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dendites

neuron unit

Figure 2.1: A unit is an abstract model of a biological neuron [114, 144, 70, 139,
169].

The unit is composed of weights which correspond to the synapses and den-
trides in the real neuron. They are described by w;; in fig. 2.2. T is the threshold
of the unit.

The patterns are represented by binary vectors. The presence of a feature
is indicated by a “one” component of the vector, its absence through a “zero”
component of the vector. T'wo pairs of these vectors are always associated and this
process of association is called learning. The first of the two vectors is called the
question vector and the second, the answer vector. After learning, the question
vector is presented to the associative memory and the answer vector difference is
determined. This process is called association. !

2.1.1 Learning and Forgetting

In the initialization phase of the associative memory no information is stored.
Because the information is represented in the weights, they are all initially set
to zero. In the learning phase, binary vector pairs are associated. Let Z be the
question vector and 7 the answer vector, so that the learning rule is:

new __ ,,old
This rule is called the binary unclipped Hebb rule [143]. Every time a pair of
binary vectors is stored this rule is used. Therefore, in each weight of the asso-

ciative memory the frequency of the correlation between the components of the

In the literature often a distinction between heteroassociation and association is made.
An association is present when the answer vector represents the reconstruction of the faulty
question vector. An heteroassociation is present if both vectors are different.
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Figure 2.2: The associative memory is composed of a cluster of units [144, 149].

vectors is stored. This is done to ensure the capability to “forget” vectors which
were once learned. In this case, the following binary anti-Hebb rule [215] is used:

old : old
e Wi — YT, if wi® >0
ig old : old __
wy; if wi® =0

There is also the possibility to delete information described by two vectors:

new 0 lf yzllfj = 1
Wi = o .
K { wil® if yr; =0

2.1.2 Retrieval

In the retrieval phase of the associative memory, a fault tolerant answering mech-
anism recalls the appropriate answer vector for a question vector . To the
presented question vector 7 the most similar learned 7l question vector regard-
ing the hamming distance is determined and the appropriate answer vector ¥
is identified. For the retrieval rule the knowledge about the correlation of the
components is sufficient, and the knowledge about the frequency of the correla-
tion is not used. The retrieval rule for the determination of the answer vector y is:

i = 1 ;L:l (5(’(1]@)217]) Z T
! 0 otherwise.
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with

5(:5):{ 1 ifx>0

0 ifxz=0

T; is the threshold of the unit. There are many possibilities for its determination.
For the two described strategies > in retrieval equation can be replaced with =.

The hard threshold strategy

In the hard threshold strategy, the threshold 7' is set to the number of “one”
components in the question vector. If one uses this strategy it is quite possible
that no answer vector is determined. This happens when the question vector has
a subset of components which were not correlated with the answer vector. This
means that only the subset of the learned question vector is recognized, provided
that the overlapping of learned patterns is not considered.

The soft threshold strategy

In this strategy, the threshold is set to the maximum sum >77_, 6(w;;z;):

T =maz i Z 5(w”xj)

J=1

In this strategy, there is no answer in the case that all components of the question
vector are not correlated, or, in other words, if the maximum sum is zero.

Backward projection

In this case, i is the question vector, and the answer vector which should be
determined is x!. The categorization rule for the determination of the answer
vector ! is:

7 = 1 X8 o(wyy:) > T
J 0 otherwise.

This means that the synaptic matrix used is a transpose of the matrix W which
is used for the forward projection.

Reliability of the Answer

Once an answer vector is determined, it would be useful to know how reliable it
is [12]. Let 2 be the question vector and ¢ the answer vector that was determined
by the associative memory. First, the vector 2! which belongs to the vector ¥/ is
determined. These two vectors form together a vector pair 7l ¢ which is stored
in the associative memory. It was either created by learning, 2! and i were
learned together, or created through overlap with other already learned vector
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pairs. The vector 2! is determined by a backward projection of the vector 7,
with the constraint that the same threshold strategy is used as in the forward
projection that determined the vector 3. In the second step, the similarity of
the stored question vector 2! to the actually presented vector 7 is determined.
The greater the similarity of the vector 2! to the vector Z, the more reliable the
answer vector 3. In order to model cognitive processes, a normalized contrast
model [213, 212, 185] is used which combines the correlation and the hamming
distance between the vectors.

n
Sim(zt, 7) = aZxéxj — blat — 7|
=1

If n is the dimension of the vectors and ¢ the number of ones in the stored
vector xf, then a = 1/c and b = 1/n. The reliability of the answer vector  is

given by Sz’m(a;l, 7). We call Sz’m(a;l, Z) the quality criterion of the vector ¥,

. S oala; zl
gelg) = =2

_,‘

c n

After a question vector is posed two phases follow. In the first phase, the
answer vector is identified through forward projection of the associative memory.
In the second phase, the backward projection determines the quality criterion,
qc of this answer. Its value is within the range [—1, 1], with —1 indicating no
reliability at all and 1 absolute reliability.

2.1.3 Analysis

Storage capacity For an estimation of the asymptotic number of vector-
pairs (#, ¢) which can be stored in an associative memory before it begins to make
mistakes in retrieval phase, it is assumed that both vectors have the same dimen-
sion n. It is also assumed that both vectors are composed of M 1s, which are likely
to be in any coordinate of the vector. In this case it was shown [143, 67, 189]
that the optimum value for M is approximately

M =log,(n/4)
and that approximately [143, 67]
L = (In2)(n*/M?)

of vector pairs can be stored in the associative memory. This value is much greater
then n if the optimal value for M is used. In this case, the asymptotic storage
capacity of the Lernmatrix model is far better than those of other associative
memory models, namely 69.31%. This capacity can be reached with the use
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of sparse coding, which is produced when very small number of 1s is equally
distributed over the coordinates of the vectors [143, 195]. For example, in the
vector of the dimension n=1000000 M=18, ones should be used to code a pattern.
The real storage capacity value is lower when patterns are used which are not
sparse or are strongly correlated to other stored patterns.

Weight matrix diagram The diagram of the weight matrix illustrates the
weight distribution which results from the distribution of the stored patterns
[112, 48]. Useful associative properties result from equally distributed weights
over the whole weight matrix. Clusters in the diagram indicate strong correlation
between parts of stored patterns. The load of the associative memory is indicated
by the percentage of weights which are not zero. A high percentage indicates an
overload and the loss of its associative properties. Fig. 2.3 represents a diagram
of a high loaded matrix with equally distributed weights.

Structure of weight matrix The structure of the weight matrix indicates
the elementary blocks which compose an associative memory. It is represented
by the frequency of different sum values of the weights of rows or columns [112].
The sum over column i is,

with

1 ifz>0
%ﬂ_{Oﬁxzo

The p; are sorted with a new index 7 = ¢(4),

1 S po S pg S flr Sl S S gy

The number ¢ of groups with different u values and the number of their elements
is determined,

M1 = o = U3z < g = ... < ... = [
———— —_——— N————
T1=3 T2 T¢

This can be represented as a procedure:

=1

Tq>:1

FOR 7 =1 TO m-1 STEP 1
DO

IF pr = piryy THEN 7 =79 + 1
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ELSEDO ¢ =®+1; 74 =1 0D

¢ =0.

The ( sorted different 74 values are represented by a diagram. The x axis rep-
resents the ® € [1,2,...,(] values and y axis the corresponding frequency of
sum values 7. The relationship between the x axis ordinate and corresponding
value p, is represented additionally, for example, by an additional plot. If the
associative memory performs hetroassocative recalls, the associative matrix is not
symmetric and the diagrams for the sum of rows and columns are different. The
sum over row j is

n

Hj = 25(wij).

i=1

There are n p; values (see fig. 2.2). In fig. 2.4 the structure of the weight
matrix of fig. 2.3 is represented. The plot illustrates that the weight matrix is
composed of approximately 300 elementary blocks which represent a nearly gau-
sian correlation between the stored pattern parts. Fig.. 2.3 shows the distribution
results of the ten randomly set ones in the 2000 dimensional, 20000 learned vector
pairs.

2.1.4 Implementation

The associative memory can be implemented using digital [148, 147, 150] or op-
tical hardware [228, 85, 55, 106]. On a serial computer a pointer representation
can save memory space if the weight matrix is not overloaded [14]. This fact
is important when the weight matrix becomes very large. In the pointer format
only the positions of the vector components unequal to zero are represented. This
is done, because most synaptic weights are zero. For example, the binary vec-
tor [0 100 11 0] is represented as the pointer vector (2 5 6), which represents
the positions of “ones”. For a matrix each row is represented as a vector. The
pointer matrix does not consider the information of frequency, it represents only
the positions of components unequal to zero in the corresponding row.

For an unclipped weight matrix the frequencies are represented additionally by
the shadow matrix. For each position in the pointer matrix, a corresponding
number in the shadow matrix represents the frequency. For example, the vector
010073 0] is represented by the pointer vector (2 5 6) as before, and by
the additional shadow vector (1 7 3). This representation can still save memory
space if the weight matrix is not overloaded.
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200
400 =
o0
800

1000

1200 & .

1400

1600 e

1800 e

PIL R ‘ : L e
200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 2.3: The weight matrix after learning of 20000 test patterns, in which ten
ones were randomly set in a 2000 dimensional vector represents a high loaded
matrix with equally distributed weights. This example shows that weight matrix
diagram often contains nearly no information. Information about the weight
matrix can be extracted by the structure of weight matrix, see section 2.1.3.
(White color represents wights.)

An example of the representation of an unclipped weight matrix by the pointer
matrix representing positions of components unequal to zero, and the shadow
matrix representing for each position in the pointer matrix the corresponding
frequency:

2 0 0] 1 2
1 00 1 1
Loo|_ | |1 g1t
01 1 2 311
0 40 2 4
0 0 1] 3 1
~—_———— —_—— —_———
weight matrix pointer matrix shadow matrix

pointer format
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Figure 2.4: 38% of synapses of associative memory are not zero. (a) The frequency
of different sum values of columns. (b) The corresponding sum values of columns.
(c) The frequency of different sum values of rows. (d) The corresponding sum
values of rows.

2.2 Applications

2.2.1 Word Recognition

In this application, with the aid of the associative memory, an unambiguous
adress is assigned to each word with possible type errors. The ideas for the used
robust mechanism come from psychology and biology [225, 226, 164, 14]. Words
are represented as sequences of context-sensitive letter units. Each letter in a
word is represented as a triple, which consists of the letter itself, its predecessor,
and its successor. For example, the word desert is encoded by six context-sensitive
letters, namely: _de, des, ese, ser, ert, rt_. The character “” marks the word
beginning and ending. Because the alphabet is composed of 26+1 characters,
273 different context-sensitive letters exist. In the 273 dimensional binary vector

each position corresponds to a possible context-sensitive letter, and a word is
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represented by indication of the actually present context-sensitive letters. Sim-
ilarly written words are represented by similarly coded binary vectors, so that
type errors can be tolerated. A context-sensitive letter does not need to be a
triple. It can also be a tupel consisting of the letter itself and its predecessor.
Tupel representation of the context-sensitive letters is more ambiguous than the
representation with the triples, but it does not require as much storage space.
There are only 272 possible tupels. In an implementation, one must find a balance
between the use of storage space and the ambiguity of the word representation.
In general, a context-sensitive letter can consist of any number of letters, but
only the numbers two, three (Wickelfeature) and four letters seem useful. Each
word and address is represented by a unit [114, 14]. The stored binary weights
represent the presence or absence of a context-sensitive letter, and the unit indi-
cates the corresponding address. Each time a new word is entered, it is tested
tp see if it was already stored. The coded vector which describes this word is
posed at the corresponding positions and for each unit, the sum of the product
of the corresponding ones of this vector and weights is calculated. The observer
is then notified about each name whose feature sum is maximal (see fig. 2.5). In
the case that the word was not recognized, it is learned through the extension of
the associative memory by a new unit which represents the new word [194].

®
. < he> e )
)
., <hel>__Lay <> <> d D
hel Q‘ff_;_ “ ¢ ¢ S N
- <elo>
)
¢ o) 0
<lo_> <> <>
sumisl sumis3 sumis?2 sumis1 sumis?2

you mean hello?

Figure 2.5: Assignment of an address to a misspelled word.

When an associative word interface (short awi) is integrated in bigger sys-
tems, two operation modes are needed. In the first mode, a word is entered and
the address is determined. In the second, the address is given and the word
that belongs to it is identified. A word could be reconstructed unambiguously
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with a set of given Wickelfeatures [164], but not with a set of given tupel repre-
sentations. In our approach, each word is represented through context-sensitive
letters and additionally as strings of characters. The first representation is used
when a word is entered and an address is determined as stated earlier; the sec-
ond representation is used to display a word when an address is given. In string
representation [8], each symbol of the alphabet has an unequivocal number, for
example as with the ASCII code. This number is represented as a one-of-N code
(the position of the one represents the number). The whole string is represented
as a one behind the other representation of the symbols.

2.2.2 Associative Categorization

In this application different combinations of features describe different categories.
To a given question vector which describes the features, an answer vector which
describes categories is associated. The presence of a feature is represented by
a “one” at the corresponding position of a binary vector, its absence by a zero.
Different vectors which describe the presence or absence of features correspond
to different categories. The model is composed of three modules. One modul
is the associative memory in which the correlation between the features and
the corresponding categories is stored. The other moduls are two aw:’s for the
input/output operations (see fig. 2.6). The first awi serves for the specification or
identification of the features, the second awi for the specification or the indication
of the correlated categories.

In the learning phase the correlated features and categories are stored. In the
retrieve phase, a category or some categories are determined for a given set of
present features. In the learning phase, before the vector pair which describes the
features and categories can be stored, two filters must be passed. First, to ensure
that the so described associations do not contradict the already stored knowledge
and second, that it can be stored without errors. In the retrieve phase, after the
user has specified the present features, the question vector which describes these
features is posed. In addition, a resulting possible answer vector which describes
a category or some categories and its quality criteria are determined with the soft
threshold strategy. If an answer vector exists, it is propagated backward and the
corresponding already learned question vector is determined and displayed. The
following small knowledge base which identifies animals [229] and which can be
easily extended was learned (see also fig. 2.7):

1. If gives milk A eats meat A has pointed teeth A has claws A has forward
pointing eyes A has tawny color A has dark spots then cheetah.

2. If gives milk A eats meat A has pointed teeth A has claws A has forward
pointing eyes A has tawny color A has black strips then tiger.
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- awi for specification!
. and identification | _
of feature names

associative memory
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Figure 2.6: The model is composed of three modules: an associative memory in
which the correlation between the features and the corresponding categories is
stored, and two awi’s for the input/output operations.

3. If gives milk A has dark spots A has hoofs A chews cud A has long legs A
has long neck A has tawny color then giraffe.

4. If gives milk A has hoofs A chews cud A has white color A has black stripes
then zebra.

5. If has long legs A has long neck A has feathers A lays eggs A is black and
white then ostrich.

6. If has feathers A lays eggs A does not fly A is black and white A swims then
penguin.

7. If has feathers A lays eggs A is a good flyer then albatros.

Knowledge Revision

For the purpose of the first filter, the question vector which describes the fea-
tures which correspond to the association that should be learned are posed and
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Figure 2.7: The weight matrix for the identification of seven animals.

a resulting possible answer vector is determined. If an answer vector exists, it is
propagated backward and the corresponding already learned question vector is
determined. Suppose that after the seven associations were stored in the asso-
ciative memory, a new association should be learned: If has feathers A lays eggs
then robin.

LEARNING:
INPUT features

Nr.1 input the description >> feathers
is HAS_FEATHERS the desired description with qc=0.66 (y/n) 7?7 >y

| -—=——- > another fact (y/n) ? >y

Nr.2 input the description >> lay eggs

is LAYS EGGS the desired description with qc=1 (y/n) ? >y
| -—-—-—- > another fact (y/n) ? > n

OUTPUT categories

Nr.1 input the description >> robin
|-—---- > another fact (y/n) ? > n

HAS FEATHERS A LAYS EGGS --> ROBIN

|---> learn this rule (y/n) ? >y

collision with the rule:

HAS_FEATHERS A LAYS_EGGS --> OSTRICH A PENGUIN A ALBATROSS
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The system notifies the user that the association which describes robin cannot be
separated from the other association which describes the general group of birds.
For the separation of this association, a feature or some features unique to robin
should be entered.

For the purpose of the second filter, the vector pair which describes the asso-
ciation which should be learned is stored temporarily in the associative matrix.
After storage, it is examined if the vectors are stored correctly, the question vec-
tor which was stored is posed, and the answer vector is determined. The two tests
are now made. First, it is determined whether the answer vector which should
be learned is equal to the stored answer vector. The second test determines if
the quality criterion of the determined answer vector is “one”. In the case that
one of the answers of the two tests is negative, the user is asked for his confirma-
tion for the storage of the association despite the fact that it cannot be learned
completely correctly. If the user does not give his confirmation, the temporarily
stored association is forgotten. In any other case the temporary stored associa-
tion will be stored permanently. The association which should be learned: If is
dangerous then tiger.

LEARNING:
INPUT features

Nr.1 input the description >> is dangerous
|-—-—-- > another fact (y/n) ? > n

OUTPUT categories

Nr.1

input the description >> tiger

is TIGER the desired description with qc=1 (y/n) ? >y
| -—=——- > another fact (y/n) ? > n

IS_DANGEROUS --> TIGER
|---> learn this rule (y/n) ? >y
cannot learn the information correctly with this memory.

This association cannot be stored without errors, because it would extend as-
sociation number two which already specifies this category.
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Associative Determination of Categories

In the following example associative categorization is demonstrated. The user
specifies a question and two types of the toleration of errors are then performed.
In the first phase syntax errors of misspelled words are tolerated and in the sec-
ond phase, semantic errors. The most plausible answer to the possibly faulty or
fragmentary question is then determined. This error tolerant interface and the
following computation is desirable because humans are often confused and do
not posses complete knowledge. The speed with which the answer is recalledis
independent of the number of errors present in the specified question.

CONSULTING:

Nr.1 input the description >> milk
is GIVES MILK the desired description with qc=0.39 (y/n) ? >y

|-—-—-—- > another fact (y/n) ? >y

Nr.2 input the description >> black strips

is HAS BLACK STRIPS the desired description with qc=0.74 (y/n) ? >y
| -—=——- > another fact (y/n) ? > n

Answering. ..

my knowledge:

GIVESMILK A EATS_MEAT A HAS_POINTED_TEETH A HAS_CLAWS

A HAS_FORWARD_POINTING_EYES A HAS_TAWNY_COLOR and HAS_BLACK_STRIPS
--> TIGER with qc=1 (of the answer vector)

your input:

GIVES MILK A HAS BLACK_STRIPS --> TIGER with qc=0.05 (of the answer vector)

A single category could be determined, in the second example several cate-
gories are simultaneously present,

CONSULTING:
Nr.1 input the description >> lays eggs
is LAYS EGGS the desired description with qc=1 (y/n) ? >y

| -————- > another fact (y/n) ? > n

Answering. ..
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my knowledge:
HAS_FEATHERS A LAYS_EGGS --> OSTRICH A PENGUIN A ALBATROSS with qc=1 (of
the answer vector)

your input:
LAYS_EGGS --> OSTRICH A PENGUIN A ALBATROSS with qc=0.45 (of the answer
vector)

These simultaneously present categories correspond to the set of birds, because
LAYS_EGGS is valid for all birds in the knowledge base. The “A” indicates that
the quality criterion makes a statement about the whole set.

Sparse Vectors

The more categories can be described, the smaller the ratio of the set of features
which describe a category compared to the dimension of the state vector. This
is because, of all possible features, only some define categories.

2.3 Conclusion

Associative categorization which relied on the associative memories was intro-
duced. Already even in this uncomplicated application the main advantages of
associative computation principles were demonstrated, namely fast computation
linked with a toleration of errors. The associative categorization is an interesting
alternative to the commonly used data bases techniques, because of the possibility
for storing large amounts of data, and the fast associative recall.

Despite its simplicity, the associative memory model is an efficient and bio-
logically plausible model which captures the basic behavior principles of the cell
assembly theory. One associative function alone, however, is not adequate to
model higher cognition. But it is, however, one of its atomic parts.
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Representation

Cell assemblies represent complex objects which corresponds to thoughts. Tra-
ditional symbolic forms of representation appear to be inappropriate foruse with
cell assemblies because they lack a concept of similarity. In this case, categorial
distributed representation of knowledge seems more suitable.

3.1 Symbolic representation

3.1.1 Logic and representation

Logical representation is motivated by philosophy and mathematics [96, 206, 111].
Predicates are functions that map objects’ arguments into true or false values.
They describe the relation between objects in a world which is represented by
symbols (see fig. 3.1). Whenever a relation holds with respect to some objects,
the corresponding predicate is true when applied to the corresponding object
symbols.

Predicates can be negated by the function — (not) and combined by the logical
connectives V (disjunction), A ( conjunction) and the implies (—) operator. —,
V, A, and — determine the predicate’s value. To signal that an expression is
universally true, the universal quantifier and a variable standing for possible
objects is used.

V x[Feathers(x) — Bird(x)].
An Object having feathers is a bird.

Some expressions are true only for some objects. This is represented by an
existential quantifier and a variable.

3 x[Bird(x)].
There is at least one object which is a bird.

27
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Object symbols

B<--------------

A<--------------

Predicates

ON(B,A) <-------

- - >

77777777777 > On-relation C

CHAPTER 3. REPRESENTATION

Imaginable world

Relations

Figure 3.1: Object represented by symbols and relation represented by predicate.

An interpretation is an accounting of the correspondence between objects
and object symbols and between relations and predicates. An interpretation can
be only either true or false. These are some basic ideas about representation
in predicate calculus, which is a subset of formal logic. A world state can be
described including properties and relations using predicate calculus. This kind
of description can be used to define operators like those used in the STRIPS
computer science approach (see fig 3.2) [44, 136, 54].

3.1.2 Operators

ontable(A).

ontable(C).
on(B,A).
clear(B).
clear(C).

gripping().

Using the block examples, four operations “pickup”, “putdown”, “stack” and

“unstack” can be defined [136]: !

!The expressions are always universally true, and therfore the universal quantifier is omitted.
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Figure 3.2: ABC block world.

gripping() A clear(z) A ontable(x)

gripping(z)
ontable(x) A gripping()

pickup(x)

S =T

gripping(x)
ontable(x) A gripping() A clear(x)
gripping(x)

putdown(z)

SR

gripping(z) A clear(x
on(z,y) A gripping() A clear(x)
clear(y) N gripping(x)

stack(z,y)

S =T

P gripping() A clear(z) A on(x,y)
unstack(x,y) ¢ A: gripping(z) A clear(y)
D : on(z,y) A gripping()

Each of the operators is represented as triples of description. The first element is
the precondition, the world state which must be met for an operator to be applied.
It can be true or false when variables become identified with the values which
describe the state. The second element is the additions to the state description
that are a result of applying the operator. The last element is the items that are
removed from the state description to create a new state when the operator is
applied. These operators obey the frame axiom since they specify what is true in
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one state of the world and what exactly has changed by performing some action
by an operator. The problem of specifying which part of the description should
change and which should not is called the frame problem [229].

ontable(A).
clear(A)

ontable(C).
clear(C).

gripping(B).

The state after the operator pickup(B) was applied to the state of fig. 3.2, (see

fig. 3.3).

Figure 3.3: The state after the operator pickup(B) was applied to the state of
fig. 3.2.

One problem with this kind of description of states is that no uncertainty can
be expressed. For this kind of knowledge other concepts are needed.

3.1.3 Rules

A rule [229, 166, 111] contains several “if” patterns and one or more “then”
patterns. A pattern in the context of rules is an individual predicate which can
be negated together with arguments. The rule can establish a new assertion
by the “then” part, the conclusion whenever the “if” part, the premise, is true.
When variables become identified with values they are bound to these values.
Whenever the variables in a pattern are replaced by values, the pattern is said
to be instantiationed. Here is an example of rules with a variable x:
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o If (flies(x) V feathes(x)) A lays eggs(x) then bird(x)
. S
premaise concltusion

o If bird(x) A swims(x) then penguin(x)

e If bird(x) A sings(x) then nightinagle(x)
The following assertions are present:

o feathers(Pit)

o lays eggs(Pit)

o swims(Pit)

o flies(Airbus)

Pit is a bird because the premise of the first rule is true when x is bound to Pit.
Because bird(Pit), the premise of the second rule is true and Pit is a penguin.

A commonly used approach to express uncertainty is the certainty theory [175,
76]. It is motivated by the fact that the knowledge content of the rule is much
more important than the algebra which holds the system together. Certainty
theory splits the confidence into a confidence for and a confidence against a
hypothesis. M B(H|E) is the measure of a belief of a hypothesis H given the evi-
dence E from the interval [0,1]. M D(H|E) measures the disbelief of a hypothesis
H given the evidence E from the interval [0,1]. The certainty factor is computed
as:

CF(H|E) = MB(H|E) — MD(H|E) € [-1,1]

The evidence for a hypothesis is stronger as C'F’ approaches 1 and grows stronger
against a hypothesis as the C'F' approaches -1. CF' values are determined by
an observer who specifies the rules. They are attached to the “if” patterns and
to the “then” patterns. The C'F' of the patterns are combined in the following
manner:

CF(P2 A P2) = MIN(CF(P1),CF(P2))
CF(P2V P2) = MAX(CF(P1),CF(P2)

The combined C'F of the “if” pattern is then multiplied by the C'F' of the “then”
patterns. If, for example, P1 has C'F of 0.6, P2 C'F of 0.4, and P3 C'F of 0.2 and
the rule is:

(P1 Vv P2) A P3 then R1
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with C'F 0.7 of R1, then:
MIN(MAX(0.6,0.4),0.2) - 0.7 =0.14

When two or more rules support the same result, the C'F' of these results are
combined together. Suppose C'F(R1) and CF(R2) are the present certainty
factors associated with the result R, so the new C'F of the result is calculated as:

CF(R1)+ CF(R2) — (CF(R1)-CF(R2)) if CF(R1)> 0 and CF(R2) >0

CF(R1) + CF(R2) + (CF(R1) - CF(R2)) if CF(R1) <0 and CF(R2) <0
CF(R1) + CF(R2)
1 — MIN(|CF(R1)|,|CF(R2)])

otherwise.

3.1.4 Frames

Frames describe individual objects and entire classes [123, 124, 229]. They are
composed of slots which can be either attributes which describe the classes or
object, or links to other frames. With the aid of links, a hierarchy can be rep-
resented in which classes or objects are parts of more general classes. In this
taxonomic representation, frames inherit attributes of the more general classes
(see fig. 3.4). Frames can be viewed as generalization of semantic nets. They are
psychologically motivated and were popularized in computer science by Marvin
Minsky. One important result of the frame theory is the object oriented approach
in programming.

3.1.5 Similarity

Similarity in symbolical systems is defined by the relations between the repre-
sented objects. These relations are defined by the whole system and not by the
objects alone [125]. An example is the similarity which is defined by the dis-
tance between the objects in a taxonomy. Because of the global nature of this
similarity, it is difficult to define a corresponding vector space which allows the
representation of those objects by vectors.

3.2 Categorial representation

Humans divide the world into categories so that they can make sense of it [185].
The categorization task consists of the determination if an object belongs to a
category [142, 100]. The symbols based representation uses additional concepts
to represent uncertainty or heuristics. Categorical representation uses one con-
cept [184]. There are two different classes of categorization tasks: the visual and
the verbal categorization [185].
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animal J

bird :, mammal
does lay egg gives

penguin giraffe

isa °
does| swim has

nightingale
dolphin

isa ° isa °
does | sing does

Figure 3.4: Taxonomic frame representation of some animals.

3.3 Verbal categories

3.3.1 Feature Approach

Objects can be described by a set of discrete features, such as red, round and
sweet [212, 115]. The similarity between them can be defined as a function of the
features they have in common [142, 198, 56, 53|. The contrast model of Tversky
[212] is one well known model in cognitive psychology [185, 140] which describes
the similarity between two objects which are described by their features. Suppose
we have an object A and an object B, so the similarity between these object is
given by:
Sim(A, B) = a((AN B) — B((A - B) = v((A - B)

(AN B) gives the common features between A and B. (A — B) designates the set
of features distinct to A and (B — A) the set of features distinct to B. The func-
tion ¢ describes the salience of the features, and «, (3, v are the constants that
define the relative contribution of each of the three feature sets. The asymmetry
of the similarity function is one of the psychological demands [212, 57, 185]. Psy-
chological experiments suggest that unfamiliar categories are judged more equal
to familiar then the other way around. For example, pomegranate is judged more
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similar to apple by most people than apple is to pomegranate [185]. This de-
mand can be reached by the contrast model if 3 exceeds . This is because the
familiar categories are described by more features then the unfamiliar ones. For
simplicity we assume that all features are equally salient; the function ¢ simply
assigns a value 1 to each feature.

‘ apple ‘ pomegranate ‘

red red
round round
hard
sweet
trees

Table 3.1: Apple and pomegranate description by features.

Sim(pomegranate, apple) = a(2) — 5(0) — v(3)

Sim(apple, pomegranate) = a(2) — 5(3) — v(0)

If it is supposed that the similarity value should be from the interval [-1,1], with
-1 indicating no similarity at all, the normalized contrast model is used: 2

Sim(A,B) = a|ANB| - B|A— B| € (~1,1]

|A| is the number of the present features of set A and |A U B| the number of
different features of the two sets A and B, so a = 1/|A| and 8 = 1/|AU B|.

Sim(pomegranate, apple) = 2/2 —3/5=4/5=10.8

Sim(apple, pomegranate) = 2/5—3/5 = —1/5 = —0.2

Objects can be represented by binary vectors as was done previously in chapter
2. A feature is represented by a “one” at the corresponding position of a binary
vector, its absence by a zero. In this case, n is the dimension of the vectors and
¢ the number of the “ones” in the vector a.

2 . " ab e _ Tl
qcqa(b) := Sim(d,b) = 2j-140;  |a—b]

C n

This is the quality criterion of the object b in regard to object a, with qc, = 1
indicating absolute similarity and gc, — —1 no similarity at all.

2However Sim(A,B) can never reach the value -1 because |A — B| # |A U B].
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Categorization

An object is judged to belong to a verbal category to the extent that its features
are predicted by the verbal category [141]. Since only the sets of prototypical
features which define the categories are considered during verbal categorization
of some categories to a feature set, the normalized contrast model can be reduced.
If Cais a category and B the features set, so only Can B features are considered:

. _[CanB| [(Ca—(CanB)| 2
Sime(Ca, B) = Cal Cal = Cal

ICanB| -1 €[-1,1]

|C'al is the number of the prototypical features that define the category C'a. The
present features are counted and normalized so that the value can be compared.
For example, the category bird is defined by the following features: flies, sings,
lays eggs, nests in trees, eats insects. The category bat is defined by the following
features: flies, gives milk, eat insects. The following features are present: flies
and gives milk.

Sime(bird, present features) =

911
3

In binary vector notation c¢ is the number of the ones in the vector C which
describes the category C'a, and f the vector which describes the present features.

Sime(bat, present features) =

gcf (Ca) == Sime(C, f) = % D Cifi—1
j=1

This is the quality criterion of the category Ca for the given feature set f rep-
resents the rating in the presence of a category, with qc¢/(Ca) = 1 an absolute
rating and gc¢/(Ca) = —1 no rating at all.

3.3.2 Uncertainty and salience

Salience of a Feature Features that discriminate among relevant facts should
have a higher salience than those that do not [185]. The features of an equal
salience have a unary representation, they can only be represented as existent or
nonexistent. A category that is described as a set of features can be present with
different grades of vagueness corresponding to the cardinal number of the set. A
set of features that describes a category can be sometimes divided into subsets
that represent some subcategories. Each feature can be also regarded as a kind
of subcategory. If this subcategory can not be described by other features, but,
nevertheless, should have the properties of variable salience and vagueness, it is
described by invisible features. To each feature a number of invisible features is
assigned dependent on its salience.
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Uncertainty of a Category An observer determines the presence of features
corresponding to each category. However, if it is not possible to observe some fea-
tures, the quality criterion can never reach the maximal value 1. If some features
exist for a complete definition of a category, but because of the lack of available
knowledge they cannot be named, they cannot be verified. These features are
called the unobservable features. The certainty of the definition of a category is
expressed by their number.

The number of invisible features for each feature and the number of unobserv-
able features for each category are determined by an observer who specifies the
category.

Example An example of two old sayings from country folklore:

1. If it is April and it snows much then probably the apple harvest will be
bad.

2. If it is April and it rains a lot and it is very cold then the vintage will be
good.

The number of invisible features as determined by the observer:
e April is represented by one invisible feature, as it can be present or absent.

e snows much is described by two invisible features because the observer
thinks that it has a higher salience than April. It can be either present,
maybe present, or absent.

e The observer thinks that rains a lot has the same salience as snows much.

e The observer thinks that very cold has the greatest salience, as it is de-
scribed by three invisible features. It can be either present, maybe present,
maybe absent or absent.

The number of unobservable features as determined by the observer:

e The observer thinks that the uncertainty of the first category which corre-
sponds to the adjective probably is expressed by two unobservable features.

3.3.3 Representation by Associative Memory

The set of features can be represented by a binary vector in which the positions
represent different features. For each category a binary vector can be defined.
A “one” at a certain position corresponds to a certain invisible or unobservable
feature. Those vectors can be stored in an associative memory. The two country
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wobserveble | |
April

snows much-

alot of rain-

very cold -

bad apple harvest good vintage

Figure 3.5: Neural representation of two country sayings

sayings are represented by an associative memory composed of two units (see
Fig. 3.5).

The learning and the forgetting rules stay the same. Because the determined
answer vector is composed of gc/ for each category, the retrieval rule changes to:

2 n
qc(Ca;) =i = 7——— - ) _ 0(wsjz;) — 1
( ) Y j:l(s(wij> J;l ( J J)

During the retrieval phase, the answer vector is recalled by the question vector
Z which represents the present feature set and the belief in their presence. The
belief in the presence of a feature is represented by the observer by the number
of the invisible features. Only the presence of invisible features which belong to
a feature is respected, and not their position in this set. The following situation
is coded by an observer and represented by & (see tab. 3.2): It is April, it rains
a lot, it snows a little, and most of the time it is cold.

1 1
qc(bad apple harvest) = — qc(good vintage) = 3

3.3.4 Table of belief values

Salience of a feature is represented by the number of invisible features
determined by an observer who specifies the category.

Belief in the presence of a feature is represented by the number of present
invisible features determined by an observer who utilizes the category.

To facilitate the specification of the belief value in the presence of a feature a
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‘ feature name

unobservable features

April

snows much

a lot of rain

very cold

O| O| || | || O = || ©| O] 81

Table 3.2: The unobservable features are always zero. April’s invisible feature
is present. One invisible feature indicating “snows much” is present because it
snows a little. Two invisible features incidcating “lot of rain” are present. One
invisible feature indicating “very cold” is present as it is cold most of the times,

but not very cold.

belief table is used in which different belief values are named by adjectives. The
observer describes the present features with the corresponding adjectives from
the table. Different tables can be specified depending on the observer and the
task (tab.3.3, or tab.3.4). A chosen belief value from the table is converted to
the corresponding belief value of the feature by

belief = | salience -

table belief

table salience™

‘ table belief value ‘

present 2
maybe 1
absent 0

Table 3.3: The observer who utilizes the category can chose between three dif-
ferent belief values. The table salience is two.

Nothing is known about unspecified features. The probability of their presence
is fifty percent or less depending on their salience,

belief in the not specified = |

salience

2 J:
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‘ ‘ table belief value ‘
certainly 6

very probably
probably

‘ maybe ‘

probably not
very probably not
certainly not

O | DN|| W = Ot

Table 3.4: The observer who utilizes the category can chose between seven dif-
ferent belief values. The table salience is six.

3.3.5 Example

A small knowledge base of four rules for the determination of disorders of an old
car [118] is represented by an associative memory (see fig. 3.6).

1. If not turn over(4) A lights weak(2) A radio weak(2) then battery bad
2. If turn over(1) A smell gas(4) then with [0.67] carburetor is flooded

3. If turn over(1) A gas gauge low(2) then with [0.20] fuel pump bad

4. If turn over(1) A gas gauge empty(3) then out of gas

The number of the invisible features for each feature stands in the round brackets.
The number of the unobservable features if present can be determined from the
maximum quality criterion value qc,..(Ca) which the category can reach and
which is represented in the square brackets by ® :

1- 4Cmax

-invisible features.
1 —"_ qcmam

unobservable features =

This formula is infered from the computation of ¢z,
n = unobservable features + invisible features,

mwistble features — unobservable features

9Crmaz =
n n

Rule two has 1 = round((1 —0.67)/(1+ 0.67) - 5) unobservable features and rule
three 2 = round((1 —0.2)/(1 4 0.2) - 3).

3Because ¢Cmqz is not given exactly, the result should be rounded.



40 CHAPTER 3. REPRESENTATION

Figure 3.6: The weight matrix for car diagnosis.

The observer specifies the following features using the belief table 3.4:

1. certainly not turn over
2. very probably smell gas

3. certainly not gauge empty

‘ feature name ‘ belief ‘

not turn over 4
lights weak
radio weak

turn over
smell gas
gas gauge low
gas gauge empty

Ol W D =~

Table 3.5: Belief values.

The quality criteria of the categories are determined by the associative mem-
ory using the determined number of invisible features (see tab.3.5), which define
the question vector .

qc(battery bad) = 0.5, ge(carburetor is flooded) = 0, qc(fuel pump bad) = -0.6,
qc(out of gas) = -1
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3.4 Visual Categories

3.4.1 Shape similarity

Psychologists have found out that, rather than relying on prototypical features,
picture categorization often relies on detailed shape representation [183, 130, 185].
Objects and scenes can be represented by binary pictures which are normalized
for size and orientation [42]. Similarity between the objects or scenes is measured
by the amount of shared area between the overlaid patterns [15, 94, 184]. Suppose
we have an object A represented by binary pattern vector @ and an object B by
the binary vector 5, so the similarity is given by:

, b @l

Sim(a,b) = =2

e (—1,1],

. - (—1,1]

where n is the dimension of the vectors and ¢ the number of ones in the vector
a. The shape similarity to an object is measured for a category represented by
a picture. For example, the category apple is represented by a picture. The
following binary pictures of the object are present: pear and flower *.

.21 85
Sim(apple, pear) = 65 1096
. - - 44 212

Szm(apple, flower) = @ — m

Sim(apple, pear) = 0.56

Sim(apple, flower) = 0.04

The quality criterion of the object b in regard to category Cla represented as
C' is defined as

i Ciby |G =

C n

qcca(b) := Sim(Ca,b) = € (—1,1],

where n is the dimension of the vectors and ¢ the number of ones in the vector
C describing the category Ca.

qCapple (pea'r') = 056,

qCapple(flower) = 0.04.

4See next pages. Binary pictures of the dimension 64 - 64.
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3.4.2 State representation

The category “tower” is represented in the blockworld as shown in fig.3.7. Dif-
ferent states are represented in fig. 3.8.

thOU)ET(Stat€1> = 0817 qctower(Stat€2> = 07, thower(StCLteg) =0.7

The category “tower” is most similar to the state;. The qciouer represents a func-
tion that rates the value of different states according to how similar a category
is to them. If it is supposed that this similarity corresponds to the distance of
the category from the states in a search space [214, 166], then gciper is also a
heuristic function.

Transition between states can be represented as associations: two binary pic-
tures describing the state before the transition and after the transition. This
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ANFANFA

Figure 3.7: “Tower” in the blockworld.

approach requires for each possible transition a picture pair which describes the
transition. The transitions must have regard to the frame problem. There are
two main disadvantages of this basic approach:

e Dependent on the task, all possible associations must be determined. For
example about “9!” in the 9-puzzle task [214, 111].

e When several possible associations arise from a single input they can not
be learned by an associative memory [7]. Either a nonlinear mechanism
is required to select one or the other branch to avoid the sum of output
branches, or the output pattern must be divided in subpatterns which rep-
resent the branches.

This rigidness can be escaped [78] by the breaking of the state vector into mean-
ingful pieces [7]. Pieces which represent objects of the scene are called cognitive
entities. Cognitive entities allow the representation of any desired correlation
between the objects and the representation of the total, partial, and focalized
associations [78] (see fig. 3.9).

3.4.3 “What” and “Where”

Gross and Mishkkin(1977) [60] suggest that the brain includes two mechanism for
visual categorization: one for the representation of the object and the other for the
representation of the localization [108, 88, 155]. The first mechanism is called the
“what” pathway and is composed of the temporal lobe. The second mechanism
is called the “where” pathway and is composed by the partial lobe [88, 155].
According to this division, the identity of a visual object can be coded apart
from the location and the size of the object. A visual state can be represented
by cognitive entities. Each cognitive entity represents the identity of the object
and its position by the coordinates. The identity of an object is represented
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Figure 3.8: (a) state;. (b) states. (c) states.

by a binary pattern which is normalized for size and orientation. Its location
corresponding to the abscissa is represented by a binary vector of the dimension
of the abscissa of the picture representing the state. The location corresponding
to the ordinate is likewise represented by a binary vector of the dimension of
the ordinate of the picture representing the state. A binary bar of the size and
position of the object in the picture of the state represents in each of those vectors
the location and size (see fig. 3.10, fig. 3.11 and fig. 3.12).

The three vectors from which the cognitive entity is composed are called
associative fields. A scene can be represented either by a picture or an equivalent
by cognitive entities which can be represented by a unit (see fig. 3.13).

3.4.4 Associations

Cognitive entities can represent associations which represent transitions between
states. The first pattern represented by the cognitive entities describes the state
which should be present before the transition (the premise). The second pattern
describes the world state after the transition (the conclusion). In order to preserve
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Figure 3.9: Total, partial, and focalized assocations.

the equality of cognitive entities in the premise and in the conclusion pattern,
a notation for an empty cognitive entity is used (see fig 3.14). The associations
are defined with respect to the frame problem. In fig. 3.14 an example from the
block world is shown. Both, an empty roboter arm, which is represented by the
right corner, or a “clear” position are represented by a dot.

The cognitive entities of the premise pattern are replaced by the conclusion
pattern in case the similarity between the condition pattern and the correspond-
ing part of the state picture is sufficient,

Sim(condition pattern, state pattern) > threshold

The accepted uncertainty is dependent on the threshold value.

3.5 Conclusion

Categories were shown to be the basic building blocks of knowledge representa-
tion when human problem solving is simulated by neural networks. Distributed
representation and similarity are the natural properties of categorical representa-
tion and it is this properties which distinguishes categorical representation from
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representation
by cognitive entity

first associative field second associative field
Identity of anobj eCt y position and size represented by a bar

block at the table

third associative field
X position and size represented by a bar

Figure 3.10: A cognitive entity.

symbolical representation. Similarity is used when uncertain knowledge is rep-
resented, without the need of an additional calculus. In addition belief tables
allow the detachment of the uncertainty of the coded knowledge and of the actu-
ally present knowledge. A heuristic function results from the similarity principle
without the need for any additional definition. It can speed up the search during
problem solving in the problem space.

The introduced vectorial representation is as an alternative to symbolical
representation. The similarities are described by the quality criterion.

3.5.1 Quality criterion

Different quality criteria were defined as a gage in the binary vectorial represen-
tation:

e qc(7), quality of the answer ¢ of an associative memory.

e gc/(Ca), quality of a category for a feature set f.

e gcoq(b), quality of an object b in regard to category C's.
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gripper

clear

. clear for pick up, but no other
. blocks may be placed on top |

Figure 3.11: A state in the blocks world.

Because the search for the best similarity measure between binary vectors de-
pendent on the task is not the focus of this work, a psychologically motivated
measure was defined which uses both correlation and the hamming distance.
Through normalization, quality values of different answers can be compared.

3.5.2 Verbal categorization

Verbal categories were represented by features of different salience. The quality
criterion represents a rating in the presence of a category which is based on
counting. The representation of categories by an associative memory and the
belief table offer an easy access to uncertain knowledge.

3.5.3 Visual representation

Principles of pictorial categorization were illustrated. These principles were used
for the state representation of the world. The biologically and physiologically
“what” and “where” motivated representation of pictures through cognitive en-
tites offer an efficient way for the representation of associations which can handle
uncertainty by the similarity principle.
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third cognitive entity

LN ] —
gripper holding a pyramid

L -
block at the table

L - @
block on other block

fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

,,,,,,,,,,,,,,,,,, - 4@

fourth cognitive entity

clear position

Figure 3.12: Part of the blocks world state (see fig. 3.11) represented by four cog-
nitive entities. For the representation of the whole state four additional cognitive

entities are needed.
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Figure 3.13: A scene represented by a unit.
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Figure 3.14: Representation of the association: If a block is at a certain position
and above it it is clear and the gripper is empty then the block is grasped by the
gripper. Because of the frame problem, the old position of the block is represented
as clear. One cognitive entity of the conclusion pattern is not used. In the inverse
association, the premise pattern is interchanged with the conclusion pattern.



Chapter 4

Hierarchical Categorization

4.1 Production Systems

Problem-solving can be modeled by a production system which implements a
search algorithm. It is closely related to the approach taken by markov algorithms
[113], and, like them, it is equivalent in power to a Turing machine [211]. The
production system is also a model of actual human problem-solving behavior
[134, 6, 84, 133]. It is composed of [27, 111]:

e Set of rules. These rule are also called productions. The set of rules models
the human long term memory.

e Working memory. This memory contains a description of the state in a
problem solving process. The state is described using predicate calculus
and is simply called a pattern. Whenever a premise is true, the conclusions
of the rules changes the contents of the working memory. The working
memory models the human short term memory.

e Recognize-act cycle. The current state of the problem-solving process is
maintained as a set of patterns in the working memory. Working memory
is initialized with the initial state description. The patterns in working
memory are matched against the premise of the rules. The premise of the
rules which match the patterns in working memory produces a set which
is called the conflict set. One of the rules of this set is chosen and the
conclusion of the rule changes the content of the working memory. This
process is denoted as firing of the rule. This recognize-cycle is repeated on
the modified working memory until a desired state is reached or no rules
can be fired. The recognize-act cycle models the current focus of attention
triggering one of the set of permanent skills. This, in turn, changes the
focus of attention.

Conflict resolution chooses a rule from the conflict set for firing. There are differ-
ent conflict resolution strategies, such as choosing a random rule from the set, or

53
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selecting a rule by some certain function. In a pure production system which was
proposed as a formal theory of computation (Post 1943) [157] the system halts if
no production can fire in a state. In systems which model human behavior and
in practical applications, backtracking to a previous state of working memory
is allowed. By allowing backtracking and the exclusion of loops, a search from
the initial state to the desired state is executed. The search defines a problem
space and can be represented as a tree. However, it may not reach the desired
goal either because the branches are infinite, or because after backtracking to the
initial state no rule can fire.

Human problem-solving can be described by a problem-behavior graph
constructed from a protocol of the person talking aloud, mentioning moves con-
sidered and aspects of the situation. According to the resulting theory, problems
are solved by searching in a problem space whose state includes the initial situ-
ation and the desired situation [134, 133, 8]. The short term memory is limited
to holding the temporary state. Progressive depending and local focusing leads
to a depth-first search [133].

4.1.1 Heuristic function

A heuristic function is used that rates the value’s different states according to
how far they are from the desired state. The best-first search is the search where
the best rule (according to a heuristic function of the conflict set) is chosen. The
better the heuristic measure of the remaining distance to the desired state, the
faster the best-first search [229].

4.2 Deduction systems

Problems without side effects of actions can be described by deduction systems
which are a subgroup of production systems [229]. In deduction systems the
premise specifies combinations of assertions, by which a new assertion of the con-
clusion is directly deduced. This new assertion is added to the working memory.
Deduction systems do not need strategies for conflict resolution because every
rule presumably produces reasonable assertions and there is no harm in firing all
triggered rules. Deduction systems may chain together rules in a forward direc-
tion, from assertions to conclusions, or backward from hypotheses to premises.
During backward chaining it is ensured that all features are properly focused.
Backward chaining is used if no features are present. If all features are given,
forward chaining is used to prevent wasting of time pursuing hypotheses which
are not specified by the features. The chained rules describe the complete prob-
lem space which can be represented by a semantic net [159, 172]. For clarity,
rules can be arranged in groups [3, 82] which define a taxonomy according to
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their dependence between the conclusion pattern and one premise pattern (see
fig. 4.1).

begin of the forward chaining
o If (flies(x) V feathes(x)) A lays eggs(x) then bird(x)

e If gives milk(x) then mammal(x)

bird group

e If bird(x) A swims(x) then penguin(x)
e If bird(x) A sings(x) then nightinagle(x)
mammal group

e If mammal(x) A long neck(x) A four legs(x) then giraffe(x)

e If mammal(x) A swims(x) then dolphin(x)

{ begin of the forward chaining }

T

bird group mammal group

Figure 4.1: Semantic net representing the taxonomy of the rules about birds and
mammals.

Uncertainty can be expressed by the certainty theory. The heuristic function
can be represented by the C'F values of the conclusion patterns in the case when
conflict resolution is used. Deduction systems are often used by expert systems
which were developed with the engineering aim to capture the knowledge of an
expert in a certain closed domain [110, 167, 76]. The type of knowledge captured
by these expert systems was often organized by human society in different kinds of
taxonomies, for example taxonomy of animals, or the taxonomy of medical illness.

The semantic net representation of the taxonomy of rules is related to the deci-
sion tree approach [160]. A decision tree is used to determine a category by a
function that maps each element of its domain to a category label or numerical
value. At each leaf of a decision tree, one finds a category label. It is determined
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at nodes by tests that have a small number of possible outcomes. A decision tree
with a range of symbolic category or class labels is called a classification tree. In
our approach, the test are described by rules. A decision tree with a range of
continuous numeric values is called a regression tree. Decision trees show clearly
how to reach a decision. They are constructed automatically by C4.5 [161] and
CART (Classification and Regression Tree) [26] programs. Decision trees can be
also converted into rules by the C4.5 program.

There is also a connection between neural networks and decision trees. Feed
forward neural networks can be initialized by decision trees [75]. In this case
decision trees represent some approximation of the target concept which helps
to determine the initial weight setting and the architecture of the feedforward
neural network. The architecture is determined by the number of neurons and
the topology of connections between them. This kind of initialization was proven
successful in different real world applications [90, 91].

4.3 Hierarchical Categorization

4.3.1 Neural deductions system

Hierarchical categorization is performed by a neural deductive system. The model
is composed of connected associative memories which represent groups of rules.
The problem space is represented by connections between the associative mem-
ories and those connections correspond to conclusions of the rules. The known
features are represented in an external memory before the forward chaining be-
gins (see fig. 4.2). This model is appropriate for taxionomical representation of
knowledge with the aid of verbal categories. Categories can be divided into sub-
categories, so that a taxonomy can be constructed and represented by an acyclic
graph. The nodes in this graph correspond to categories and the links indicate
the “is a subcategory” relation between them. The process of the hierarchical
categorization can be performed by moving from more general categories to more
specific categories until the desired categories are reached. The rules in each as-
sociative memory are represented as described in chapter 3 with the exception
that the categories which are represented by the conclusion may be divideed into
more exact subcategories by another associative memory (see fig. 4.2). The as-
sociative memory with the name of the corresponding category which it divided
is called a module. A disjunction of patterns in a premise can be represented
by two different rules. Negation can not be interpreted, only represented by a
corresponding feature name.



4.3. HIERARCHICAL CATEGORIZATION o7

- external
memory

N . associative
71\ memories

Figure 4.2: Neural deductions system.

4.3.2 Representation by associative memories
A knowledge base for diagnosing car problems is represented by a taxonomy [223].
The forward chaining for the determination of a disorder begins at the root cat-
egory problem which is divided into other subcategories. The first pattern of the
premise represents the name of the category which is divided:
If problem A

1. noise or problem when car is standing(3) then other

2. problem during start(2) then starter

3. electrical problem(2) then with [0.33] engine is dead

4. electrical problem(2) then electrical

5. problem during driving(3) then driving

6. noise or problem when car is standing(3) then with [0.5] engine

7. noise or problem when car is standing(3) then with [0.5] radiator
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Subcategories are divided again in subcategories, for example the subcategory
driving:

If driving A

1.

2.

3.

4.

D.

mechanical problem(4) then with [0.6] other

difficulties with engine(4) then with [0.33] engine starts
oil pressure lamp lights up(3) then oil

difficulties with engine(4) then engine

difficulties with radiator(4) then radiator

And in subcategories which describe the disorder:

If engine A

1.

2.

3.

7.

smoke in the engine compartment(5) then radiator bad or coolant tube bad
smoke in the engine compartment(5) then with [0.67] short curcuit

poor engine performance(6) then dirty air filter or bad spark plugs

. poor engine performance(6) then with [0.5] fuel pump bad or fuel pipe

broken

. idling irregular or engine comes to standstill(5) then bad spark plugs or

failure in the ignition system

idling irregular or engine comes to standstill(5) then with [0.67] compression
is insufficient

a lot of steam from the exhaust(5) then cylinder casket broken

Another group of subcategories which describe disorders:

If radiator A

1.

2.

3.

bubble in coolant compensation tank(4) then water pump broken
engine gets hot(5) then bad water pump or bad thermostat

engine gets hot(5) then with[0.6] bad fan or loss of coolant
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The knowledge base is composed of 48 rules which are represented by 12 moduls
(see fig. 4.3).

Figure 4.3: Taxonomic representation of disorders of a car. Uncertain categories
are represented by dotted arrows.

4.3.3 Categorization

The external memory guides the search in the problem space in the direction
of the most plausible category, which is the category with the highest quality
criterion value. In the search the first favored category can turn out to be wrong
because it is assumed that its subcategories are not present. In this case an-
other category is examined. This search strategy corresponds to hill climbing
[229], which is a depth-first search in which the choices are ordered according to
the quality criteria values (see fig. 4.4). The quality criteria values represent a
heuristic measurement of the distance to the remaining goal.

Example

The observer specifies the following features using the belief table 1.4:
1. probably problem during driving
2. probably not electrical problem

3. very probably engine gets hot

The forward chaining begins at the module problem. The quality criteria of
the categories in each module are determined by the associative memory as in
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paragraph 1.2. The overall quality criteria of the category which is represented
by [ chained rules is given by the mean of the values computed by the associative
memories m € {1,2..,1} :

_ Y1 46(Caigm)

qc(Cai) - l =

l 2 n(m)
Fms < o 8(Wigmys(m)) 2 6(wi(m)j(m)%(m))>
_ j(m)= i(m)j(m . 1
l

The categorization begins at the module problem:

gc(other) = —0.33, qc(starter) =0, gc(engine is dead) = —1

qc(electrical) = —1, qe(driving) = 0.33, gc(engine) = —0.5, ge(radiator) = —0.5

The subcategory with the highest gc value is chosen. The chosen subcategory

driving is divided:

ge(othermoque) = —0.2, ge(engine startsmogue) = —0.33, qc(0ilmoqure) = —0.33
ge(enginemodue) = 0, qc(radiatorpeque) = 0

The category driving and engine have the same qc¢,,oque values. Module engine
is randomly chosen. The gc value is

ge(driving) + ge(enginemodule )

gc(engine) = 5 =0.17
The chosen subcategory engine is divided:
qc(radiator bad or coolant tube badoque) = —0.2, qc(short curcuit pogue) = —0.33

ge(dirty air filter or bad spark plugsmeduie) = 0
qc( fuel piump bad or bad spark plugsmodue) = —0.25

qc(bad spark plugs or falure in the ignition systemmpmoguie) = —0.2
gc(compression is insuf ficient oque) = —0.33
qc(cylinder casket brokenpoque) = —0.2

The low q¢poque values indicate a possible absence. The search is continued.
Backtracking is carried out and the ¢c,,0que value of the subcategory engine is
set to —1%:

ge(othermoque) = —0.2, ge(engine startsmogue) = —0.33, qc(0ilmoqure) = —0.33

!That way examined categories are not re-examined by another path.
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ge(enginemoque) = —1, qe(radiator,oque) = 0

The subcategory with the highest ¢coque value is chosen. The chosen subcate-
gory is now radiator.

ge(driving) + ge(radiatorpequre)
2

=0.17

qc(raiator) =
The chosen subcategory radiator is divided:
qc(the water pump brokenoque) = 0

qc(bad water pump or bad thermostat,,ogue) = 0.6
ge(bad fan or losss of coolantequie) = 0.33

The gcmoaue values of two categories indicate possible presence:

qc(bad water pump or bad thermostat) = 0.31 =

qe(driving) + qe(radiatormeaue) + qe(bad water pump or bad thermostat,,oquie )
3
gc(radiator) - (3 —1) N qc(bad water pump or bad thermostat,,oduie)
3 3

and
gc(bad fan or losss of coolant) = 0.22 =

ge(driving) + qe(radiatoreque) + qe(bad fan or losss of coolant,,oquie)
B 3
gce(radiator) - (3 —1)  qe(bad fan or losss of coolantequie)

3 + 3

The barrier in our system which determines when a category is treated as pos-
sibly absent dependent on the ¢c,oque value is represented by two constants. If
the qcpoque value is below w for a category which is divided, or below w for a
category which is not divided, backtracking occurs. The minimal gc value for a
category which is not divided is above qc¢,;,. It is dependet on the deepness of
the hierarchical categorization:

w - (deep — 1) + 7
deep deep.

4Cmin =

Depending on the value of the constants, more certain or less certain categories are
output by the system. The extreme example is the output of the whole knowledge
base for w = —1,w = —1. In our examples we set w = —0.5 and w = 0.2.

A star * represents the presence of features, the value between “<” and “>”
gages the hierarchy of the categorization:
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DRIVING with qc=0.33, <1> !
ENGINE with qc=0.17, <2> |
RADIATOR with qc=0.17, <2> Ix

62
>k k
1) ! MODULE
2) | MODULE
3) ! MODULE
RESULT

BAD WATER PUMP OR BAD THERMOSTAT with qc=0.31
BAD FAN OR LOSS OF COOLANT with qc=0.22

4.3.4 Availability heuristics

Only one feature is known to the observer:

1. certainly poor engine performance

STARTER with qc=0, <1> !
ENGINE_STARTS with qc=0, <2> !
ENGINE_IS_DEAD with qc=-0.17, <2> !

ELECTRICAL with qc=0, <1> !
LIGHTS with qc=0, <2> !
WIPER with qc=0, <2> !

OTHER with qc=-0.33, <1> !
DRIVING with qc=-0.33, <1> !
ENGINE with qc=-0.17, <2> Ix

1) ! MODULE
2) | MODULE
3) ! MODULE
4) 1 MODULE
5) | MODULE
6) ! MODULE
7) ! MODULE
8) ! MODULE
9) | MODULE
RESULT

DIRTY AIR FILTER OR BAD SPARK PLUGS with qc=0.22
FUEL PUMP BAD OR FUEL PIPE BROKEN with qc=0.06

The information was sufficient for the determination of the disorder but insuffi-
cient to guide the search, which took nine steps. During the hierarchical catego-
rization by humans some categories come to mind more easily, because they were
determined to be more frequent than the other. Some psychologists [213] assume
that the individual estimates the frequency of an event, in our case the deter-
mination of a category. This kind of heuristic is called the availability heuristic
213, 226, 168]. The idea of how to implement this kind of heuristic was already
given by the psychologist William James around 1870 [78], page 4:  “Habits
are due to pathways by the nerve centers, in getting out they leave their traces in
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the paths which they take”. In our model, this corresponds to the strengthening
of the links between the categories which describe a successful search by a small
factor. The successful search corresponds to the path of links between the cate-
gories from the category where the search began to the results of the hierarchical
categorization. Paths that corresponds to wrong search directions are weakened
by a small factor e, see fig. 4.4. All links are initialize to zero, and the learning
rule is:

link to category™® = link to category®® + € 1f present.

link to category™® = link to category®® — e if backtracking.

d

link to category™® = link to category® else.

During the repeated search the categories that receive strong links are favored.
The search direction corresponds to the highest value that is the sum of the qual-
ity criterion of a category and the strength of the link to it. In terms of bayesian
statistics the chosen category has the highest posterior probability which is com-
posed of actual likelihood and prior probability [152, 110].

Suppose that we are trying to diagnose the problems with cars that are used
near a dusty desert where sandstorms are frequent. Very often the problems of
such cars are caused by dirty air filters. After strengthening the corresponding
links between the categories during the previous categorizations which describe
this fact 2, the observer specifies one feature:

1. very probably poor engine performance

1) ! MODULE DRIVING with qc=-0.33, <1> !
2) ! MODULE ENGINE with qc=-0.17, <2> !x

RESULT:

DIRTY AIR FILTER OR BAD SPARK PLUGS with qc=0.11

The search takes only two steps with the availability heuristic after learning.

2frequency = 5,e = 0.1
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Figure 4.4: The learning of the availability heuristic. Links between the categories
which describe a successful search are strengthened by a small factor, shown by
+. Links to categories where backtracking occurs are weakened by a small factor,
shown by -.

4.3.5 Implementation

Each module is composed of an associative memory in which the correlation
between the features and corresponding categories is stored, and an aw: for input
operation (see fig. 2.5 and paragraph 2.2.1 about word recognition). In the
external memory the corresponding feature names are represented by strings,
together with belief values named by adjectives. During the categorization each
feature name in the external memory is tested by the awi of the module. If it
is recognized despite possible type errors, the belief value is calculated using the
corresponding belief table (see paragraph 1.2.4). Otherwise the belief in the not
specified is calculated (see also paragraph 1.2.4).
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4.3.6 Query-Reply

If the categorization must be as accurate as possible, the presence of each cat-
egory in a module is tested by queries about presence of corresponding fea-
tures [41, 83, 163]. This procedure corresponds to the abductive inference in
which a hypothesis is made and then is tested [153, 81]. The hierarchical cat-
egorization is performed as before except that the search is now guided by an
observer instead of the external memory. An example of a dialog of a medical
instruction system for how to revive a person is shown 3. It follows the guidelines
of the American Heart Association [109], the taxonomy is shown in Fig. 4.5.
During the categorization the instructions about the present medical treatment
are shown [224].

Reanimation

7l

Bewusst Kammerflimmern \ Pulslose Elektrische Aktivitaet

/

Asystoliealgorithmus Bradykardiealgorithmus
Tachykardiealgorithmus L ungenoedem Myokardinfakt

Figure 4.5: Medical treatment of reanimation.

In following example a dialogue between a student and the system is shown:

! MODULE REANIMATION !

CONSULTING: input NO, MAYBE, YES.
Question Nr.1, BEWUSST present? >> NO
Question Nr.2, BEWUSSTLOS present? >> YES
e Alarmiere den Rettungsdienst

e Fordere eine Defibrillator an

e Ueberpruefe die Atmung (Oeffnen der Atemwege, Sehen, Hoeren und Fuehlen)
Question Nr.3, SPONTANATMUNG present? >> NO

3This system is in German to make the usage easier for German students.
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Question Nr.4, ATEMSTILLSTAND present? >> YES

e Beatme 2mal langsam

e Ueberpruefe den Kreislauf

Question Nr.5, KEIN PULS present? >> YES

e Beginne mit CPR

Question Nr.6, KAMMERFLIMMERN ODER VENTIKULAERE TACHYKARDIE
IM EKG present? (0 - 2) >> MAYBE

e Ueberpruefe ABC

e Beginne mit CPR bis Defibrillator verfuegbar

e KF/VT im EKG

e Defibrilliere - wenn noetig - bis 3 mal bei anhaltendem

e KF/VT (200J, 200-300 J, 360J)

Question Nr.7, KEIN KAMMERFLIMMERN ODER VENTIKULAERE TACHYKARDIE
IM EKG present? >> NO

Question Nr.8, ELEKTRISCHE AKTIVITAET present? >> MAYBE
Question Nr.9, KEINE ELEKTRISCHE AKTIVITAET present? >> NO
Question Nr.10, PULS present?, >> NO

Question Nr.11, ARRHYTHMIE ZU LANGSAM present? >> MAYBE

e Ueberpruefe ABC

e Sichere Atemwege

e Gib Sauerstoff

e Lege einen i.v.-Zugange

e Sorge fuer EKG-Monitoring, Pulsoximetrie, automatische Blutdruckmessung
e Ueberpruefe die Vitalzeichen

e Erhebe eine Kurzanamnese

e Untersuche den Patienten

e Veranlasse ein 12-Kanal-EKG

e Veranlasse eine Roentgen-Thorax-Aufnahme, wenn moeglich am Ort

e BRADYKARDIE: absolut ( < 60 Schlaege/min) oder relativ

Question Nr.12, ARRHYTHMIE ZU SCHNELL present? >> NO

! MODULE KAMMERFLIMMERN with qc=0.4 !

Question Nr.13, RHYTMUS NACH DEN ERSTEN DREI SCHOCKS ANHALTENDES
ODER WIEDERAUFTRETENDES KF VT present? >> NO

Question Nr.14, RHYTMUS NACH DEN ERSTEN DREI SCHOCKS SPONTANKREIS-
LAUF present? >> MAYBE

RESULT:

UEBERPRUEFE DIE VITALZEICHEN UNERSTUETZE ATMUNG

e Ueberpruefe die Vitalzeichen

e OefIne die Atemwege

e Unterstuetze die Atmung

e Gib ggf. Medikamente zur Stabilisierung von Blutdruck, Herzfrequenz und -rhythmus.
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with qc=0.2

By answering the questions with three possible answers expressing the certainty
of the presence of the present symptoms and corresponding instructions, the
student learns, in a playful way, the taxonomic knowledge, knowledge which is
dependet on the presence of symptoms. The main advantage of this system com-
pared to other systems is its clarity and the easy of use. To learn knowledge
which is represented by a system, the behavior of the system must be under-
stood. The question can be answered by only three adjectives. The student can
understand the treatment of uncertainty by counting and is not obliged to learn
a (complicated) mathematical uncertainty calculus paradigm.

4.4 System Jurassic

The goal of the system is to help paleontologists determine creatures or crea-
ture groups out of a taxonomic knowledge base which describes the dinosaurs
[62] and using only some vague beliefs about the presence and absence of some
features. In 1887 Professor Harry Govier Seeley grouped all dinosaurs into the
saurischia and ornithischia groups according to their hip design. The saurischian
were divided later into two subgroups: the carnivorous, bipedal theropods and
the plant-eating, mostly quadruped sauropodomorphs. The ornithischians were
divided into the subgroups birdlike ornithopods, armored thyreophorans, and
margginoncephalia. The subgroups can be divided into suborders and then into
families and finally into genus. The genus includes the species. It must be noted
that in this taxonomy many relations are only guesswork, and many paleon-
tologists have different ideas about how the taxonomy should look. The whole
knowledge base is composed of 70 modules in which 423 rules are stored. The
taxonomy is modeled in the books of [101, 102] in which over fifty families and
more than 340 genre of dinosaurs are described.
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Figure 4.8: Infraorder Carnosaurus.
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Diplodocids
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7
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Figure 4.10: Infraorder Sauropods.
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Figure 4.11: Infraorder Ornithopods.
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Figure 4.12: Infraorder Four Legged Ornithishian.

4.4.1 Categorization

In the following example the retrieval of taxonomic knowledge from a database,
which tries to completely describe a knowledge area, is shown. The species of fig.
4.13 is described by six features using the belief table.

Figure 4.13: Maiasaura.

1. probably bird hipped
2. certainly two legged

3. probably long arms
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4. certainly long stiffly held tail
5. probably solid bony humps or crests
6. very probably length nine m

*
1) ! MODULE ORNITHISCHIAN with qc=0.33, <1> !x
2) ! MODULE ORNITHOPODS with qc=0.67, <2> !xx
3) ! MODULE PACHYCEPHALOSAURIDS with qc=0.51, <3> !
|
|
|

4) ! MODULE THESCELOSAURIDS with qc=0.49, <3> !

5) ! MODULE HADROSAURIDS with qc=0.48, <3> !x%

6) ! MODULE HADROSAURINE_DUCKBILLS with qc=0.36, <4> !x
RESULT:

MATASAURA with qc=0.38
SAUROLOPHUS with qc=0.33

The first determined categoriy represents Maiasaura (see fig. 4.13). Maiasaura
and Saurolophus belongs to the group Hadrosaurine duckbills®.
In chapter 1 another example of hierarchical categorization was shown.

4.4.2 Hypothesis

Which object of one group is most similar to an object of another, different
group? For example, we have two different disjunct knowledge areas which are
completely described. The two groups are dinosaurs and mammals. We wish to
know which animal of the dinosaur group is most similar to an animal of the
mammal group. This is a kind of case-based reasoning [64, 170] in which specific
knowledge is used to retrieve the most similar stored case (see also section 5.1).
Suppose we pose a question: Which dinosaur species is most similar to a
human? We describe a human being by seven features. The hierarchical catego-
rization is performed in which the most similar stored category is determined.

1. certainly two legged

2. certainly not four legged

3. probably thin walled fragile bones
4. very probably not big

5. very probably big eyes

4For continued search see Appendix A.3.1
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6. certainly big brain
7. certainly capsule in the skull

8. very probably length two m

1) ! MODULE SAURISCHIAN with qc=-0.33, <1> !x¥x
2) ! MODULE THEROPODS with qc=0.05, <2> !«

3) ! MODULE COELUROSAURS with qc=0.12, <3> !k*x
4) ! MODULE SAURORNITHOIDIDS with qc=0.2, <4> !x

RESULT:

SAURORNITHOIDES with qc=0.25
STENONYCHOSAURUS with qc=0.25

This answer is the same as the suggestion of Dale Russell [165] in the early
1980s that the Stenonychosaurus, see fig 4.14 (also now known as Troodon),

could have given rise to a brainy descendant, had dinosaurs survived instead of
dying out [101, 102].

Figure 4.14: Stenonychosaurus.

4.4.3 Priming

A paleontologist tries to determine a species from vague knowledge by form-
ing possible hypotheses. He specifies the most probable species by declarative
knowledge in the form of some of the most noticeable features and the species
is determined. At the same time the corresponding taxonomic knowledge area

SFor continued search see Appendix A.3.2
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is primed by non-declarative knowledge with the aid of the availability heuris-
tic. After this the paleontologist formulates more sophisticated features and the
species of the primed taxonomic area are examined first. Thus, priming eases the
formation of the final hypothesis, as more exact, possible hypotheses are formed.

Priming of knowledge areas [131, 8, 192] is performed by one pass strength-
ening and weakening of the links between categories.® This is accomplished by
utilizing a sufficient factor” to permit the retrieval of the same part of the taxon-
omy with insufficient knowledge by the usage of the availability heuristic during

the next categorization. In this example we determine a species which had a very
thick skull:

Figure 4.15: Pachycephalosaurus.

1. certainly skull bone has a twenty five cm thick roof

1) ! MODULE SAURISCHIAN with qc=-0.33, <1> !

2) ! MODULE THEROPODS with qc=-0.24, <2> !

3) ! MODULE COELUROSAURS with qc=-0.16, <3> !

4) ! MODULE CAENAGNATHIDS_ELMISAURIDS with qc=-0.12, <4> !

|
I
I
|
5) ! MODULE OVIRAPTORIDS with qc=-0.12, <4> !
|
I
I
|

6) ! MODULE SEGISAURIDS with qc=-0.12, <4> !
7) ! MODULE COMPSOGNATHIDS with qc=-0.12, <4> !
8) ! MODULE DROMAEOSAURIDS with qc=-0.14, <4> !
9) ! MODULE GARUDIMIMIDS with qc=-0.14, <4> !
10) MODULE ORNITHOMIMIDS with qc=-0.14, <4> |

12) MODULE ARCHAEOPTERYGIDS with qc=-0.15, <4> |

!
11) ! MODULE SAURORNITHOIDIDS with qc=-0.14, <4> !
!
13) ! MODULE COELOPHYSIDS with qc=-0.15, <4> !

Ssee paragrap 4.3.4
Te=0.5
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14) ! MODULE COELURIDS with qc=-0.16, <4> !

15) ! MODULE NOASAURIDS_SHANSHANOSAURIDS with qc=-0.17, <4> !
16) ! MODULE DEINOCHEIRIDS with qc=-0.17, <4> !
17) ! MODULE AVIMIMIDS with qc=-0.2, <4> !

18) ! MODULE CARNOSAURS with qc=-0.2, <3> !

19) ! MODULE SEGNOSAURIDS with qc=-0.16, <4> !

20) ! MODULE SPINOSAURIDS with qc=-0.17, <4> !

21) ! MODULE CERATOSAURIDS with qc=-0.18, <4> !
22) ! MODULE DRYPTOSAURIDS with gc=-0.18, <4> !
23) ! MODULE TYRANNOSAURIDS with qc=-0.18, <4> !
24) ! MODULE MEGALOSAURIDS with qc=-0.18, <4> !
25) ! MODULE ALLOSAURIDS with qc=-0.18, <4> !

26) ! MODULE TERATOSAURIDS with qc=-0.2, <4> !

27) ! MODULE OTHER with qc=-0.23, <4> !

28) ! MODULE THERIZINOSAURIDS with qc=-0.23, <4> !

29) ! MODULE ORNITHOPODS with qc=-0.23, <3> !
30) ! MODULE THESCELOSAURIDS with qc=-0.18, <4> !
31) ! MODULE PACHYCEPHALOSAURIDS with qc=-0.19, <4> !x

PACHYCEPHALOSAURUS with gc=-0.09

Pachycephalosaurus, “Thick-headed lizard” (see fig. 4.15) is one species from
the group of Pachycephalosaurids which are supposed to be the equivalent of to-
day’s bighorn sheep, (see fig. 4.16) “In the mating season, big mammals evidently
ran after one another, clashing heads together to decide which would dominate
and mate with the whole herd of females” [102], page 154.

We search another species with “thick rough shaped dome”:
1. certainly skull with a thick rough dome shaped top

1) ! MODULE SAURISCHIAN with qc=-0.33, <1> !

2) ! MODULE THEROPODS with qc=-0.24, <2> !

3) ! MODULE ORNITHOPODS with qc=-0.23, <3> !

4) ! MODULE PACHYCEPHALOSAURIDS with qc=-0.19, <4> !x

RESULT:
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Figure 4.16: “Thick-headed lizard” ran one another, clashing heads together.

MAJUNGATHOLUS with qc=-0.11

The search leads directly to the right group Pachycephalosaurids. The links
between the categories are initialized to zero and another group is primed. The
roof lizard of fig. 4.17 is described by three features, it is a stegosaurid with the
largest known plates:

1. probably bird hipped
2. certainly four heavy spikes

3. certainly plates up to seventy six cm high and seventy nine cm long

1) ! MODULE ORNITHISCHIAN with qc=0.33, <1> !

2) ! MODULE ORNITHOPODS with qc=0, <2> !

3) ! MODULE THESCELOSAURIDS with qc=-0.02, <3> !

4) ! MODULE PACHYCEPHALOSAURIDS with qc=-0.02, <3> !

|
|
|
I
5) ! MODULE HYPSILOPHODONTIDS with qc=-0.04, <3> !
I
|
|
I

6) ! MODULE FABROSAURIDS with qc=-0.04, <3> !
7) ! MODULE HADROSAURIDS with qc=-0.04, <3> !
8) ! MODULE HADROSAURINE_DUCKBILLS with qc=-0.08, <4> !
9) ! MODULE LAMBEOSAURINE_DUCKBILLS with qc=-0.09, <4> !

10) ! MODULE CAMPTOSAURIDS with qc=-0.04, <3> !

11) ! MODULE HETERODONTOSAURIDS with qc=-0.05, <3> !
12) ! MODULE TROOEDONTIDS with qc=-0.05, <3> !

13) ! MODULE IGUANODONTIDS with qc=-0.05, <3> !

14) ! MODULE FOUR_LEGGED_ORNITHISCHIANS with qc=0, <2> !
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15)
16)
17)
18)
19)

MODULE
MODULE
MODULE
MODULE
MODULE

I MODULE

CERATOPSIANS with gc=-0.02, <3> !
PSITTACOSAURIDS with qc=-0.05, <4> !
PROTOCERATOPSIDS with qc=-0.05, <4> !
SHORT_FRILLED_CERATOPSIDS with qc=-0.06, <4> !
LONG_FRILLED_CERATOPSIDS with qc=-0.07, <4> |

STEGOSAURIDS with qc=-0.05, <3> Ix%x

STEGOSAURUS with qc=0.1

Figure 4.17: Stegosaurus.

Species with triangular plates which lived in the late Jurassic are searched:

1. very probably not lizard hipped

2.

3.

*
1)
2)
3)

certainly late jurassic

certainly triangular plates

I MODULE ORNITHISCHIAN with qc=-0.33, <1> !
! MODULE FOUR_LEGGED_ORNITHISCHIANS with qc=-0.33, <2> !
! MODULE STEGOSAURIDS with qc=-0.27, <3> !x*x

RESULT:
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KENTROSAURUS with qc=-0.04
TUOJIANGOSAURUS with qc=-0.04
DACENTRURUS with qc=-0.12

Dacentrurus has the lowest gc value, it lived in the middle to late Jurassic and
had perhaps no plates.

Recovering

The links between the categories are not initialized and a species from another
group is searched. It is Parasaurolophus of the “Lambe’s lizards” group (see fig
4.18). The tube inside a “Parasaurolophus’s crest acted as a sound box, amplifying
the voice and producing low, resonant cries” [102], page 150.

Figure 4.18: Parasaurolophus.

1. certainly short muzzle and curved hollow horn jutting back from
the head

2. very probably late cretaceous

1) ! MODULE ORNITHISCHIAN with qc=-0.33, <1> !
2) ! MODULE FOUR_LEGGED_ORNITHISCHIANS with qc=-0.33, <2> !
3) ! MODULE STEGOSAURIDS with qc=-0.27, <3> !x%

This was the learned path to another group. After backtracking the search is
continued?®:

8For complete search see Appendix A.3.3
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4)
5)
6)

7)
8)
9)
10)
11)
12)

13)
14)
15)
16)
17)
18)
19)
20)

21)
22)
23)
24)
25)
26)

27)

28)

I MODULE
! MODULE
! MODULE

I MODULE
I MODULE
! MODULE

MODULE
MODULE
MODULE

MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE

MODULE
MODULE
MODULE
MODULE
MODULE
MODULE

MODULE

MODULE

MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE

ANKYLOSAURS with qc=-0.28, <3> !
NODOSAURID_ANKYLOSAURS with qc=-0.26, <4> Ix
ANKYLOSAURID_ANKYLOSAURS with qc=-0.26, <4> !x

SCELIDOSAURIDS with qc=-0.3, <3> !

CERATOPSIANS with qc=-0.24, <3> |

PSITTACOSAURIDS with qc=-0.21, <4> !
PROTOCERATOPSIDS with qc=-0.22, <4> !x%
SHORT_FRILLED_CERATOPSIDS with qc=-0.23, <4> !x
LONG_FRILLED_CERATOPSIDS with qc=-0.24, <4> Ix

SAUROPODOMORPHS with qc=-0.38, <2> !
PROSAUROPODS with qc=-0.29, <3> !
PROSAUROPOD_ODDITIES with qc=-0.22, <4> |
HERRERASAURIDS with qc=-0.24, <4> |
STAURIKOSAURIDS with qc=-0.27, <4> !
ANCHISAURIDS with qc=-0.28, <4> !
PLATEOSAURIDS with qc=-0.29, <4> !
ROCCOSAURIDS with qc=-0.3, <4> !

SAUROPODS with qc=-0.29, <3> !
DIPLODOCIDS with qc=-0.24, <4> !x
CAMARASAURIDS with qc=-0.24, <4> !x%
CETIOSAURIDS with qc=-0.25, <4> !
TITANOSAURIDS with qc=-0.27, <4> Ix
BRACHIOSAURIDS with qc=-0.27, <4> |

ASSORTED_SAUROPODS with qc=-0.41, <3> !x*

THEROPODS with qc=-0.42, <2> !

ORNITHOPODS with qc=-0.34, <3> !
THESCELOSAURIDS with qc=-0.27, <4> !x
PACHYCEPHALOSAURIDS with qc=-0.26, <4> !x
HYPSILOPHODONTIDS with qc=-0.28, <4> !x
FABROSAURIDS with qc=-0.29, <4> !

HADROSAURIDS with qc=-0.29, <4> !
HADROSAURINE_DUCKBILLS with qc=-0.27, <5> Ix
LAMBEOSAURINE_DUCKBILLS with qc=-0.28, <b5> Ix%x
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PARASAUROLOPHUS with qc=-0.16

The recovering is performed by the weakening of the old path and the strength-
ening of the new path. The next search for species from the group Lameosaurine
duckbills is done in 16 steps, corresponding to the steps 1..12,28,55,60,62 as shown
above. Afterwards the species is found in five steps corresponding to the steps
1,28,55,60,62 as shown above.

4.4.4 Emphasis and forgetting

A medical doctor diagnosing diseases during an influenza epidemic can incor-
rectly diagnose malaria as influenza. This is because the medical knowledge area
corresponding to the influenza disease is primed and the primed area is preferred.
Symptoms which are common to both of the two diseases could indicate, to a
careless doctor at first glance, a case of influenza. This human behavior of em-
phasizing knowledge areas which are often used and disregarding knowledge areas
which are seldom used is modeled in the next experiment. Mostly this policy is
useful, if one has to balance between completeness and speediness of retrieved
knowledge.

The taxonomy can be divided into three groups «, 3,7 (see tab. 4.19). Each
group is represented by nine randomly chosen species (see tab. 4.1). Each species
is described by two certain features which are sufficient for the categorization but
insufficient to guide the search. The number of required steps S for the catego-
rization is determined (see tab. 4.1). The uniformed search strategy randomly
prefers the group ~ to group « significantly”. After learning the group Ornitopods
by frequent!? determination of five species with sufficient knowledge to guide the
search with five certain features, the categorization is repeated with equal fea-
tures as before learning. The number of required steps S for the categorization
is determined (see tab. 4.1). There is a significant improvement for the groups
a, 3, and a significant deterioration for the group v (see tab. 4.2). Emphasis
of one knowledge area leads to forgetting of another knowledge area. There is
no significant change in the behavior of the whole taxonomy before and after
learning, or the groups a and v together, as they compensate for each other (see
tab. 4.2). The significance of the preference of group a to v is very high'!.

9Mean Difference Test rejects the hypothesis that the mean difference is zero between o and
~ with p=0.0033.

Ofrequency=4,e = 0.1

' Mean Difference Test rejects the hypothesis that hypothesis that the mean difference is
zero is even more significant, p = 7.33710.
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Figure 4.19: Taxonomy of dinosauria after learning Ornithopods.

4.5 Conclusion

A neural model for a deduction system based on the assembly theory was intro-
duced. It was shown that hierarchical categorization can be performed by neural
networks efficiently. The categorical representation offers an alternative to the
traditional uncertainty calculus [38, 111, 171, 175, 231].

Similarity is used when uncertain knowledge is represented without the need
of an additional calculus. In addition, belief tables allow additionally the de-
tachment of the uncertainty of the coded knowledge and of the actually present
knowledge. The availability heuristic offers a combination of the frequency with
the actual likelihood of the presence of a category. Priming eases the formation of
the final hypothesis, as more exact, possible hypotheses are formed. This human
behavior of emphasizis of knowledge areas which are often used and disregarding
of knowledge areas which are seldom used was modeled. This policy is useful, if
one has to balance between completeness and speediness of retrieved knowledge.

The deduction system is a simple model. It is not practical therefore to
use it for planning, as planning is mostly described by fewer rules, but which
characterizes a much bigger problem space. Planning can be performed more
easily by reaction systems in which the premise specifies the conditions that have
to be satisfied so that the condition which specifies an action may be undertaken.

I v ;"f"'? Coelurosaurs Carnosaurs
Assorted Sauropods J ,

I
I

!
/
/
/
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| SUBORDER | FAMILY | SPECIES IERES
ORNITHOPODS | FABROSAURIDS AZENDOHSAURUS [ 33]5
HETERODONTOSAURIDS | ABRICTOSAURUS | 386
HYPSILOPHODONTIDS ALOCODON 324

() TROOEDONTIDS TROOEDON 39 |3
THESCELOSAURIDS THESCELOSAURUS | 30 | 3

LAMB. DUCKBILLS HYPACROSAURUS 36 | 11

FOUR LEGGED SCELIDOSAURIDS SCELIDOSAURUS 67 | 24
PROTOCERATOPSIDS LEPTOCERATOPS 60 | 17

ANKYLO. ANKYLOSAURS | AMTOSAURUS 66 | 23

SAUROPODS CETIOSAURIDS AUSTROSAURUS 56 | 36
TITANOSAURIDS ALAMOSAURUS 53|37

(8) DIPLODOCIDS BAROSAURUS 50 [ 34
BRACHIOSAURIDS ASTRODON 54 138

PROSUAROPODS | ANCHISAURIDS ANCHISAURUS 46 | 30
ROCCOSAURIDS RIOJASAURUS 8732
STAURIKOSAURIDS STAURIKOSAURIDS 41129

PROSAUR. ODDITIES MUSSAURUS 44127

HERRERASAURIDS HERRERASAURUS 45128

OTHER MARINE LIZARD 27165
STRANGE KILL. MARSHOSAURUS 56 | 68
COELUSAURUS | COELURIDS MICROVENATOR 14 | 52
NOA. SHANSHANOSAURIDS | NOASAURUS 15 | 53

() SEGISAURIDS SEGISAURUS 6 | 44
AVIMIMIDS AVIMIMUS 17 [ 55

CARNOSAURUS | MEGALOSAURIDS DILOPHOSAURUS 24 ] 62
ALLOSAURIDS ALLOSAURUS 25 [ 63
TYRANNOSAURIDS ALBERTOSAURUS 23 | 61

Table 4.1: Required steps before S and after learning S“Ornithopods.

Dynamical representation of the problem space is suitable instead of static for
reaction systems. No traces can be left behind if problem space representation is
used dynamically, because the whole solution sequences must be saved to allow
the usage of the availability heuristic.
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| L S [ s ] | ENRES
mean | 44.56 | 10.67 mean | 48.56 | 32.33
sdev | 15.26 | 8.56 sdev | 5.05 | 4.09

p - 4.3277 P - 5.2479

steps for « steps for 3

| ERNES ERRESE
mean | 23 58.11 mean | 46.56 | 21.5
sdev | 14.05 | 7.62 sdev | 11.19 | 12.91
p - 9.7377 p - 6.97Y

steps for ~y steps for a +

| ERE ERRESN
mean | 38.7 | 33.7 mean | 33.78 | 34.39
sdev | 16.45 | 20.88 sdev | 18.03 | 25.65
p - 0.2 p - 0.47

steps for a+ G+ steps for a4y

Table 4.2: Mean and standard deviation of required steps before and after learn-
ing o for «, § and v and their combinations. The p values were determined by
paired sample t test. Significant for p < 0.05 by convention.



84

CHAPTER 4. HIERARCHICAL CATEGORIZATION



Chapter 5

The Associative Computer

5.1 Reaction systems

Problems with side effects of actions like planning can be resolved by reaction
systems [229]. Reaction systems are a subgroup of production systems. The
premise specifies the conditions that must be true before the action described
in the conclusion can be taken. The premise and conclusion can be represented
by operators. Reaction systems need strategies for conflict resolution. Conflict
resolution strategies are often specified by general provisions [76]:

e a rule should be not allowed to fire more than once on the same data
e rules that have used more recent data are prefered
e rules that have a greater number of patterns in the premise are prefered

Rules also can be evaluated by a heuristic function. There are two diferent kinds
of heuristic functions:

e The probability that the function is on the best path (see availability heuris-
tic)
e The distance or difference between a given state and the desired state

It is difficult to define heuristic functions, through frequently features can be
picked out which describe the distance to the goal [166]. The other possibility is
the reusage of solutions to solved problems to indicate which rule to use.

Analogical Problem solving Case-based reasoning [64, 86, 217, 170, 76]
is considered a form of analogical problem solving in which specific knowledge
of previously experienced cases is used. A new problem is solved by finding a
similar past case, and reusing its solution in the new problem.

85
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RETE To generate the conflict set all possible instances are determined by
defining all possible sets of working-memory elements, along with all instances
of variables. This requires a great deal of time. Often the premises of rules and
objects in working memory share common conditions and working memory is only
modified a little each time. This observation leads to the “rete” match algorithm
[46] which is used by the OPS family of production systems [76]. This algorithm
reduces overhead by using a tree-structured sorting network. The patterns in
the premise are compiled into this type of network, and the match algorithm
computes the conflict set by processing the network. In the network a set of
tokens is used for updating working memory changes. The tokens indicate which
patterns match which working memory elements, and only this set is updated.

5.2 Problem solvers as parts of bigger systems

5.2.1 Intelligent planning systems

Reaction systems are problem solvers which are very suitable for planning tasks.
They are often also the atomic part of more effective planning algorithms. Com-
plex problems are divided into several more-or less independent parts, and these
smaller parts are solved seperately by problem solvers. Another possibility is hier-
archical abstraction, in which problems are organized into levels of hierarchy. The
hierarchy can be used by the problem solvers to make the planning process more
effective (for more literature about planing algorithms see. [18, 218, 227, 230]).

5.2.2 The Production system as a model of human prob-
lem solving

The SOAR state, operator and result model was developed to explain human
problem solving behavior [133]. It is a hierarchical production system in which
the conflict-resolution strategy is treated as another problem to be solved. All
satisfied instances of rules are executed in parallel in a “temporary” mode. After
the temporary execution the best rule is chosen to take action. The decision
takes place in the context of a stack of earlier decisions. Those decisions are
rated utilizing preferences and added to the stack by chosen rules. Preferences
are determined together with the rules by an observer using knowledge about a
problem.
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5.3 Neural reaction system

The states correspond to pictures which are represented by cognitive entities. The
transitions between the states are described by associations ! and these associa-
tions correspond to operators in a symbolic reaction system. These assocations
are stored in the permutation associative memory. Working memory is initial-
ized with the initial state description. This description forms a vector & which is
presented to the permutation associative memory. The permutation associative
memory then identifies the set of all appropriate answer vectors y?, i € {1,...,s}
to the question vector #. Together with the question vector, the answer vectors
represent all possible valid associations. In parallel, the answer vectors are ex-
ecuted in a “temporary” mode. After the temporary execution an association
which takes action on the working memory is chosen, either randomly, according
to a heuristic, or by reusing the solution of already solved problems. This cycle
is repeated on the modified working memory until a desired state is reached. By
backtracking and the exclusion of loops, a search from the initial state to the
desired state is executed. This neural reaction system is called the associative
computer and can be integrated into bigger systems.

5.3.1 Permutation associative memory
Permutations

A state is represented by A cognitive entities. Associations represent transi-
tions between the states representing pictures. The premise of an association is
represented by ¢ cognitive entities which describe a correlation of objects which
should be present. If present, they are replaced by o cognitive entities of the
conclusion. Generally the premise is describe by fewer cognitive entities then the
state, 0 < A. In the recognition phase, all posible d-permutation of A cognitive
entities should be composed to test if the premise of an association is valid.

_ Al

This is done because the premise can describe any correlation between the cog-
nitive entities. Associations can be learned by the associative memory (see fig.
5.4). In the retrieval phase = permutations are formed (see fig. 5.1). Each
permutation represents a question vector z; ,i € {1,...,Z}. To each question
vector x; an answer vector y; with the quality criterion is determined. If the qc
value of this answer vector is above a certain threshold, the association can be
executed. A copy of the state representation is formed and the corresponding
cognitive entities are replaced by the conclusion pattern (see fig. 5.2). Either =

ISee section 3.4.4.
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associative
memory

210 f
possible
permutations

premise describes correlation
between three cognitive entities

A state represented by seven cognitive entities

m] [a] [v] [e] [=] [©] [o]

Figure 5.1: In the recognition phase, all posible 3-permutation of 7 cognitive
entities should be composed to test if the premise of an association is valid.
(Contents of the cognitive entities are represented for simplicity by geometrical
objects without division in associative fields.)

calls of the associative memory are performed, or = copies of associative memory
perform the computation in parallel.

Parts

To each cognitive entity in the question vector, a corresponding part of the asso-
ciative memory is assigned (see fig. 5.3). If we permute the 0 arrangement of the
cognitive entities we get the same answer vector as before the permutation, but
only if the § parts of the associative memory are permuted accordingly (see fig.
5.3). The parts of the associative memory can be ordered, so that either R calls
of the associative memory are performed, or R copies of the associative memory
perform computation in parallel.
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m] (2] [v] [e] [=] [©] [O]

Figure 5.2: A copy of the state representation is formed and the corresponding
cognitive entities are replaced by the conclusion pattern.

proof A savings results from the fact that the = permutations are formed from
different cognitive entities. The first part of the associative memory computes
the output of the A cognitive entities. For each A first parts there are A — 1
different second parts, in total A - (A — 1) combinations. The number of copies
of a part can be defined recursively:

#Hpart(l) = A

#part(i + 1) = #part(i) - (A —1).

Summed there are:
R 5 J Al
=2 (A=)

1=

—_

parts and
R-0

IA
[1]
>,

applies for parts.
ford>1, R<Z.

Constraints

Only a small fraction of the = possible answers represent associations. The com-
plexity can be reduced considerably by the fact that the parts of associative
memory are also themselves associative memories. The entire associative mem-
ory can be composed only from those parts whose gc values of answers are above
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Figure 5.3: a) Association composed of three cognitive entities. b) Recall of the
association by the associative memory. c¢) To each cognitive entity in the question
vector, a corresponding part of the associative memory is assigned. d) If we
permute the three arrangements of the cognitive entities we get the same answer
vector as before the permutation, but only if the three parts of the associative
memory are permuted accordingly.

a certain threshold. By this constraint, the number of possible combinations of
possible associative memories is reduced.

1. For all parts Vi, ¢ € {1,...,0} and for all cognitive entities Vj, j €
{1,..., A} answers and gcpq, values of part(i); are determined (6-A times).

2. The qcpqre values of A -0 part(i); which are over a certain threshold,,. are
marked.

3. From different marked parts whose answers were determined by different
cognitive entities associative memories are formed.

4. The corresponding answer vectors with qc,noe values of those associative
memories are determined.

5. If the gcynoe value is over a certain threshold, .. an association can be
executed.
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Architecture After the learning of associations (see fig. 5.4) the retrieval
phase occurs. The retrieval phase is subdivided into two stages: the attention

=

-

A A
@ B O

Figure 5.4: Learning phase.

stage and the binding stage. In fig. 5.5 we see the arrangement of the parts in ¢
layers over A cognitive entities. This arrangement is used for the retrieval phase.
The question vectors of the parts are represented by the connection between
them and the corresponding cognitive entities. In the attention stage d - A qc
values are determined and the corresponding parts are marked (see fig. 5.5). In
the binding stage the associative memories are formed successively from marked
parts over different cognitive entities. The formed associative memories deter-
mine the answer vectors. This architecture is called the permutation associative
memory. Fither p calls of the associative memory are performed, or g copies
of the associative memory perform the computation in parallel. If m(i) is the
number of marked parts(i); for j € {1,..., A}, then

12 :
p <At <> m(i).

i=1

And there are s possible associations.
5
s < [ m(i).
i=1

notice

Vi, i€ {1,...,8},mi) <

— p <N
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Figure 5.5: The permutation associative memory. In the attention stage parts are
marked (thick boxes). In the binding stage the associative memories are formed
(thick arrows).

proof The estimation Vi, i € {1,...,d} ﬁ < m(i)" + A leads to the triv-
ial solution A — A = 0 = m(1). So we begin the estimation at i=2, Vi, i €
{2,...,0} A!.)! — % - A < m(i)'. Because Vi, i € {2,...,6}, d <A

(A—i
! i o .
(m—%'A)PH < (ﬁ—%A)Z :>v7/, 1 € {1,...,(5},771(7,) S

(s — 555 ) — p< R

Given a state represented by a unit, the permutation associative memory rec-
ognizes s question vectors, s copies of state representation are formed. The
cognitive entities which form the question vectors (premise) are replaced by the
cognitive entities of the answer vectors (see fig. 5.2). The resulting s states are
represented by s units (see fig. 5.6).

Qualities

e Permutation associative memory is an associative memory which allows the
representation of several answers corresponding to a single input.

e The retrieval phase of the permutation associative memory corresponds
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Figure 5.6: The cognitive entities which form the question vectors (premise)
are replaced by the cognitive entities of the answer vectors (conclusoion). The
resulting 4 states are represented by 4 units.

to the determination of all possible instantiations of rules in a symbolic
production system.

e The retrieval phase is subdivided into two stages: the attention stage [5,
155] and the binding stage. Only when the attention is focused on certain
parts are they bound to a whole object [210, 34, 155] representing a question.

e The process of marking corresponds to the mechanism of attention window
mechanisms that selects a pattern in the visual buffer for further aceesses
of the visual system in the human brain [88].

e The succesive examination of the cognitive entities corresponds to the spot-
light theory [37]. Attention is linked to a spotlight that is focused on the
cued location and shifted as necessary [88, 155].

e The binding problem? is solved after the attention stage by constraining

the formation of permutations of parts of an associative memory.

e The configuration of cognitive entities describing a scene can be arbitrary.

2For more information about the binding problem, see section 7.1.2.
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Example from the geometric blocks world

In this example, blocks can be placed in three different positions and picked up
and set down by a robot arm. There are two different classes of blocks: cubes and
pyramids. No other block may be placed on top of a pyramid, while either type of
block may be placed on top of a cube. The robot arm is represented in the upper
right corner. Three objects are present; two cubes and one pyramid. Eighteen

100

80

60

40

20

0 20 40 60 80 100

Figure 5.7: The world for the task geometric blocks.

different states are possible. The state of the world is described by a hundred
times hundred pixel pictures (see fig 5.7). These pictures are represented by seven
cognitive entities. The objects are described by ten times ten pixel associative
fields, the position coordinates by two hundred pixel vectors. Thirty associations
are learned. Its premises and conditions are described by three cognitive entities
(see fig. 3.10 and fig. 3.14). Together the question and the answer vector have
the dimension 900 (100 - 3 - 3). After learning, a weight matrix of dimension
9002 emerges (see fig. 5.8). The matrix is symetric since for each assoication
there exists an inverse association and vice versa. The matrix is low loaded, but
the weights are not equally distributed. They form ordered clusters with nearly
fractal properties. The order is reflected in the structure of the weight matrix
represented in fig. 5.9. The weight matrix is composed of 10 elementary blocks.
The blocks represent nearly a linear correlation with peaks at the blocks with

sum values 122 and 224.

In the following example, associations corresponding to the state represented
in fig. 5.15-ID4 are determined. The representation of the state ID4 by seven
cognitive entities as used for the computer simulations follows:
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Figure 5.8: The weight matrix of the permutation associative memory for the task
geometric blocks. 44448 synapses are not zero, 5.4874% of the weight matrix. The
grey level bar on the right indicates the scaling of the frequency weight values.

No:1

0000110000
0000110000
0001001000
0001001000
0010000100
0010000100
0100000010
0100000010
1000000001
1111111111

1111111111000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

0000000000111111111100000000000000000000000000000000000000000000000000000000000000000000000000000000

No:2

1111111111
1000000001
1000000001
1000000001
1000000001
1000000001
1000000001
1000000001
1000000001
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Figure 5.9: The sum of the synapses of a column. The x axis indicates the
frequency of different sum values of columns. The written number corresponds
to the sum values.

1111111111
1111111111000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000001111111111000000000000000000000000000000000000000000000000000000000000
No:3

1111111111
1000000001
1000000001
1000000001
1000000001
1000000001
1000000001
1000000001
1000000001
1111111111

1111111111000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000001111111111000000000000000000000000000000
No:4

0000000000
0000000000
0000000000
0000000000
0000110000
0000110000
0000000000
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0000000000
0000000000
0000000000

0000000000111111111100000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000001111111111000000000000000000000000000000
No:5

0000000000
0000000000
0000000000
0000000000
0000110000
0000110000
0000000000
0000000000
0000000000
0000000000

0000000000111111111100000000000000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000001111111111000000000000000000000000000000000000000000000000000000000000

No:6

0000000000
0000000000
0000000000
0000110000
0001001000
0000000000
0000000000
0000000000
0000000000
0000000000

0000000000111111111100000000000000000000000000000000000000000000000000000000000000000000000000000000

0000000000111111111100000000000000000000000000000000000000000000000000000000000000000000000000000000

No:7

0000000000
0000000000
0000000000
0000000000
0000110000
0000110000
0000000000
0000000000
0000000000
0000000000

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001111111111

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001111111111

Three layers over seven cognitive entities are used. The hard threshold strategy
is used with thresholdy,, = 0.7 and thresholdy,poe = 0.87. 5+ 3 + 1 parts of
associative memory are marked. Three possible answers are recognized corre-
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sponding to the gripping of three diferent blocks by the robot arm. = = 200
permutations are possible, the estimation for m(1), m2,m(3) is < 5. The three
parts correspond to the three layers adressed by Nr.i are determined during the
attention stage. The number after the address of the cognitive entity No. j corre-
sponds to the gc value of the answer. (Answer of the part Nr.i, cognitive entity
No.j is the question.)

CHAPTER 5. THE ASSOCIATIVE COMPUTER

Attention stage (threshold is 0.7):

Nr.1

No.1= 1, No.2= 1, No.3= 1, No.4= 1, No.5= 1, No.6= -1, No.7= -1.

Nr.2

No.1= -1, No.2=

Nr.3

No.1= -1, No.2=

_1,

-1,

No.3=

No.3=

-1, No.

-1, No.

=1, No.5= 1, No.6= 1, No.7= -1.

-1, No.5= -1, No.6= -1, No.

Associative memories are formed from three different marked parts(i);.

tion: ¢ is represents the position, 5 the number.

threshold,poe are marked by +.

Binding stage (threshold is 0.87):

1, 4, 7, has
1, 5, 7, has
1, 6, 7, has
2, 4, 7, has
2, 5, 7, has
2, 6, 7, has
3, 4, 7, has
3, 5, 7, has
3, 6, 7, has
4, 5, 7, has
4, 6, 7, has
5, 4, 7, has
5, 6, 7 has

-
-
-

Three possible answers are recognized corresponding to the gripping of three

qc=0.
qc=0.

qc=1

qc=0.

qc=1

qc=0.

qc=1

qc=0.
qc=0.

372593
372593
+
588889
+
448642
+
588889
448642

qc=-0.367273
qc=-0.367273
qc=-0.367273
qc=-0.367273

diferent blocks by the robot arm.

The gcynoe values over the
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In (fig. 5.49 c-14) there is a noisy representation of the state of (fig. 5.15
ID4 ). Since the blocks are shifted and, in addition, some pixels are deleted and
some are added, the hard threshold strategy fails. Therefore, the soft threshold
strategy is used. Because of the soft threshold strategy and the noise, more parts
are marked. 7 4+ 3 + 1 parts of associative memory are marked. Three possible
answers are recognized.

Attention stage (threshold is 0.7):

Nr.1

No.1= -1, No.2= -1, No.3= -1, No.4= 1, No.5= 1, No.6= -1, No.7= -1.
Nr.2

No.1= -1, No.2= -1, No.3= -1, No.4= 1, No.5= 1, No.6= 1, No.7= -1.
Nr.3

No.1= -1, No.2= -1, No.3= -1, No.4= -1, No.5= -1, No.6= -1, No.7= 1.

Binding stage (threshold is 0.87):

has qc=-0.367273
has qc=-0.367273
has qc=-0.367273
has qc=-0.367273

-
-
-

-

SIS NN

-

o O O
~N NN N

-

ITHRESHOLD CHANGED FROM HARD TO SOFT!

Attention stage (threshold is 0.7):

Nr.1

No.1= 0.79, No.2= 0.82, No.3= 0.82, No.4= 1, No.5= 1, No.6= 0.99, No.7= 0.93.
Nr.2

No.1= 0.2, No.2= 0.17, No.3= 0.22, No.4= 1, No.5= 1, No.6= 1, No.7= 0.28.
Nr.3

No.1= 0.33, No.2= 0.4, No.3= 0.4, No.4= 0.03, No.5= 0.03, No.6= -1, No.7= 1.
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Binding stage (threshold is 0.87):

has qc=0.28321
has qc=0.28321
has qc=0.876667 +
has gc=0.493333
has qc=0.883077 +
has gc=0.359259
has qc=0.883077 +
has qc=0.493333
has gc=0.359259
has qc=-0.367273
has qc=-0.367273
has qc=-0.367273
has qc=-0.367273
has qc=0.0813008
has qc=0.0813008

b

-

15 IS NS NI I NS I NS T IC NG TN
NN N NN NN NN NN NN

-

-

b

-
-

b

-
-

b

-
-

b

-
-

b

-
-

b

1
1
1
2
2
2
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3,
3
4
4
5
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6
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-
-

b

-
-

b

-
-

b

-
-

b

-
-
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-
-

b

-
-

b
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Again, despite noise, three possible answers are recognized corresponding to the
gripping of three diferent blocks by the robot arm.

5.3.2 Search chain

A neural reaction system represents the problem space as a search chain to pro-
habit the formation of loops and allow the possibility of backtracking. A sequence
of states of pictures described by cognitive entities can be represented by con-
nected units (see fig. 3.13 and fig. 5.10). After the temporary parallel execution

Figure 5.10: A sequence of states of pictures described by cognitive entities can
be represented by connected units.

of a chosen state, s new states emerge. The s states are represented by a layer
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of s units. From the s’ states, one state is chosen and the new s'™! states are

determined. They are represented by another layer of s'*! units (see fig. 5.11).
The chosen units are marked and represent the sequence of carried out states.

<4
4

marked

chain 25
aunitis O.:\.OOO
chosen A
=4
=7

Figure 5.11: A search chain of units. (Cognitive entities represented by units are
not illustrated.)

The search chain consits of L layers of each z units. V¢, st < z. The start of the
search chain consists of one unit representing the initial state, the layer [ = 0.
This unit is connected with all units of the first layer, [ = 1. The units of each
layer are connected with all units of the following layer (see fig. 5.11). These
connections correspond to edges in a search tree. The sequence of carried out
states forms a marked chain. By comparison with those states, loops can be
prevented and a search can be realized. A state can cause an impasse when no
valid transition to a succeeding state exists. In this case, the marked chain allows
backtracking to the previous state. Another state can be chosen, if possible, or
backtracking is repeated. The number of connections between the marked units
corresponds to the depth of the search tree. The resulting search strategy is the
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“deep search” strategy. An example of deep search strategy performed by the
search chain is shown (fig. 5.12). A search chain corresponds to the stack used
in the symbolic reaction systems.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 5.12: The deep search strategy performed by the search chain. (Compare
fig. 5.17 amd 5.18.)

Chains in cortex

Stimuli are transmited by chains of neurons in the cortex [1, 219]. Stimuli can be
transmitted along such chains in two ways: asynchronously and synchronously [1].
In the asynchronous mode the excitation goes from one neuron of the chain to the
next. In the synchronous mode some cells of the chain fire at the same time. The
synchronous mode results from a synfire chain architecture [1]. The synchrous
mode could represent the sequence of carried out states, the asynchrous, the
propagation of search.
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5.3.3 Controller
The search can be described by the following algorithm:

1. The computation begins at the unit representing the initial state, layer
[=0.
(a) The unit is marked.

(b) All resulting possible states are computed by the permutation associa-
tive memory and are stored in the layer [ = 1.

(c) If there are no answers found by the permutation associative memory
the computation fails.
2. Test, two tests are performed on all states represented by the layer [.
(a) First it is determined if the desired state was reached. If yes, the
computation halts successfully.
(b) Second, it is determined if the state already occured in the marked
chain. If yes, the state is disabled to prohibit the formation of loops.

3. Chose a unit of a layer [ if posssible.

(a) If all units of a layer [ are disabled:

e Units of this layer [ are enabled for further usage.
e The marked unit of the layer [ — 1 is disabled.
e Backtracking to the previous layer is done, [ =1 — 1

e [f backtracking to the initial state occurs [ = 0, the computation
fails.

(b) From the units of the layer [ one unit is chosen?.
4. Computation of a new state for a chosen unit of layer [.
(a) All resulting possible states are computed by the permutation associa-
tive memory and are stored in the layer [ =1 + 1.
(b) If no answer for this state exists:

e The corresponding unit of layer [ is disabled.
e Goto Chose .

(c) If I > L, computation fails because of lack of resources, L number of
layers.

(d) The chosen unit is marked.

3The first unit of a layer is always chosen. Conflict resolution stratagy can be used here.
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5. Goto Test.

Besides the permutation associative memory and the search chain, two other
building blocks are needed to allow the realization of the search algorithm.

A pattern matcher computes the gco,(b) of a state b represented as a
picture in regard to category Ca, also represented as a picture.
For all b(i) i € {1,..,s} states represented in a layer and in the category core-
ponding desired state, the geeq(b(7)) is computed in the first test phase. If the
qccaq(b(i)) value is 1 the desired state is reached.
In the second phase for all b(i) 7 € {1, .., s} states represented in a layer and for
all C'a states in the marked chain, gce,(b(i)) values are computed sequentially.
The corresponding states b(i) which occur in the marked chain are disabled. In
case Ca is a marked state, gco,(b(7)) is 1.

Backtracker enables units of a layer [ if all units are disabled. The marked
unit of the layer [ — 1 is disabled, and the active layer is the layer [ = [ — 1.

Together the moduls are linked by a controler which can be described by a de-
terministic finit automata. Deterministic automaton can be described by neural
networks (see [219]). Because the activation is propagated from unit to unit by
connections, local computation is performed as postulated by biology. The con-
trol results from the diverse behavior of permutation associative memory, pattern
matcher, and backtracker.

Permutative Associative memory’s behavior is:

1. Compute To a chosen unit of layer [ all resulting possible states are com-
puted and are stored in the layer [ + 1.

2. No answer The chosen unit of the layer [ is disabled if no answers exist.
3. Fail The computation fails if no answer for the initial state exists, [ = 0
Pattern matcher behavior is:

1. Desired state If a desired state is reached by one of the units of the layer [
the computation succeeds.

2. Chose From the units of a layer [ one unit is chosen. The first unit of the
layer is allways chosen.

3. No loops Disables units of the layer [ which cause loops by retracing of the
marked chain (see fig.).

Backtracker behavior is:



5.3. NEURAL REACTION SYSTEM 105

1. Backtrack If all units of a layer [ are disabled, enable all units of a layer [.
Disable the marked unit of the layer [ — 1. Activate layer [ =1 — 1.

2. Fail Backtrack If all units of a layer [ = 1 are disabled.

Deterministic finite automaton

A deterministic finite automaton [107] is a quintuple M = (K, X, 0, s, F') where
K is a finite set of states, X is an alphabet, s € K is the initial state, F' C K the
set of final states, and ¢, the transfer function, is a function from K x ¥ to K.
If the automaton is in state ¢ € K and the symbol is ¢ € ¥, then 0(q,0) € K
is the uniquely determined state to which the automaton passes. The symbol
set corresponds in the controller to the behavior of the modules. An additional
behavior is the marking of the chosen units. The controller is described by the
deterministic finite automaton (see fig. 5.13):

K = {q07 q1, 42,43, 44, 45, f07 f17 Goal}

Y = {mark, fail,compute, desired state,no loops,backtrack,
fail backtrack, chose, no answer}
s = {q}
F =A{fo, f1, Goal}

q o d(q,0)
o mark T
a1 fail Jo
q1 compute Qo
g2 desired state  Goal
G2 no loops qs
q3 backtrack q3
qs fail backtrack fi
q3 chose qa
4 no answer q3
q4 compute qs
s mark G2

5.3.4 The Associative Computer

The associative computer is composed of permutation associative memory in
which the associations are stored. It also contains a search chain which dynami-
caly represents the search space. The controller links the permutation associative
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no answer

- ()
mark compute - no loops

fail fail| backtrack

backtrack

chose ' compute

Figure 5.13: The controller is described by the deterministic finite automaton.

memory and the search chain and controls the computation (see fig. 5.14). The
associative computation is specified by the stored associations and by the initial
and desired state. Fig. 5.15 represents examples of initial and desired states for
the geometric block world as pictures.

Fig. 5.16 represents the associative computation ID4 — ID5 without back-
tracking. The depth-first search led to no impasse. Ten steps were needed until
the desired state was reached, because ten associations were performed. The
plan length is ten. The search sequence is represented by pictures coresponding
to the representation of the states of the world by the seven cognitive entities.
The initial and desired states are included. Fig. 5.17 and fig. 5.18 represent the
associative computation ID4 — ID1. The solution of the problem is represented
by twelve assocations. The plan length is twelve. The solution was found in
twenty-four steps. The steps are abbreviated by s in the fig.5.17, 5.18 | the depth
of the search tree by d. Six backtracking steps were performed. The first two
backtracking steps occur at step 11 depth 11 backtracking to the previous step 9
depth 9. The corresponding state is listed again for clarity reasons. It becomes
step 13 depth 9 and leads to step 14 depth 10. This state is a impasse, and
therefore four backtracking steps are performed to the previous step 6 depth 6.
It becomes step 18. From this the step continues until the desired state is reached
without backtracking.

It was shown how a reaction system can be implemented by neural networks.
Not only ideas on such a system were presented, but also computer simulations
of implemented systems doing computations. The system, the associative com-
puter, has the same behavior as a purely symbolical reaction system (production
system). It was shown how a mapping of a symbolical reaction system to a neural
network can be performed. For a cognitive-science scientist it is important to un-
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search chain

marked chain

controller

permutation associative memory

Figure 5.14: The controller links the permutation associative memory and the
search chain and controls the computation.

derstand how such computations can be performed by the human brain. Another
question is, whether neural systems increase our understanding of cognition or
not. Are there advantages of performing this computation by neural networks or
not? An important research field in Artificial Intelligence is the usage of heuris-
tics to speed up the search. It is not easy to define heuristic functions, as there
is no rule which says how to do this. A heuristic function results automatically
in the associative computer from the representation of knowledge by pictures.
Another approach to the view of heuristic functions is shown: heuristic functions
which result from the manner of description of the knowledge. Other properties
of the associative computer are robustness and the possibility of learning with
a teacher or from experience. These properties are examined in the next section.*

4Appendix A.2 illustrates the organization of the object oriented laboratory and describes
information concerning the implementation of the associative computer.
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Initial & Desired States
| D1 | D2 | D3

1= -
[IT=

00 A O

Figure 5.15: The initial and desired states for the task geometric blocks.
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Figure 5.16: Planning of the task ID4 — ID5 without heuristic. The depth-first
search led to no impasse. Ten steps were needed until the desired state was
reached, because ten associations were performed. The plan length is ten. The
search sequence is represented by pictures coresponding to the representation of
the states of the world by the seven cognitive entities. The initial and desired

states are included.
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sO doO sl di i s2 d2
AO O .4 0 .o E
s3 d3 - s4 d4 s5 d5 ]
A Oo- A O - 0O
s6 db6 s7 d7 - s8 d8
0 A O . A DO . A H
s9.d9 510 d10  Isil di1l
H = A - O

Figure 5.17: Planning of the task ID4 — ID1 without heuristic until the first
impasse. The solution of the problem is represented by twelve assocations. The
plan length is twelve. The solution was found in twenty-four steps. The steps are
abbreviated by s (continued in the fig. 5.18), the depth of the search tree by d.
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s13 d9  !s14 d10!

s18 d6 s19 d7|:1 s20 d8

OA O Ooa - A

s21 d9 s22 dio0 s23 di1l
A : O

H. . H. A 0 - A

s24 di2

00 A

Figure 5.18: Planning of the task ID4 — ID1 without heuristic. The first two
backtracking steps occur at step 11 depth 11 backtracking to the previous step 9
depth 9. The corresponding state is listed again for clarity reasons. It becomes
step 13 depth 9 and leads to step 14 depth 10. This state is a impasse, and
therefore four backtracking steps are performed to the previous step 6 depth 6.
It becomes step 18.
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5.3.5 Pattern heuristics

The qceq(b) value computed by the pattern matcher can be interpreted as a
heuristic function (see section 3.3.2). The pattern matcher behavior (point 2) for
chosing a unit of a layer [ is changed to:

e Forallb(i)i € {1, .., s} states represented in a layer, the unit whose state has
the greatest ¢Cuesired state(D(7)) value is chosen.(Point 3.b in the description
of the algorithm.)

The qCgesired state 18 computed using the vectors of dimension 100 - 100 resulting
from picture representation. The resulting search strategy is the hill climbing
search strategy. This strategy is analogous to hierarchical categorization with the
difference that instead of the probability that the function is on the best path,
the distance to the desired state is given. This heuristic function is called hl.
Blind-search strategy without any heuristic function is called h0 (see fig 5.17).
The h1 value appears not to be practical as a heuristic function in the block
world, because no applicable information is given for states corresponding to the
robot arm holding a block. This state occurs alternately with other states in
every planning sequence in a block world. The gcZ,(b) function is introduced to
eleminate the partial blindness in the block world of hl. If a state corresponds
to the robot arm holding a block, a prediction is made. The state receives the
maximal qCgesired state value of all resulting possible states. For this task the
possible states are computed temporarily by the permutation associative memory
(see fig. 5.19). This heuristic function which eliminates the sightlessnes in the
block world is called h2. The pattern matcher behavior for chosing a unit of a

desired state

robot arm
holding a
block

Figure 5.19: If a state corresponds to the robot arm holding a block, a prediction
is made. The state recieves the maximal ¢Cgegireq state value of all resulting possible
states. For this task the possible states are computed temporarily.

layer [ is changed to:



5.3. NEURAL REACTION SYSTEM 113

e For all b(i) i € {1, .., s} states represented in a layer, the unit whose state
has the greatest qc2..; .4 siare(P(1)) value is chosen.

The h2 heuristic function brings significant improvment in comparison to a blind-
search h0 and the part-blind A function in the block world, see fig. 5.20, tab.
5.1.

| [h0 [hl |h2 |
mean | 14.4 | 15.53 | 10.47
sdev || 10.20 | 11.05 | 7.25

p - 0.33 | 0.0089

Table 5.1: Mean and standard deviation value of the required steps for all 30
combinations of initial and desired states. The p values were determined by the
paired sample t test. Significant for p < 0.05 by convention.

| [h0 [h1l [h2 |
mean || 11.07 | 11.8 | 8.93
sdev | 6.23 | 6.26 | 5.5

Table 5.2: Corresponding mean and standard deviation value of required plan
length for all 30 combinations.

[ W0 [h [B3 ]
mean || 1.67 | 1.87 | 0.77
sdev | 3.33 1291 | 1.5

Table 5.3: Corresponding mean and standard deviation value of required back-
tracking steps for all 30 combinations.

The first intuitive idea, that a state represented as a picture is nearer to a
desired state represented as a picture, the more similar those pictures are, was
statistically confirmed. In fact, a pattern heuristic speeds up the search. The real
world give us insights on how to solve the problem. Such an insight is used by the
pictorial representation and the resulting similarity criterion. This information
is not always correct, but it is generally better to obey it than to ignore it.

5.3.6 Prediction heuristic

The solved problems are reused to speed up the search for related or similar
problems. Due to the state description by pictures, a prediction heuristic can
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[=

Figure 5.20: Planning of the task ID4 — ID5 with h2 heuristic function. Compare
fig. 5.16.

be defined. It gives a probable value that the function is on the best path. A
succeeding state in a reaction system depends only on the current and the desired
state. Given a current state, together with knowledge of the desired state, the
next state can be predicted. The current state together with the desired state
represent the question, the next state the answer. A question vector is com-
posed by concatenation of the pattern representation of the current state and
the desired state. The answer vector coresponds to the pattern representation of
the next state. Both vectors can be stored in the associative memory. Vectors
resulting from the pattern representation are preferred to the vectors resulting
from the ordered cognitive entity representation because they are more sparse. A
resulting sequence of states describing a plan is stored in an associative memory.
The sequence commences with the initial state and ends with the penultimaste
state before the desired state. From each current state together with the desired
state a question vector is formed and stored together with the answer vector
coresponding to the next state. After “learning” the sequence can be recalled.
By posing the question vector which is composed of the initial state, holding the
desired state part, and by feedback, the answer vector to the question vector, the
state sequence is determined ([143] see fig. 5.21). This method, however, is unre-
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associative memory

State
sequence

desired state initia state

Figure 5.21: By posing the question vector which is composed of the initial state,
holding the desired state part, and by feedback, the answer vector to the question
vector, the state sequence is determined [143].

liable, and because of superimpositions and overloading, errors can occur. More
suitable is the realization of a prediction heuristic in an associative computer
with the aid of an associative memory. This associative memory is called the
prediction associative memory, and becomes another building block of the asso-
ciative computer. The permutation associative memory determines b(7) states of
a chosen state. At the same time, the prediction associative memory determines
with the soft threshold strategy the answer pattern Pred to this chosen state
together with the desired state. The unit with the greatest qcpreq(b(i)) value is
chosen (see fig. 5.22). The pattern matcher behavior for chosing a unit of a layer
[ is changed to:

e For all b(i) i € {1,.., s} states represented in a layer, the unit whose state
has the greatest gcpreq(b(i)) value is chosen. (Point 3.b in the description
of the algorithm).

To prevent an overloading of the prediction associative memory, states which
lead to an impasse state and the impasse state itself are forgotten. Impasse states
are the states for which no other states exist. A vector of the state which led to
an impasse state, together with the desired state, compose the question vector.
The impasse state is the answer vector. Both vectors are forgotten. During the
learning of the prediction associative memory, incorect state sequences are for-
gotten. The sequence of states describing the plan is learned. Example of ID4 —
ID1 from the geometric block world, see fig. 5.17:

These pairs are forgotten:
(s9+ID1,s10),(s10+ID1,s11),(s6 + ID1,s7),(s7+ ID1,s8), (s8+ ID1,s13),

(s13 + ID1, s14).
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b(1)
A
ae(b1)
FEP L)
permutation
‘ /gc(b2) — associative
prediction Pred| |/~ T memory
associativ%e memory T oem3)
1 B b(3)
acbd)
,,,,,,,, N
I DO b4
desired state L

chosen state

Figure 5.22: The permutation associative memory determines b(i) states of a
chosen state. At the same time, the prediction associative memory determines
with the soft threshold strategy the answer pattern Pred to this chosen state
together with the desired state. The unit with the greatest qcpreq(b(i)) value is
chosen.

These pairs are learned:
(sO0+1D1,s1),(s1+1ID1,s2),(s2+4 ID1,s3),(s3+ ID1,s4),(s4+ ID1,s5),

(sb+I1D1,s18), (s18+1D1,s19), (s194+1D1, s20), (s20+1D1, s21), (s214+1 D1, s22),
(s22+1D1,s23).(s23+ ID1,1D1).

The behaviors of the permutation associative memory, the pattern matcher and
the backtracker are changed accordingly.
Permutative Associative memory modernized updated is:

2. No answer If no answers exist. The question vector composed of the marked
unit of layer [ — 1 plus the desired state and the answer vector of the chosen
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unit of layer [ are forgotten by the prediction associative memory. The
chosen unit of the layer [ is disabled.

The pattern matcher updated behavior is:

1. Desired state If a desired state is reached by one of the units of the layer [
the computation succeeds. The sequence of marked units is learned by the
prediction associative memory.

2. Chose can vary depending on the learning strategy of the prediction asso-
ciative memory

e For all b(i) i € {1,..,s} staets represented in a layer the unit whose
state has the greatest g2 ,; .4 state(b(7)) value is chosen.

e For all b(i) i € {1,..,s} states represented in a layer the unit whose
state has the greatest gcpreq(b(7)) value is chosen.

The backtracker updated behavior is:

1. Backtrack If all units of a layer [ are disabled. Enable all units of a layer
. The question vector composed of the marked unit of layer [ — 2 plus the
desired state and the answer vector of the marked unit of layer [ — 1 are
forgotten by the prediction associative memory. Disable the marked unit
of the layer [ — 1. Activate layer [ =1 — 1.

Learning strategy

Either the learning phase and the retrieval phase of the prediction associative
memory are separated or they are not. If the phases are separated, a kind of
“teacher” exists in the learning phase. An observer chooses relevant examples.
The pattern heurisitic acts as a superviser who guides the search. This kind of
learning is called supervised learning. If there is no separation, then the pre-
diction associative memory learns by experience of failures and successes. The
prediction heuristic is improved during learning. This kind of learning is called
“unsupervised” learning.

Supervised learning

Nine examples of problems were chosen. The results of h0, hl, h2 of steps, plan
length and backtracking steps are determined as shown in tables 5.4, 5.5, 5.6.
After that, three learning sessions were performed. In all three learning sessions
the h2 heuristic guided the search. In the [ learning session the example ID1
— ID5 was learned. It was chosen because of its complexity. In the all learning
session all 9 examples were learned. In the min learning session the four examples
were chosen: 1D4 — ID5, ID5 — ID1, ID3 — ID2, ID2 — ID4. The four examples
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were chosen because all four different desired states were included. Another
reason is because, when the h2 heuristic was used, no backtracking occured during
the search. After “learning” the steps, plan length, and backtracking steps were
determined using the prediction heuristic as shown in tables 5.4, 5.5, 5.6. The
min learning strategy led to a significant improvement in the required steps,
plan length and backtracking steps compared to blind search h0. The all led to a
significant improvment in required steps. The mean value of required steps using
the h2 heuristic is lower than the mean value resulting from the all learning
strategy, however not significantly. The p values were determined by a paired
sample ¢ test. Significant for p < 0.05 by convention.

[ task B0 [hi_ [h2 |1 Jal [min |

ID4 — ID5 || 10 34 4 16 10 4

ID1 — ID5 || 22 32 12 10 22 10

ID2 - ID5 || 14 24 24 20 8 8

ID3 — ID5 || 8 36 16 14 8 8

ID4 — ID1 || 24 12 24 6 24 6

ID5 — ID2 || 14 14 14 28 12 12

ID5 — ID1 || 12 10 10 10 10 10

ID3 — ID2 || 20 8 8 24 20 8

ID2 — ID4 || 10 8 4 4 4 4
mean 14.89 | 19.78 | 12.89 | 14.67 | 13.11 | 7.78
sdev 5.75 11.72 | 7.49 8.12 7.08 2.73

P - 0.17 0.22 0.48 0.034 | 0.003

Table 5.4: Required steps.

[ task R0 [hi [h2 |1 [al [mm |
ID4 — ID5 || 10 20 4 16 10 4
ID1 — ID5 || 10 16 10 10 10 10
ID2 —- ID5 || 14 22 22 20 8 8
ID3 — ID5 || 8 20 14 14 8 8
ID4 — ID1 || 12 12 12 6 12 6

ID5 — ID2 || 12 12 12 24 12 12
ID5 — ID1 || 10 10 10 10 10 10

ID3 — ID2 || 18 8 8 20 18 8
ID2 — ID4 || 10 8 4 4 4 4
mean 11.56 | 14.22 | 10.67 | 13.78 | 10.22 | 7.78
sdev 296 | 543 | 548 | 682 | 3.8 2.73
p - 0.14 | 033 | 0.15 | 0.09 | 0.009

Table 5.5: Plan length.

The more the associative computer knows about problems of a certain domain,
the better its behavior will be in this domain. A teacher who chooses important
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[ task (B0 [B1 [W2 [T [al [ |
ID4 —- ID5 || O 7 0 0 0 0
ID1 — ID5 || 6 8 1 0 6 0
ID2 - 1ID5 || O 1 1 0 0 0
ID3 —ID5 || 0 8 1 0 0 0
ID4 - ID1 || 6 0 6 0 6 0
ID5 — ID2 || 1 1 1 2 0 0
ID5 - ID1 || 1 0 0 0 0 0
ID3 —- ID2 || 1 0 0 2 1 0
ID2 - 1ID4 || 0 0 0 0 0 0

mean 1.67 | 2.78 | 1.11 | 0.44 | 1.44 | O
sdev 2.5 3.7 1.9 0.88 | 2.6 0
P - 0.23 |1 0.19 | 0.11 | 0.09 | 0.04

Table 5.6: Backtracking steps.

examples of a domain and another teacher who demonstrates how to solve those
problems can help the associative computer in learning, and in efficiently solving
problems in this domain. Faulty information which is sometimes indicated by
the pattern heuristic can be in this way prohibited. An important condition is
the appropriate choice of the material. Wrong material, too much, or too little
material can worsen the problem solving behavior. A good understanding of the
problem space is essential for fast and effective problem solving. In our example
the pattern heuristic acted as the second teacher.

Unsupervised learning

The prediction associative memory “learned” by experience of failures and suc-
cesses in the nine examples. The nine examples were solved sequentially. The
prediction memory learned, simultaneously to the usage of the resulting predic-
tion heuristic (see tables 5.7, 5.8, 5.9). The column t0 represents the required
steps without the usage of the prediction heuristic, and corresponds to the blind
search h0. At the beginning of learning the prediction memory is empty. First
example 1: ID4 — ID5 is learned, and simultaneously the prediction heuristic is
used. During the next example 2:ID1 — ID5 the knowledge which was learned
from the previous example is reused. This procedure is repeated with the remain-
ing examples. The stages are repeated sequentially another nine times. However,
already at the end of the third stage, t3, an equilibrium for the needed steps,
plan length and the backtracking steps occurs (see tables 5.7, 5.8, 5.9).

A three dimensional bar chart ilustratees the table 5.7 (see fig.5.23). The de-
velopment of the unsupervised learning can be illustrated more clearly by graphs
of the mean values of the required steps, plan length and backtracking steps.
The scale effects are suppressed by the added error bars to the means. Each bar
represents the upper and the lower bounds of a 95 percent confidence interval
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| task [to [t Jt2 [t3 | t4-t10 |

1: ID4 — ID5 || 10 10 10 10 10

2: ID1 — ID5 || 22 18 22 22 22

3: ID2 — ID5 || 14 12 22 8 8

4: ID3 — ID5 || 8 14 14 8 8

5: ID4 — ID1 || 24 24 24 24 24

6: ID5 — ID2 || 14 30 12 12 12

7: ID5 — ID1 || 12 16 10 10 10

8: ID3 — ID2 || 20 30 20 18 18

9: ID2 — ID4 || 10 4 4 4 4
mean 14.89 | 17.56 | 15.33 | 12.89 | 12.89
sdev 5.75 | 893 | 6.93 | 6.86 | 6.86

p - 0.15 [0.38 |0.02 | 0.02
Table 5.7: Required steps.
| task [t0 [t [t2 [t3 [ t4t10]

1: ID4 — ID5 || 10 10 10 10 10

2: ID1 — ID5 || 10 16 10 10 10

3: ID2 — ID5 || 14 12 20 8 8

4: ID3 — ID5 || 8 14 14 8 8

5: ID4 — ID1 || 12 12 12 12 12

6: ID5 — ID2 || 12 18 12 12 12

7: 1ID5 — ID1 || 10 16 10 10 10

8: ID3 — ID2 || 18 18 18 18 18

9: ID2 — ID4 || 10 4 4 4 4
mean 11.56 | 13.33 | 12.22 | 10.22 | 10.22
sdev 296 | 447 | 474 | 3.8 3.8

Table 5.8: Plan length.

around its means (see fig. 7?7, 5.25, ?77). After the first stage there is an impair-
ment compared to the blind search. Significant improvment to the blind search
in required steps occurs after the third stage.

The size effects of forgetting and learning of the prediction memory are rep-
resented in fig. 5.27. This figure represents the number of synapses which are
not zero. After the third stage the number of the synapses is reduced. The equi-
librium of the the prediction associative memory is reached one stage after the
stabilization in the behavior of the associative computer, at the stage four.
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| task [t [t1 [t2 [t3 |[t4-t10 |

1:1ID4 —ID5 [ 0 0 0 0 0

2: ID1 — ID5 || 6 1 6 6 6

3: ID2 - ID5 || 0 0 1 0 0

4:1ID3 —» ID5 || 0 0 0 0 0

5. 1ID4 — ID1 || 6 6 6 6 6

6: ID5 — ID2 || 1 6 0 0 0

7:1ID5 — ID1 | 1 0 0 0 0

8: ID3 —ID2 || 1 6 1 0 0

9:ID2 —1ID4 || O 0 0 0 0
mean 1.67 [ 211 ] 1.56 [ 1.33 [ 1.33
sdev 2.5 |2.94]256[2.65] 265

Table 5.9: Backtracking steps.

Figure 5.23: Required steps during learning.
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Figure 5.24: Mean steps for learning. t3-t10: mean=12.89, sdev=6.86, p=0.02
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Figure 5.25: Mean plan length for learning. t3-t10: mean=10.22, sdev=2.96
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Figure 5.26: Mean backtracking steps for learning. t3-t10: mean=1.33,
sdev=2.65
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Figure 5.27: The number of synapses which are not zero during learning. t4-t10:
222000 of 1.99101®% synapses are not zero (0.1115%).

The associative computer learns from experience if no additional information



124 CHAPTER 5. THE ASSOCIATIVE COMPUTER

from a teacher is available. The associative computer learns to prohibit faults.
This kind of learning is tedious, and different problems indicate contradictory rec-
ommendations. Despite the low load of the prediction associative weight matrix,
an overlearning occurs. This is at first glance a contradiction, but by closer exam-
ination one recognizes that important information is concentrated in a small area
of the prediction associative memory (see chapter 6, section about prediction asso-
ciative memory). This is because during problem solving the world changes only
minimally. Those changes are represented in the prediction associative memory
and are concentrated in a small area of the weight matrix. Many more pattern are
stored than during the supervised learning. Some learning sequences are needed
until the stabilization of the behavior of the associative computer. After the first
learning session, an impairment is present while an improvement is present in the
succeeding steps. The improvement comes along with the gain followed by the
reduction of the weights of the prediction associative memory. The behavior of
the associative computer after the learning is comparable to the pattern heuristic.

Context information

A problem can have diverse solutions. The same state in different sequences can
lead to different folowing states despite the same desired state. These different
states are dependent on the initial state. This case can only occur when the
solutions are not optimal. Nevertheless, the adherence of the initial state to the
question vector could lead to the improvement of unsupervised learning. The
improvement could result from the detachment of particular solutions. This kind
of prediction heuristic is called the “context prediction” heuristic. The prediction
associative memory learns and is used as before, however this time with the
addition of the context. The question vectors are composed by concatenation of
the pattern representation of the state, the initial state, and the desired state.
The answer vectors correspond to the patterns of the next states (see fig. 5.28).
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prediction | Pred
associative memory

context

chosen state

Figure 5.28: The question vectors are composed by concatenation of the pattern
representation of the state.

The context unsupervised learning led, howeve, to no significant improvement
in this example, and instead led to an impairment (see fig. 5.29,77, 5.31, 77, 5.33).

Figure 5.29: Required steps with context during learning.
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Figure 5.30: Mean steps for learning. t3-t10: mean=15.78, sdev=9.12, p=0.33
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Figure 5.31: Mean plan length for learning. t3-t10: mean=11.33, sdev=3.7/
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Figure 5.32: Mean backtracking steps for learning.t3-t10: mean=2.22, sdev=3.38
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Figure 5.33: The number of synapses which are not zero during learning. t3-t10:
827956 of 2.98801% synapses are not zero (0.1098%).

The size effects of forgetting and learning of the prediction memory are repre-
sented in fig. 5.33. The size of the prediction associative memory with context is
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much larger then the size of the prediction associative memory without context,
because the initial states are also stored. However, the percentage of synapses
unequal to zero of the prediction associative memory with context is nearly the
same as of the prediction associative memory without context.

Unsupervised learning and delete

The size effects of the forgetting and learning of the prediction memory are frac-
tional in fig. 5.27 and absent in fig. 5.33. To determine if the delete function is
more appropriate than the forgetting function to learn the prediction heuristic the
foregoing experiments are repeated. The results without context are better then
those with context. However, the results without context are bad. The delete
function eliminates too much knowledge (see fig.??). The prediction heuristic
can not work (see fig. 7?7, 5.35, 7?7, 5.37). The delete function is unable to learn
and to improve the prediction heuristic. In the following examples, therefore, the
delete function is never used.

Figure 5.34: Required steps without context during delete learning.
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Figure 5.35: Mean steps for learning. t3-t10: mean=20.89, sdev=12.81, p=0.14
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Figure 5.36: Mean plan length for learning. t3-t10: mean=135.78, sdev=3.93
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Figure 5.37: Mean backtracking steps for learning. t3-t10: mean=3.56,
sdev=6.69
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Figure 5.38: The number of synapses which are not zero during learning. t3-t10:
206148 of 1.99101% synapses are not zero (0.1035%).
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Unsupervised learning and initialization

Only in the first example is the h2 heuristic used because the prediction asso-
ciative memory is empty at the start of learning. ID4 — ID5 is learned, and
simultaneously the h2 heuristic is used. During the next example (ID1 — ID5)
and the subsequent examples, however, the prediction heuristic is used. The
predicition heuristic continues to be used during all the subsequent stages. Two
experiments are performed: without context and with context. The initialized
learning without context led to no significant improvment. At the end of the
second stage, an equilibruium for the needed steps, plan length, and the back-
tracking steps occured (see fig. 5.39, 5.40, 77, 5.42).

The size effects of the forgetting and learning of the prediction memory are
represented in fig. ??7. The equilibrium of the prediction associative memory
is reached two stages after the stabilization in the behavior of the associative
computer, at the stage four.

Figure 5.39: Required steps with A2 initialization during learning.
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Figure 5.40: Mean steps for learning. t2-t10: mean=12.89, sdev=>5.11, p=0.2
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Figure 5.41: Mean plan length for learning. t2-t10: mean=11.56, sdev=3.8/
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Figure 5.42: Mean backtracking steps for learning. t2-t10: mean=0.67, sdev=2
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Figure 5.43: The number of synapses which are not zero during learning. t4-t10:
220272 of 1.99101® synapses are not zero (0.1106%).

The initialized learning with context led, however, to a significant improv-
ment. At the end of the third stage, an equilibruium for the needed steps, plan
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length, and the backtracking steps occured (see fig. 5.44, 7?7, 5.46, ?7?).

Figure 5.44: Required steps with context with h2 initialization during learning.

18
16
L
14
12 N
10
8 ‘
0 1 2 3 4

Figure 5.45: Mean steps for learning. t3-t10: mean=11.78, sdev=>5.04, p=0.027
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Figure 5.46: Mean plan length for learning. t3-t10: mean=10.44, sdev=3.28

Figure 5.47: Mean backtracking steps for learning. t3-t10: mean=0.67, sdev=_2

The size effects of the forgetting and learning of the prediction memory are
represented in fig. 5.48. The equilibrium is reached one stage after the stabiliza-
tion in the behavior of the associative computer, at the stage four.
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Figure 5.48: The number of synapses which are not zero during learning. t4-t10:
824128 of 2.988018 synapses are not zero (0.1085%).

5.3.7 Summary of the first results of the prediction heuris-
tic

The results of the experiments for the determination of the prediction heuristic
are dependent on the chosen examples and on the order of learning. Neverthe-
less, by these small examples, one gets the initial impression that the prediction
heuristic works (see tables 5.10, 7?7, 5.12). The best results were obtained with
supervised learning. Four examples were chosen in min. They covered other
examples and did not overload the prediction associative memory. Unsupervised
learning (uns) was superior compared to supervised learning of all examples all.
The context unsupervised learning and initialization (cui) led to an even better
improvement. This improvement could result from the separation of particular
solutions. Defacto context can help by the separation of particular solutions, but
it is strongly dependent on the examples and the initialization of the prediction
associative memory.
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‘ H hoO ‘ min ‘ cul ‘ uns ‘ all ‘
mean || 14.89 | 7.78 | 11.78 | 12.89 | 13.11
sdev || 5.75 | 2.73 | 5.04 | 6.86 | 7.08

p - 0.003 | 0.027 | 0.02 | 0.034

Table 5.10: Required steps, the best learning results.

‘ H hO ‘ min ‘ cui ‘ uns ‘ all ‘
mean || 11.56 | 7.78 | 10.44 | 10.22 | 10.22
sdev || 5.75 | 2.73 | 3.28 3.8 3.8

Table 5.11: Plan length, the best learning results.

‘ H hO ‘ min‘ cuil ‘ uns ‘ all ‘
mean | 1.67| 0 0.67]1.33 | 144
sdev || 2.5 0 2 265 | 2.6

Table 5.12: Backtracking steps, the best learning results.

The nine chosen examples (see table 5.4) did not cover all 30 possible com-
binations of the initial and desired states. The prediction associative memory
which was learned by those nine examples did not bring any improvment to the
30 possible combinations (see table 77?).

‘ H ho ‘ lsmall ‘ allsmall ‘ ml'nsmall ‘
mean || 14.4 | 16.47 | 13.6 14.4
sdev || 10.2 | 10.47 | 8.72 9.99

p - 0.18 | 0.23 0.34

Table 5.13: Required steps for all 30 combinations after supervised learning by
nine examples.

The linear combination of the pattern heuristic and the prediction heuristic
led to an impairment compared to the blind search strategy. Suggestions of both
heuristics were often inconsistent.
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The more knowledge about problem solving is present, the better the behavior
of the associative computer. A good education resulting from supervised learning
with a competent teacher give the best results. Sequential learning during unsu-
pervised learning leads to better results than supervised learning of all examples
guided by the pattern heuristic. In a closed domain in which learning take place,
the results are comparable to the pattern heuristic. The hints of the real world in
the form of pictorial representation require, however, fewer resources than learn-
ing from experience. The usage of an associative computer which learned from
experience as a teacher to optimize the problem behavior of another associative
computer was shown in part in the experiments with unsupervised learning and
initialization.

5.3.8 Noise

The handling of noise by the associative computer will now be examined. The
initial states are disturbed to examine the behavior during chaining. First,
the valid associations are recognized by the permutation associative memory,
threshold,q+ = 0.7 and threshold,pee = 0.87 (see paragraph 5.3.1). If the
threshold values are too low, wrong associations are executed. Secondly, during
the computation the states are changed by stepwise elemination of noise. In the
experiments pixels of the associative field describing an object are either deleted
(see fig. 5.49, d-12) or added (see fig. 5.49, a-12). The bars describing the posi-
tion are shifted (see fig. 5.49, s-12) or the three kinds of noise are combined (see
fig. 5.49, ¢-12, ¢-13, c-14). In the table 5.14 the required steps depending on the
kind of noise are shown. The min is the prediction heuristic resulting from the
supervised learning (see table 5.4). The collapse of the associative computer is in-
dicated by none. The collapse results either from not recognizing any assocaitions
or by producing mirage states. The prediction heuristic helps to eleminate the
production of mirage states.
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Noise in Initial States
d-12 a-12 s-12
R . A )
i o OO
c-12 c-13 c-14
. A
oL o all 03
Figure 5.49: The initial states for the task geometric blocks with noise.
type of noise || h0 | min |
5 pixel deleted in a field 18 8
10 pixel deleted in a field none | none
d-I2, 10 pixel for a square, 7 for a triangle deleted 18 8
10 pixel for a square, 8 for a triangle deleted 18 none
a-I12, 2 pixel added 48 8
3 pixel added none | none
1 pixel added, 5 pixel deleted | none | 8 |
s-12, moved 7 pixel in the horizontal none | 8
moved 8 pixel in the horizontal none | none
moved 1 pixel in the vertical none | none
| c-12, 5 pixel deleted, 1 pixel added, moved 3 pixels in the horizontal || 48 | 8 |

Table 5.14: Different noise types for the task ID2 — ID5, required steps.
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‘ task H hO ‘ 1 min

c-12 — ID5 48 (+34) 8 (-12) 8 (0)

c-12 — ID4 14 (+4) 6 (+2) 16 (+12)

c-I3 — ID5 || 136 (+128) 8 (-6) 12 (+4)

c-I3 — ID2 || 122 (+102) 100 (+76) | 120 (+112)

c-14 — ID1 || 94 (+70) 24 (+18) 14 (+8)

mean 82.8 (+07.6) | 29.2 (+15.6) | 34 (+27.2)
sdev 51.08 (6.72) | 40.24 (8.65) | 48.17 (1.79)
Table 5.15: Steps.

‘ task H hO 1 ‘ min ‘
c-12 — ID5 18 (+4) 8 (-12) 8 (0)
c-12 — ID4 14 (+4) 6 (+2) 16 (+12)
c-I3 — ID5 || 28 (+20) 8 (-6) 12 (+4)
c-13 — ID2 20 (+2) 24 (+4) 22 (+14)
c-14 — ID1 18 (+6) 24 (+18) 14 (+8)

mean 19.6 (+7.2) | 14 (+1.2) | 144 (+7.6)
sdev 5.18 (5.85) | 9.17 (7.56) | 5.18 (1.79)
Table 5.16: Plan length.

‘ task H hO ‘ 1 ‘ min
c-12 — ID5 || 15 (+15) 0 (0) 0 (0)

c-12 — ID4 || 0 (0) 0(0) 0 (0)

c-13 — ID5 || 59 (+59) 0(0) 0 (0)

c-13 — ID2 || 51 (+50) 38 (+36) 49 (+49)
c-14 — ID1 || 38 (+52) 0(0) 0 (0)

mean 32.6 (+31.2) | 7.6 (+7.2) |9.6 (+9.6)
sdev 24.6 (2.61) | 16.99 (0.89) | 21.47 (0)

Table 5.17: Backtracking steps.

Because the states are changed by stepwise elimination of noise, the asso-
ciative computation takes more steps. This is because a picture corresponding
to a state with noise and without noise representing the same scene is not the
same (see fig. ??7). In table 7?7 the results of h0, I, min of steps, plan length,
and backtracking steps are determined as shown in the table. [ and min were
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learned before (see table 5.4). The prediction heuristic helps despite the noise
which disturbs the prediction associative memory. The value in round brackets
indicates impairment via no noise (table 5.4, 5.5, 5.6).

The information supplied by sensors during problem solving can often be “noisy”
or incomplete. Noise can also result from faulty hardware. For example, the
cameras of a robot can supply noisy pictures, such as when the sensors of a space
probe have a malfunction. In this case, it is important that the computing system
does not collapse. It was shown that the associative computer is a robust model
and can tolerate noise to some extent. It is an ideal model for performing problem
solving computation in a robot. On the other hand every biologically plausible
model which simulates human problem solving behavior performed by the brain
should tolerate noise to some extent, as noise is present in the real human brain.
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Figure 5.50: Planning of the task cI2 — ID3 with prediction heuristic min.
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Figure 5.51: Planning of the task cIl4 — ID1 with prediction heuristic min.

Not seen objects

“Not seen” objects corespond to objects which were not learned, and objects at
positions which were also not learned by the permutation associative memory
(see fig. 5.52). These additional objects are not recognized, and treated as if
not present by the permutation associative memory. The pattern heuristic is
not influenced by them (see table 7?7, ID1 — ID2, ID2 — ID1). However, they
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represent noise for the prediction memory, namely wrong components in the
question vector. The addition of known objects at known positions sometimes
helps the h2 pattern heuristic speed up the search (see 5.53). However, it also
disturbs the prediction heuristic (see table 7?7, ID3 — ID4).

Initial & Desired States

1 D1 | D2

Figure 5.52: The initial and desired states with not learned objects.

| task [ 1w [ @ | 1 ]
DI — ID2 (ID3 — ID5) ]| 8 (0) | 16 (0) | 8 (-6)
D2 — ID1 (ID5 — ID3) || 14 (+6) | 16 (0) | 8 (0)
D3 — ID4 (ID5 — ID3) || 6 (-2) | 14 (-2) | 20 (+12)

Table 5.18: Required steps.

| task | h0 | h2 | 1 |
DI — ID2 (ID3 — ID5) || 8 (0) | 14 (0) | 8 (-6)
D2 — ID1 (ID5 — ID3) | 14 (-6) | 14 (0) | 8 (0)
D3 — ID4 (ID5 = ID3) | 6 (-2) | 14 (0) | 16 (+8)

Table 5.19: Plan length.
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‘ task H hO ‘ h2 ‘ l
DI — ID2 (ID3 — ID5) [0 (0)| 1 (0) | 0 (0)
D2 — ID1 (ID5 — ID3) | 0 (0) ] 1 (0) | 0 (0)
D3 — ID4 (ID5 — ID3) | 0 (0)] 0 (-1) | 2 (+2)

Table 5.20: Backtracking steps.
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Figure 5.53: Planning of the task ID3 — ID4 with h2 heuristic.
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A robot which was trained to solve problems with certain objects should still
solve those problems even when a new, not-learned object appears. The associa-
tive computer can deal with this problem. When the objects are unimportant for
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the problems being solved, they are ignored. In other cases they are treated as
noise.

5.3.9 Additional associations

Fifty additional associations are learned by the permutation associative memory
in order to consider five additional positions on the table. The blocks can now
be posed on eight positions at the table and picked up and set down by a robot
arm. Stacking, however, is restricted to two stacked cubes with a pyramid on
top. It is now posssible to examine the behavior of an associative computer
when it has to deal with more objects. Thirten objects are present: eight cubes
and three pyramids. The state of the world is again described by a hundred
times hundred pixel pictures (see fig. ??). These pictures are represented by 20
cognitive entities.

100

80

60

40

20

100

Figure 5.54: The world for the task tower.

After learning, a weight matrix (see fig. 5.55) emerges. It has the same struc-
ture as the previous matrix, but is more dense (see fig. 5.8). The additional
learned positions correspond to the positions from 201 to 300 and 501 to 600 in
the vectors describing the associations. Those sections in the weight matrix are
more dense. The weights are repeated at those positions in the weight matrix
either in the horizonthal or vertical. The four clusters in the diagonal corre-
spond to correlations between those positions. The matrix is fully loaded. It is
composed of twelve elementary blocks. The blocks still represent nearly linear

correlation with peaks at the same postitions: Blocks with sum values 122 and
224 (see fig. 77).
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Figure 5.55: The weight matrix of the permutation associative memory for the

task “tower”. 77548 synapses are not zero, 9.5738% of the weight matrix.
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Figure 5.56: The sum of the synapses of a column. The x axis indicates the
frequency of different sum values of columns. The written number corresponds

to sum values.

Fig. 5.57 represents examples of initial and desired states for the geometric

block world with 13 blocks as pictures.
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Initial & Desired States
| D1 | D2 | D3

Figure 5.57: The initial and desired states for the task to build a tower.

Two examples were chosen, ID1 — ID2 and ID2 — ID3. The results of
h0, h1, h2 of steps are determined as shown in table ?7. No backtracking occured.
Because of restricted computer resources, the quantity of steps was limited to
100. The blind search could not find a solution under this restriction. The two
examples were learned by the prediction associative memory, and h2 guided the
search. The learned sequence could be recalled without errors.

[ task [0 [hi[h2[all]
ID1 — ID2 || none | 62 | 10 | 10
ID2 — ID3 || none | 42 | 22 || 22

Table 5.21: Learning.

The prediction associative memory could generalize on two other not learned
examples. A solution was found (see table 5.22). In example ID1 — ID3 the
interference with the learned state ID2 of the task ID1 — ID2 is seen. A turret
is built on the left corner (fig. 5.59 and ??) instead of one position shifted from
the corner. The correction of this repeated error is accomplished towards the end
of the plan (see fig. 5.61).
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[ task [0 [BI[R2 [ all]
ID3 — ID2 || none | 58 | 28 || 78
ID1 — ID3 || none | 80 | 34 || 36

Table 5.22: Test.

(a) (b)

150 150 800
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500

200 200 1400
100 100 1300
50 50 1200
20 20 1100
10 10 1000

900

Figure 5.58: 0.4962% synapses are not zero of associative memory of the task all.
(a) The frequency of different sum values of columns (logarithmic plot). (b) The
corresponding sum values of columns. (c¢) The frequency of different sum values
of rows (logarithmic plot). (d) The corresponding sum values of rows.

The prediction asymetric associative memory is dense. The structure is com-
posed of thirty blocks in the horizontal and vertical. The distribution is ordered
with strong runaway values representing peaks of correlation (see fig.??). The
sum values are, however, nearly linear, comparable with plots b) an d) of fig.
2.45,

5Because of the high dimension of the prediction associative memory and the restricted
computer resources, weight matrix diagram could not be ploted, for dimensions see table 6.29.
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Figure 5.59: First part of the planning of the task ID1 — ID3 using the prediction
all.
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Figure 5.60:
diction all.
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Second part of the planning of the task ID2 — ID3 using the pre-
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Figure 5.61: Third part of the planning of the task ID2 — ID3 using the prediction
all.

The problem domain of the associative computer can be extended if required.
This is done by the additional learning of associations by the permutation asso-
ciative memory. In the tower example, the prediction associative memory learned
to generalize, despite large amounts of information which differed only slightly.
The required information was extracted by the prediction associative memory.
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5.4 Conclusion

The associative computer, a neural model for a reaction system based on the
assembly theory, was introduced. It was shown that planning can be realized
by a neural architecture that does not use symbolic representation. A crucial
point is the description of states by pictures. These pictures can be either rep-
resented by cognitive entities or patterns. Cognitive enty representation enables
the recognition and execution of associations by the formation of permutations.
These associations can be coded and represented by diverse neural network ar-
chitectures. However, one of these architectures, the associative memory, offers
certain advantages. Besides its high storage capacity, it is also the building block
of the permutation associative memory. Permutation associative memory, mo-
tivated primarily by the RETE algorithm but also by biology and psychology,
reduces both time and memory requirements. The pattern representation of pic-
tures enables the usage of pattern heuristics. It is also the presupposition for the
prediction heuristic which learns by examples, just as the availability heuristic
does.

The system, the associative computer, has the same behavior as a pure symbolical
reaction system (production system). It was shown how mapping of a symbolical
reaction system to a neural network can be performed. For a cognitive-science
scientist, it is important to understand how such computations can be performed
by the human brain. Another question is whether neural systems increase our
understanding of cognition or not. Are there advantages of performing this com-
putation by neural networks or not?

An important research field in Artificial Intelligence is the usage of heuristics
to speed up the search. It is not easy to define heuristic functions, as there is no
rule which says how to do this. A heuristic function results automaticaly in the
associative computer from the representation of knowledge by pictures. Another
approach to the view of heuristic functions is shown: heuristic functions which
result from the manner of description of knowledge. The first intuitive idea,
that a state represented as a picture is nearer to a desired state represented as a
picture, the more similar those pictures are, was statistically confirmed. In fact,
pattern heuristic speeds up the search. The real world give us insights on how
to solve the problem. Such an insight is used by the pictorial representation and
the resulting similarity criterion. This information is not always correct, but it
is generally better to obey it than to ignore it.

Another property of the associative computer is the possibility of learning with
a teacher. A teacher who chooses important examples of a domain and another
teacher who demonstrates how to solve those problems can help the associative
computer in learning and in efficiently solving problems in this domain. Faulty
information which is sometimes indicated by the pattern heuristic can be in this
way prohibited. An important condition is the appropriate choice of the material.
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Wrong material, too much or, too little material can worsen the problem solving
behavior. A good education about the problem space is essential for fast and
efficient problem solving. In our example, the pattern heuristic acted as the
second teacher.

The associative computer learns from experience if no additional information
from a teacher is available. It learns to prohibit faults. This kind of learning is
tedious, and different problems indicate contradictory recommendations. Despite
the low load of the prediction associative weight matrix, an overlearning occurs.
This is, at first glance a contradiction, but by closer examination one recognizes
that during problem solving, the world changes only minimally. Those changes
are represented in the prediction associative memory and are concentrated in a
small area of the weight matrix.

Some learning sequences are needed until the stabilization of the behavior
of the associative computer. After the first learning session, an impairment is
present while an improvement is present in the succeeding steps. The behavior
of the associative computer after learning is comparable to the pattern heuristic.
However, a good education resulting from supervised learning with a competent
teacher gives the best results.

The information supplied by sensors during the problem solving can be often
“noisy” or incomplete. Noise can also result from faulty hardware. For example,
the cameras of a robot can supply noisy pictures, such as when the sensors of a
space probe have a malfunction. In this case, it is important that the computing
system does not collapse. It was shown that the associative computer is a robust
model and can tolerate noise to some extent. It is an ideal model for performing
problem solving computation in a robot. On the hand side every biologically
plausible model which simulates human problem solving behavior performed by
the brain should tolerate noise to some extent as noise is present in the real
human brain.

A robot which was trained to solve problems with certain objects should still
solve those problems even when a new, not-learned object appears. The associa-
tive computer can deal with this problem. When the objects are unimportant for
the problems being solved, they are ignored. In other cases they are treated as
noise.

The problem domain of the associative computer can be extended if required.
This is done by the additional learning of associations by the permutation asso-
ciative memory.
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Experiments

Once a problem is described using an appropriate representation, it is almost
solved. The associative computer utilizes cognitive entity and pattern repre-
sentation to describe problems. By using this type of internal representation
the pattern and prediction heuristic is nearly defined. To show that the type
of representation used is not constrained to the geometric blocks world, three
other domains are analyzed. These domains were chosen because they are well
known and extensively studied in the Artificial Intelligence community. In the
“colored” or “marked” blocks world, the blocks differ by color, but not by form
229, 43, 196, 111]. It is shown how color can be efficiently coded. The “Sussman
anomaly” is presented, and the process of building a tower of blocks is examined.
In the “8-Puzzle” domain, the internal representation of numbers and the result-
ing pattern heuristic is examined. A final domain studied is that of a robot in a
maze.

6.1 ABC blocks world

6.1.1 Permutation associative memory

In this example, blocks can be placed in three different positions and picked up
and set down by a robot arm. There are three different types of blocks. They
differ by attributes such as color (red, green, blue) or marks, but not by form.
In Al they are traditionally called A, B, C blocks (see fig. 3.2) [111]. In our
representation the A, B, C marks correspond to the marks at the corner of the
counter representing the blocks. In (fig. 6.1) block C is on the table, block
B on block C, and block A on block B. Block A is clear. The robot arm is
represented in the upper right corner. Sixty different states are possible and
fifty-four associations are learned.

The pictures are represented by seven cognitive entities. After learning, a
weight matrix of dimension 900% emerges (see fig. 6.2). The matrix differs slightly

155



156 CHAPTER 6. EXPERIMENTS

100 =
| Hil
80
60
A0 | A e e e e
ol
20
. .
0 H HF
0 20 60 80 100

Figure 6.1: The world for the task ABC blocks.

from the matrix of the geometric blocks world. (see.fig ). The differing positions
correspond to the coding of the blocks: Position 1 to 100, 301 to 400 and 601 to
700.
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Figure 6.2: The weight matrix of the permutation associative memory for the
task ABC blocks. 42774 synapses are not zero, 5.2807% of the weight matrix.

The weight matrix is composed of only seven elementary blocks (see fig 6.3).
This reduction results from the fact that the different blocks are represented by
vectors with the same number of ones.
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Figure 6.3: The sum of the synapses of a column.
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The x axis indicates the

frequency of different sum values of columns. The written number correspondsto

the sum values.

6.1.2 Pattern heuristics

The pattern heuristic is slightly modified in the “ABC blocks” world to improve

its quality. The counter of the blocks are hidden (see fig. 6.4).

Figure 6.4: The counter of the block is hidden.

Only the reight marked blocks are considered by the heuristic function. Fig.
6.5 shows the initial and fig. 6.6 the desired state. If each of the seven states is
either the initial or the desired state, then 42 combinations are possible. With
these combinations both pattern heuristic functions, h1, and h2, bring a signifi-
cant improvement in comparison to the blind search (see tab. 6.1, 6.2, 6.3). The
part blind h heuristic function brings a significant improvement in the “ABC
block” world. This is because the search space is much bigger than the one in

the “geometric blocks”

world.
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| |0 [ h1 | h2 |

mean || 56.29 | 27.24 | 23.38

sdev [ 90.79 | 18.26 | 15.6
p - 0.022 | 0.011

Table 6.1: Required steps for all 42 I11-16 and D1 combinations.

| [h0 [h1  [h2 |
mean || 28.91 | 21.43 | 19.57
sdev || 16.62 | 12.22 | 11.84

p - 0.003 | 0.001

Table 6.2: Required plan length for all 42 11-16 and D1 combinations.

| [h0 |hl [h2 |

mean || 13.79 | 2.9 1.9

sdev | 43.46 | 3.66 | 2.52
p - 0.055 | 0.04

Table 6.3: Required backtracking steps for all 42 11-16 and D1 combinations.

The task ID1 — D1 represents the “Sussman anomaly” [201, 227, 230, 137].
The problem is considered an anomaly because you cannot do either of the nec-
essary first actions without undoing it at a later point. If you first put block A
on block B after putting block C on the table, you will have to take it off again
so that you can move block B onto block C. If you put block B on block C first,
you will have to undo this to move block A. This is also what the associative
computer using the h2 heuristic does (see fig. 6.7).
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Figure 6.5: Six initial states.
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Figure 6.6: The Desired state, CBA tower.
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Figure 6.7: Planning of the task ID1 — D1 (“Sussman anomaly”) with heuristic
h2.

6.1.3 Tower, few initial states
Supervised learning

In this experiment we examined how to build a tower CBA (fig. 6.6). 59 different
initial states are possible. Six initial states which covered the problem space
of building the CBA tower (fig. 6.5) were chosen. The steps, plan length and
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backtracking steps of the six tasks were determined using h0, h1, and h2 as shown
in tables 6.4, 6.5, 6.6. After that, two learning sessions were performed!. The
h2 heuristic guided the search. In the [ learning session, the Sussman anomaly
example ID1 — D1 was learned. In the all learning session all 6 examples were
learned. The plan length for the prediction heuristic all was the same as for
the pattern heuristic A2, but no backtracking steps occurred. The prediction
associative memory which learned the Sussman anomaly did not have enough
knowledge to significantly improve the search.

[ task W0 [hI [ [T Jal |

I1 —D1| 9% 32 10 8 8

12— D1 || 86 20 20 6 16

I3 — D1 || 12 22 22 46 18

4 — D1 | 90 26 26 26 20

I5 — D1 || 66 6 6 28 6

16 — D1 || 40 48 18 48 14
mean 64.67 | 25.67 17 27 13.67
sdev 32.68 | 13.94 7.56 17.92 | 5.57

p - 0.0252 | 0.0101 | 0.0594 | 0.0075

Table 6.4: Required steps, build CBA tower task.

[ task B0 Wl [h2 1 Jal |

I1 — D1 || 50 24 8 8 8

12 — D1 || 42 16 16 6 16

I3 — D1 || 10 18 18 32 18

4 — D1 || 46 20 20 26 20

I5— D1 || 46 6 6 26 6

6 — D1 || 32 30 14 38 14
mean 37.67 | 19 13.67 22.67 | 13.67
sdev 14.88 | 8.08 5.57 12.94 | 5.57

p - 0.0256 | 0.0115 | 0.0979 | 0.0115

Table 6.5: Plan length, build CBA tower task.

IThe add of the desired state to the question vector of the prediction associative memory
was not necessary. However, for compatibility reasons, it was performed.
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| task [ ho h1 h2 |1 Jall]

I1 — D1 | 22 4 1 0 0
12 — D1 | 22 2 2 0 0
I3—-D1|1 2 2 7 0
14 — D1 || 22 3 3 0 0
I5 — D1 | 10 0 0 1 0
16 —D1| 4 9 2 5 0

mean 13.5 3.33 1.67 21710

sdev 9.7519 | 3.0768 | 1.0328 | 3.06 | 0

Table 6.6: Backtracking steps, build CBA tower task.

Unsupervised learning

The prediction associative memory was empty at the beginning of the unsuper-
vised learning. The unsupervised learning brought no significant improvement
due to the interference of the problem 14 — D1 with other problems (see fig.
6.8). The equilibrium was already reached at step two.

Figure 6.8: Required steps, build CBA tower task during learning.
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Figure 6.9: Mean steps for learning. t2-t20: mean=45.67, sdev=45.19, p=0.16
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Figure 6.10: Mean plan length for learning. t2-t20: mean=29.67, sdev=16.22
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Figure 6.11: Mean backtracking steps for learning. t2-t20: mean=8, sdev=19.6
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Figure 6.12: The number of synapses which are not zero during learning. t2-t20:
147687 of 1.99101% synapses are not zero (0.0742%).
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Context information resolved the problem of the interference of the prob-
lem 14 — D1 with other problems (see fig. 6.8). By detachment of the particular
solution, significant improvement in the required steps and the plan length was
obtained. The equilibrium of the associative computer was reached one stage
after the stabilization in the behavior of the prediction associative memory, at
stage three (see fig. 6.17).

Figure 6.13: Required steps, small build CBA tower task with context during
learning.
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Figure 6.14: Mean steps for learning.  ¢3-t20: mean=21.33, sdev=6.15,
p=0.00119
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Figure 6.15: Mean plan length for learning. t2-t20: mean=21.33, sdev=6.15,
p=0.0242
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Figure 6.16: Mean backtracking steps for learning. t3-t20: mean=0, sdev=0
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Figure 6.17: The number of synapses which are not zero during learning. t2-t20:
230680 of 2.98801% synapses are not zero (0.0772%).
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Destroy tower

In this task the desired state (fig. 6.6) became the initial state. The former initial
states (fig. 6.5) became the desired states. While the initial problem is inverse,
the computed solutions are not. Neither the pattern heuristic nor the prediction
heuristic, which was supervised learned, brought any significant improvement
(see table 6.7). The computation by the associative computer is not symmetric
to problems.

task H hO ‘ h2 ‘ all ‘
D1 —11 | 30 12 10
D1 — 12 || 60 24 22
D1 — 13 || 12 22 18
D1 — 14 | 22 10 10

DI — 1566 |6 6
DI —>16 | 10 |40 |32
mean 333310 | 16.33
sdev 24.16 | 12.44 | 9.67
P - 0.16 | 0.11

Table 6.7: Required steps. The tasks in italic are symmetric in both directions,
the others are not.

The unsupervised learning brought a significant improvement?. The back-
tracking steps were eliminated (see fig. 6.21).

2Because the initial state was always the same, context information was of no importance.
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Figure 6.18: Required steps, destroy CBA tower task during learning.
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Figure 6.19: Mean steps for learning. t2-t10: mean=25.33, sdev=18.27, p=0.01
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Figure 6.20: Mean plan length for learning. t1-t20: mean=25.33, sdev=18.27
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Figure 6.21: Mean backtracking steps for learning. t2-t20: mean=0, sdev=0
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6.1.4 Tower, most important initial states

Of the remaining 53 possible states, 28 initial states were chosen and the remain-
ing 25 states were not considered. There were two reasons for not including a
state. First, some of the states represent trival problems, for example only one
move from the desired state. The other reason was that some states were already
nearly described by other states, for example different combinations of towers in
the middle position, versus different combinations of towers in the left position
(see fig. 6.22-6.26).

Initial States
17 18 19

ol N a6 o

110 111 112

Figure 6.22: The remaining initial states I7-112 for the task CBA tower.
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Initial States
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Figure 6.23: The remaining initial states [13-118 for the task CBA tower.

Initial States
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Figure 6.24: The remaining initial states 119-124 for the task CBA tower.
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Initial States
125 126 | 27

Figure 6.25: The remaining initial states 125-130 for the task CBA tower.

Initial States

Figure 6.26: The remaining initial states 131-134 for the task CBA tower.

Generalization

The 28 initial states were used to test the generalization of the prediction asso-
ciative memory trained by the first six examples (see table 6.4). The prediction
associative memory which was formed by supervised learning of the six examples
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(here labeled as all®™) produced the best results (see tables 6.8, 6.9, 6.10). No
backtracking steps were performed. The example ID31 — D1 represents the task
of the rebuilding of the tower (see fig. 6.27). The best possible solution was found
using the prediction heuristic all*™*. The six examples are sufficient to charac-
terize the problem of building the CBA tower. The prediction associative mem-
ory which was formed by learning the Sussman anomaly ID1 — D1 describes the
problem of building the CBA tower statistically better than the pattern heuris-
tic. The prediction associative memory which was formed by the unsupervised
learning (us) of the six examples (see fig. 6.9) produced weaker results than the
pattern heuristics. Context unsupervised learning of the six examples brought
significant improvement for those examples (see fig. 6.14). However, it failed
to generalize and it was weaker than the unsupervised learning. Context can
help by the detachment of particular solutions, however, it should be not used if
generalization is required.

‘ H hO ‘ hl ‘ h2 ‘ | ‘ allsmaelt ‘ us*mall ‘ cus®mel ‘
mean || 61.43 | 32.57 28.21 24.29 | 11.21 35.89 | 42.43
sdev || 34.73 | 27.01 19.36 16.4 | 5.67 30.08 | 38.67

p - 0.00019 | 0.000086 | 6.77° | 1.287% | 0.0015 | 0.012

Table 6.8: Required steps for build tower 17-134 — D1.

[ w0 [w [z 1 [l [ s | cus™ |
mean || 37.5 | 22.57 21.64 20.5 11.21 24.93 24.86
sdev || 15.08 | 15.49 13.97 10.88 5.67 12.41 12.21

p - 0.000094 | 0.00015 | 0.000018 | 1.76=% | 0.00038 | 0.00073

Table 6.9: Required plan length for build tower 17-134 — D1.

[ [w [n (w2 1 [l [ s | cus™mal |
mean || 11.96 | 5 3.29 1.89 0 5.46 8.79
sdev || 11.45 | 6.57 2.72 3.39 0 10.78 | 15.01

p - 0.0013 | 0.0003 | 0.000045 | 3.77° 0.012 | 0.145

Table 6.10: Required backtracking steps for build tower 17-134 — D1.
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Figure 6.27: Planning of the task ID31 — D1 after all*™® learning. The best
possible solution was found.

Again it is shown how important is the choice of the appropriate examples
as teaching material. The prediction associative memory which was formed by
learning the Sussman anomaly describes the problem of building the CBA tower
statistically better than the pattern heuristic. This is really amazing. One well-
chosen example catches all the essential information about the nature of building
the CBA tower.
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Supervised learning

All 34 examples were learned by the unsupervised learning (noted all). The
search was guided by the A2 heuristic. The results were comparable to the Al
pattern heuristic (see tables 6.11, 6.12, 6.13). These weak results were due to the
overlearning of the prediction associative memory. Beside the overloading of the
prediction associative memory, the interference between different problems also
had an effect. Because of this, the added context improved the results (noted as
c-all). But the quality is not comparable to the results obtained by the learned six
examples, or the Sussman anomaly. The conclusion: the prediction associative
memory can overlearn.

‘ H hoO ‘ hl ‘ h2 ‘ 1 ‘ allsmelt ‘ all ‘ c-all ‘
mean || 62 31.35 26.24 | 24.77 | 11.65 33 31.71
sdev || 33.92 | 25.17 18.28 | 16.43 | 5.65 25.136 21.79

p - 0.00002 | 3.7976 [ 1.4475 | 2.4471° | 0.000027 | 0.00005

Table 6.11: Required steps for build tower 11-134 — D1.

‘ H hO ‘ hl ‘ h2 ‘ | ‘ allsmaelt ‘ all ‘ c-all ‘
mean || 37.53 | 21.94 | 20.24 | 20.88 | 11.65 26 27
sdev || 14.82 | 14.43 | 13.19 | 11.09 | 5.65 13.19 | 14.98

p - 7.9476 | 75176 | 7.2475 | 5.55711 | 0.0003 | 0.0017

Table 6.12: Required plan length for build tower 11-134 — D1.

‘ H hO ‘ hl ‘ h2 ‘ | ‘ allsmelt ‘ all ‘ c-all ‘
mean || 12.24 | 4.71 3 1.94 0 3.38 2.35
sdev | 11.05 | 6.09 2.57 3.29 0 6.28 5.58

p - 0.0002 | 0.00002 | 5.5276 | 1.26=" | 0.00003 | 0.00005

Table 6.13: Required backtracking steps for build tower 11-134 — D1.

Unsupervised learning

The prediction associative memory was examined during unsupervised learning
of many problems. The computer resources were restricted to a quantity of 600
steps. At the beginning of the learning the analogy memory was empty. A stage
consists of the tasks I1 — D1, 12 — D2,.., [34 — D1. At the third time interval,
third stage, a strong interference of the task 117 — D1 with other tasks occurred
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(see fig. 6.28). Despite the determined arrangement of the tasks, the interference
of the task I17 — D1 could be eliminated at time interval 10. The elimination
can be recognized in the graphs representing the required steps, plan length and
the required backtracking steps (see fig. 6.29, 6.30, 6.31). It is seen most clearly
in the figure representing the number of synapses of the prediction associative
memory which are not zero (see fig 6.32). The equilibrium of the behavior of
the associative computer was reached at step 14. The results are not persuasive,
despite the significant improvement to the blind search hOQ.

Figure 6.28: Required steps, build CBA tower during learning.
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Figure 6.29: Mean steps for learning. t14-t15: mean=36.88, sdev=24.81,
p=0.0019
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Figure 6.30: Mean plan length for learning. t14-t15: mean=29.29, sdev=14.66,
p=0.00001
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Figure 6.31: Mean backtracking steps for learning. t14-t15: mean=3.79,
sdev=6.6, p=0.000012
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Figure 6.32: The number of synapses which are not zero during learning. t15:
167971 of 1.99101% synapses are not zero (0.0844%).
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180

resolved the problem of the interference. The results

are obviously better (see fig. 6.33, 6.34, 6.35, 6.36). They are comparable to the
supervised learning all, which was guided by the heuristic function h2. The
equilibrium of the behavior of the associative computer was reached at the time

Context information

However, the equilibrium of the prediction associative memory

interval eight.

)

was reached at interval eleven (see fig. 6.37

o
o
©

400

Figure 6.33: Required steps, build CBA tower with context during learning.
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Figure 6.34: Mean steps for learning. t8-t15: mean=33.18, sdev=23.51,
p=9.93"¢
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Figure 6.35: Mean plan length for learning. t7-t15: mean=27.24, sdev=14.92,
p=0.0016
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Figure 6.36: Mean backtracking steps for learning. t8-t15: mean=2.97,
sdev=5.61, p=9.55"7
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Figure 6.37: The number of synapses which are not zero during learning. t11-t15:
308169 of 2.988018 synapses are not zero (0.1031%).
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In this example it was shown how unsupervised learning of many problems
is performed. Many states which differ only slightly describe different prob-
lems. Despite this fact, the prediction associative memory extracts the relevant
knowledge. Because of this, many more learning sequences are needed until the
stabilization of the behavior of the associative computer. But at least there is a
stabilization to which the model converges. After the first learning sessions, an
impairment is present. The improvement comes along with the reduction of the
weights of the prediction associative memory. The number of required learning
steps (sequences) until an equilibrium in the behavior is reached is proportional
to the number of problems which are learned. Many problems supply many con-
tradictory knowledge to the prediction associative memory. This becomes clear
in the experiment where context led to a faster improved learning. Additional
context such as modulation should bring even better improvement.

Observations

Supervised learning with an observer who had chosen relevant examples led to
the best results (all*™®, Sussman anomaly). The failure of the teacher to chose
relevant examples led to an impairment. The results obtained after the learning
of all 34 problems were worse than the h2 pattern heuristic, despite the fact that
the h2 heuristic guided the search. This is due to overlearning of the prediction
associative memory. Unsupervised learning led to weak generalization perfor-
mance®. Unsupervised learning of all problems, particularly with context, was

only slightly worse than the pattern heuristic.

Prediction associative memory

The supervised all*™® learning strategy led to the best results. The prediction
associative memory is composed of 22 building blocks of columns and rows. The
distribution represented a zigzag with six frequency maxima which lay over the
value 20 (see figures 6.38). The load of the prediction associative memory which
resulted from the supervised learning of all examples all is higher. It is composed
of 22 building blocks of columns, and only 20 of rows. The number of the fre-
quency maxima which lay over 20 is reduced to five (see figures 6.39). The load of
the prediction associative memory which resulted from the unsupervised learning
of all examples without context is higher than the preceding examples. It is,
however, composed of even fewer building blocks (19 building blocks of columns
and 17 of rows). The number of the frequency maxima which lay over 20 is four
(see figures 6.40). The gain of load with the reduction of blocks indicates the loss
of important information. This information distinguishes the different states and
is concentrated in small areas of the weight matrix of the prediction associative
memory.

3Nevertheless the improvement is significant.
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Figure 6.38: 0.0746% synapses are not zero of associative memory of the task
all*™@  (a) The frequency of different sum values of columns. (b) The corre-
sponding sum values of columns. (c) The frequency of different sum values of
rows (logarithmic plot). (d) The corresponding sum values of rows.
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Figure 6.39: 0.0839% synapses are not zero of associative memory of the task all.
(a) The frequency of different sum values of columns. (b) The corresponding sum
values of columns. (c) The frequency of different sum values of rows (logarithmic
plot). (d) The corresponding sum values of rows.
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Figure 6.40: 0.0844% synapses are not zero of associative memory of the task
unsupervised learning of 34 examples. (a) The frequency of different sum values
of columns. (b) The corresponding sum values of columns. (c) The frequency
of different sum values of rows (logarithmic plot). (d) The corresponding sum
values of rows.



6.1. ABC BLOCKS WORLD 187

Context information increased the load and the number of the building blocks
of the prediction associative memory (see figures 6.41 and 6.42). The number of
the maxima remained the same as without the context.
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Figure 6.41: 0.1549% synapses are not zero of associative memory of the task c-all.
(a) The frequency of different sum values of columns. (b) The corresponding sum
values of columns. (c) The frequency of different sum values of rows (logarithmic
plot). (d) The corresponding sum values of rows.
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Figure 6.42: 0.1031% synapses are not zero of associative memory of the task
unsupervised learning of 34 examples with context. (a) The frequency of different
sum values of columns. (b) The corresponding sum values of columns. (c¢) The
frequency of different sum values rows (logarithmic plot). (d) The corresponding
sum values of rows.
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6.1.5 Additional blocks

The integration of the associative computer into bigger systems, such as intel-
ligent planning systems, requires the representation of additional objects. This
possibility is examined in the next experiment. Six additional different blocks
are introduced. The blocks differ by different marks in the counter (see fig 6.43).
378 additional associations were learned by the permutation associative mem-
ory. These associations represent the additional blocks and additional positions
resulting from stacking the blocks one upon the other.

100

80

60

40

80 100

Figure 6.43: The world for the task 9 blocks.

The differing positions correspond to the coding of the blocks and their vertical
positions. For blocks representation positions 1 to 100, 301 to 400 and 601 to
700 correspond. For vertical positions 101 to 200 and 401 to 500 correspond (see
fig. 6.44).
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Figure 6.44: The weight matrix of the permutation associative memory for the
task 9 blocks. 89788 synapses are not zero, 11.0849% of the weight matrix.

The weight matrix is composed of eleven elementary blocks (see fig 6.45).
Two frequency maxima and two frequency minima blocks remained as before the

additional learning (see fig 6.3).
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Figure 6.45: The sum of the synapses of a column. The x axis indicates the

frequency of different sum values of columns.

to the sum values.

The written number corresponds
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Supervised learning

In the example, 6 tasks were solved with the aid of the pattern heuristic h2. Those
tasks were also learned by the prediction associative memory. They were recalled
without error. The 6 tasks correspond to the decomposition of the problem I1 —

D1.

‘ task ‘ h2 H all ‘
1 —-1D2 |4 4
ID2 — ID3 | 4 4
ID3 — ID4 | 4 4
ID4 — ID5 | 2 2
ID5 — ID6 | 6 6
ID6 — D1 | 4 4

Table 6.14: 100 percent recognition after one step learning for 6 transitions.

)

Figure 6.46: The desired state D1 for the task 9 blocks.
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Initial & Desired States
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Figure 6.47: The initial and desired states for the task 9 blocks.
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6.2 8-Puzzle

The 8-puzzle is composed of eight numbered movable tiles in a 3 x 3 frame. One
cell of the frame is empty and because of this, tiles can be moved around to form
different patterns. The goal is to find a series of moves of tiles into the blank space
that changes the board from the initial configuration to a desired configuration
(see fig. 6.48). Two common heuristics for this task are the number of misplaced
tiles, and the “city-block distance” [136, 151, 111]. The first heuristic counts
the number of misplaced tiles out of place in each state compared to the desired
goal. However this heuristic fails to take into account all available information
such as the distance the tiles must be moved. The “city-block distance” sums all
the distances by which the tiles are out of place, with one count for each square
a tile must be moved to reach a position of the desired state. The “city-block
distance”, also called the “Manhattan distance”, is often better than the “number
of misplaced tiles”.

s 6 7.8 6 7186
71415 [ 4 s 4 M s
2| 3 1] 23 12 3

7186 718 0
6
3

Figure 6.48: The first pattern (upper left) represents the initial configuration and
the last (low right) the desired configuration. The series of moves describe the
solution to the problem.

6.2.1 Pattern representation of the 8-puzzle

The Oksapmin tribe of Papua New Guinea counts by associating a number with
the position of the body [103]. This suggests a representation of numbers by
bars at certain positions which can overlap. A bar at a certain position codes
the magnitude of the number. The closeness or similarity of different numbers is
determined by the overlap of the bar codes (see fig. 6.49).
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Figure 6.49: A bar at a certain position codes the magnitude of the number. The
closeness or similarity of different numbers is determined by the overlap of the
bar codes.

In the 8-puzzle, each tile is defined by its corresponding coordinates. Two
numbers can be represented by two bars (see fig 6.50). The amount of overlapping
indicates the closeness of different tiles.

fana iR R iR an AR RRR R a IR

Figure 6.50: The desired state for the task 8-puzzle and its representation by bars.
The associative fields in which the objects are describe have a fixed dimension of
ten times ten pixels. Because of this, excessive unused space is present.

A tile is represented by a cognitive entity. The tile is specified by the first
associative field of dimension ten times ten, its positions by the succeeding asso-
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ciative fields. Bars have the size of ten because of compatibility and clarity. The
desired state is represented by nine cognitive entities:

No:1

0111000000
1000000000
1000000000
1000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000

1111111111000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
1111111111000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
No:2

0011100000
1000000000
1000000000
1000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000

1111111111000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000111111111100000000000000000000000000000000000000000000000000000000000000000000000000000000
No:3

0001110000
1000000000
1000000000
1000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000

1111111111000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000011111111110000000000000000000000000000000000000000000000000000000000000000000000
No:4

0111000000
0000000000
1000000000
1000000000
1000000000
0000000000
0000000000
0000000000
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0000000000
0000000000

0000000000111111111100000000000000000000000000000000000000000000000000000000000000000000000000000000
1111111111000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
No:5

0011100000
0000000000
1000000000
1000000000
1000000000
0000000000
0000000000
0000000000
0000000000
0000000000

0000000000111111111100000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000111111111100000000000000000000000000000000000000000000000000000000000000000000000000000000
No:6

0001110000
0000000000
1000000000
1000000000
1000000000
0000000000
0000000000
0000000000
0000000000
0000000000

0000000000111111111100000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000011111111110000000000000000000000000000000000000000000000000000000000000000000000
No:7

0111000000
0000000000
0000000000
1000000000
1000000000
1000000000
0000000000
0000000000
0000000000
0000000000

0000000000000000000011111111110000000000000000000000000000000000000000000000000000000000000000000000
1111111111000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
No:8

0011100000

0000000000

0000000000

1000000000
1000000000
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1000000000
0000000000
0000000000
0000000000
0000000000

0000000000000000000011111111110000000000000000000000000000000000000000000000000000000000000000000000
0000000000111111111100000000000000000000000000000000000000000000000000000000000000000000000000000000
No:9

0001110000
0000000000
0000000000
1000000000
1000000000
1000000000
0000000000
0000000000
0000000000
0000000000

0000000000000000000011111111110000000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000011111111110000000000000000000000000000000000000000000000000000000000000000000000

6.2.2 Permutation associative memory

192 associations were learned. Its premises and conditions are described by two
cognitive entities (see fig 6.51). They describe all possible moves of the tiles.

premise

conclusion

Figure 6.51: If the tile “1” is in the lower right corner and on the right side there
is an empty cell, then move the tile “1” to the right.

Together, the question and the answer vector have the dimension 600 (100-3-2).
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After learning, a weight matrix of dimension 600? emerges (see fig. 6.52). The
matrix is symmetric because for each association there exists an inverse associa-
tion and vice versa. The matrix is low loaded because much of the space is not
used for the representation. The weights are densely concentrated. The weight
matrix is composed of only 6 elementary blocks and the sum values differ only
slightly. There is a strong correlation of smaller pattern parts which declines as
the pattern parts grow.

100 200 300 400 500 600

Figure 6.52: The weight matrix of the permutation associative memory for the
task 8-puzzle. 15282 synapses are not zero, 4.2450% of the weight matrix.
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Figure 6.53: The sum of the synapses of a column. The x axis indicates the
frequency of different sum values of columns. The written number corresponds
to the sum values.

Superposition problem

Besides the learned, associations new associations emerge by superimposition.
The new associations represent the not-allowed diagonal moves of tiles (see fig.
6.54). Their execution is prohibited by a constraint function. A pair of tiles which

Figure 6.54: Besides the learned associations, new associations emerge by super-
imposition. The new associations represent the not-allowed diagonal moves of
tiles.

lie in the diagonal have no overlap in the bars representing their positions® (see

4 Associative fields two and three.
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fig. 6.54). Two layers over nine cognitive entities are used. The hard threshold
strategy is used with thresholdy,+ = 0.7 and threshold,nee. = 0.87. 1+ 9 parts
of associative memory were marked. The output of the computer simulation is
shown during the attention stage with the input state the initial state 14 (see fig.
6.48 and 6.56).

Attention stage (threshold is 0.7):
Nr.1

No.1= -1 No.2= -1 No.3= -1 No.4= -1 No.5= -1 No.6= -1
No.7= -1 No.8= -1 No.9= 1

Nr.1

No.1= 1 No.2=1 No.3=1 No.4= 1 No.5= 1 No.6= 1
No.7= 1 No.8= 1 No.9= 0.921905

Associative memories were formed from three different marked parts(i);. Nota-
tion: ¢ represents the position, j the number. The constraint combinations which
are not valid are marked by c.Their qc, poe value is set to —1. The qcpoe values
over the threshold,.. are marked by +.Two possible answers were recognized.

Binding stage (threshold is 0.87):

has qc=-1 ¢
has qc=-1 ¢
has qc=0.365217
has qc=-1 ¢
has qc=-1 ¢
has qc=1 +
has qc=0.365217
has qc=1 +

-
-

-
-

-
-

-
- -

-
-

© ©O© O O ©W ©W OV ©

-

O NO Ok WN -

-

Two possible moves were recognized.

Pattern heuristic

The gcZ,(b) function, heuristic function h2, is not used because in the 8-puzzle
world no partial blindness (as in the block world) exists. The heuristic unmodified
function hl is used (see paragraph). The hl function is equivalent to the city-
block distance. The distance between a state and a desired state corresponds to
the sum of distance by which the tiles are out of place. The closeness or similarity
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of a tile to the desired position of the tile is determined by the overlap of the
two bar codes representing the tile (see fig. 6.55). The overlap corresponds to

Figure 6.55: The tile “1” at the position of the tile “6” (shown by dotted bars).
The value of the city-block distance is three. The hamming distance between the
patterns representing the tile “1” and “6” is also three.

the distance by which the tile is out of place. The hl heuristic emerged by a
reasonable internal representation of the states in the 8-puzzle world. The initial
states are represented in fig. 6.56. The desired state with the corresponding
internal representation is shown in fig 6.50.

Initial States
11 12 13
7186 47 B 86
425 1 5|8 7 5|3

14 I5 I6
B s 6 476 |5 8
7 4 5 1/85 7063

2|3 >3l 4]1]2

Figure 6.56: The initial states for the task 8-puzzle.

From the state 14 to the desired state the solution was found in 4 steps using
the hl heuristic (see fig. 6.48). The desired state was found in eight steps from
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the initial state 12 using the hl heuristic (see fig.6.57).

a7 B 14 7 8 478
1,58 15 156
2 | 3 2136 2 |3 [
4 8 7] 8 4178

B 7 7 [ s 7 8 [
4 5 6
1 2 3

Figure 6.57: Planning 8-puzzle 12 task with h1l heuristic.

In fig. 6.58 we see the internal representation of the previous problems as
used by the associative computer.
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Figure 6.58: Planning 8-puzzle 12 task with h1 heuristic, internal representation.

6.2.3 Swupervised learning

Six problems were solved with the aid of the pattern heuristic hl. These tasks
were also learned by the prediction associative memory. They were recalled with-

out errors.

‘task ‘hl H all‘
I1—-D|3 3
I2—-D|8 8
I3—D|6 6
4—-D|4 4
I5—D|8 8
I6 —D |8 8

Table 6.15: 6 tasks for 8-puzzle.
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M5 s 7058 7158
7163 | 6|3 4 63
12 a1 2 |12

5| 8 7 B s 718
2 M 6 45 6
2 2 3

Figure 6.59: Planning 8-puzzle 16 task with h1 heuristic.

6.2.4 Generalization after supervised learning

An additional 28 initial states were used to test the generalization of the predic-
tion associative memory trained by the six examples of problems (see fig. 6.60
and fig. 6.61). The computer resources were restricted to 30 steps. The per-
formance of the prediction associative memory was nearly the same as that of
the pattern heuristic h1. The “description” column in table 6.16 shows, for each
of the not learnd initial states, its amount of difference from one of the learned
example initial states. The number of steps here indicates the number of steps of
the not learned initial state, counted from the initial state of the corresponding
learned sequence. The description indicates the difference from the six learned
problems characterized by the initial state. The value characterized by steps in-
dicates the state, counted from the initial state of the learned sequence. The
value move shows the number of moves of a tile from this state (see tab. 6.16 ).
The prediction associative memory found solutions under the restricted computer
resources, which the h1 heuristic could not find. For example, the solution to the
problem 123 — D was found in 13 steps (see fig. 6.62).
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Initial States
17 18 19 110 111
708|6| |4 7| | s |B e 476 s I 6
4 |25 1|58 7153 1|8 III 714 ]|5
113 lll 21316 411|2 213 |5 112 |3
112 113 114 115 116

401 2 1121 3 2] 3|6 2131 6 10213
117 118 119 120 121
7186 7186 7186 71 8|6 7186
5 III 3 5 1]3 513 1| 4|5 1| 4|5
4 112 4 ||| 2 4 |2 ||| ||| 2| 3 2 lll 3
122 123 124 125 126
7186 7186 7 18l|6 4|76 715 3
TOEET I i BEn B
2 3|l |2]3|5||2]|3]s 2| 8|3 4l 1] 2
127 128 129 130 131
71816 ||| 7|6 7| 5| 8 41 7|8 4171 8
4|53 4 |8|s 4| 6| 3 lll 5|6 5 Ill 6
||| 12 1]2]3 1 lll 2 1|23 112 3

Figure 6.60: The not-learned initial states for the task 8-puzzle.
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Initial States
132 133 134
417 8 417 8 71816
5| 6 | 1|56 4 B s
1123 [ 23 123

Figure 6.61: The not-learned initial states for the task 8-puzzle.

| task | description | hl || allsmall |
17 — D | from I1, one move 4 4
I8 = D | from 12, one move 9 9
19 — D | from I3, one move 7 none
110 — D | from I4, one move none | none
111 — D | from I5, one move none none
112 — D | from 16, one move none || none

113 — D | one step from I1, one move 3

114 — D | one step from 12, one move 8

115 — D | one step from I1, two moves 9 9
5
6
7

116 — D | one step from I1, three moves

117 — D | one step from I3, one move
118 — D | one step from 13, two moves

119 — D | one step from I3, three moves none || none
120 — D | one step from 14, one move 4 4
121 — D | one step from 14, two moves 5 11
122 — D | one step from 14, three moves 6 12
123 — D | one step from 14, four moves none || 13
124 — D | one step from 14, five moves none |l none
125 — D | one step from I5, one move none | none
126 — D | one step from I5, one move none none
127 — D | two steps from I3 4 4
128 — D | two steps from 14, two moves and four steps from I5 | 4 4
| 129 - D | four steps from s6, one move | 5 || 5 |
130 — D | five steps from 12 none || 3
131 — D | five steps from 12, one move none || 4
132 — D | five steps from 12, two moves 5 5
133 — D | five steps from 12, two moves 4 4
| 134 - D | five steps from I3 and two from 14, one move | 2 || 2 |

Table 6.16: From 28 not learned states 10 (35.7%) where not recognized with hl
and 9 (32.4%) with allsme.
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718 6 7186 7186
1 4 1]4 5 1.4 5
2 35 > 3 |2 s
7186 7186 718
1| s 1|5 | 15 6
2|43 2|43 2|43
7 [ s 7158 7158
156 1| 6 146
243 24 3 > [ 3
715 8 7158 7158
1146 [ 4!s 4 [ 6
B 23 12 3 1023

7 [ s 7 8 Y
5 6
2 3

Figure 6.62: Planning 8-puzzle 123 after learning of the six example I1,..,16.

6.2.5 Observations

e The building blocks of the permutation associative memory indicate a
strong correlation of smaller pattern parts which declines as the pattern
parts grow. The prediction associative memory is constructed conversely:
there is a strong correlation of bigger pattern parts which decline as the
pattern parts declines (see fig. 6.63).

e Representation of the tiles in the 8-puzzle world led to a pattern heuristic
which is equivalent to the “city-block distance”.
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e Supervised learning with an observer who chose relevant examples led to
results comparable to the pattern heuristic.

(a) (b)

135
20 20 130

10 10

115

110

50 50 80

75
20 20

10 10 70

60

0 25 5 75 10 125 15 0 25 5 7.5 10 125 15

Figure 6.63: 0.006% synapses are not zero of associative memory of the task
all*™@_ (a) The frequency of different sum values of columns. (b) The corre-
sponding sum values of columns. (c) The frequency of different sum values of
rows (logarithmic plot). (d) The corresponding sum values of rows.

6.3 Robot

“Supposons par exemple que 'ont veuille représenter un monde dans lequelle un
robot, Clotaire, est capable de se déplacer de piece en piéce..” [43], page 163. A
robot can move from one room to another and can move in four directions (north,
south, east, and west). It can move into room only if a passage exists. The rooms
with the passages are defined by a map. This map is defined by a sketch. The
different rooms have different names (see fig. 6.64).
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ID2 ID3

Hangar Remise

ID1

Atelier

Figure 6.64: The initial and desired states for the task robot. The map is defined
after example from [43].

6.3.1 Pattern representation

The robot is represented by one cognitive entity. It is specified by the first associa-
tive field. Its position is specified by bars in the associative fields two and three.
The binary bars are of the size two. The maze is represented by 23 cognitive enti-
ties and it is decomposed into objects corresponding to walls, the intersections of
walls, and passages. A object is specified by the first associative field, its position
by the two remaining associative fields. The binary bars are of the size ten, due
to the larger size of the objects. In total, a state is represented by 24 cognitive
entities. In the following example the robot stands in the Atelier. The cognitive
entity representation is shown below, followd by the pattern representation (see
fig. 6.65).

No:1

0000000000
0000000000
0000000000
0000110000
0001111000
0001111000
0000110000
0000000000
0000000000
0000000000
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0000000000000000000000110000000000000000000000000000000000000000000000000000000000000000000000000000
0011000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
No:2

0000000000
0000000000
0000000000
0000000000
1100000011
1100000011
0000000000
0000000000
0000000000
0000000000

0000000000111111111100000000000000000000000000000000000000000000000000000000000000000000000000000000
1111111111000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
No:3

0000110000
0000110000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000110000
0000110000

1111111111000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000111111111100000000000000000000000000000000000000000000000000000000000000000000000000000000
No:4

0000110000
0000110000
0000110000
0000110000
1111111111
1111111111
0000110000
0000110000
0000110000
0000110000

0000000000111111111100000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000111111111100000000000000000000000000000000000000000000000000000000000000000000000000000000
No:5

0000110000
0000110000
0000110000
0000110000
0000110000
0000110000
0000110000
0000110000
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0000110000
0000110000

0000000000000000000011111111110000000000000000000000000000000000000000000000000000000000000000000000
0000000000111111111100000000000000000000000000000000000000000000000000000000000000000000000000000000
No:6

0000110000
0000110000
0000110000
0000110000
1111111111
1111111111
0000110000
0000110000
0000110000
0000110000

0000000000000000000000000000001111111111000000000000000000000000000000000000000000000000000000000000
0000000000111111111100000000000000000000000000000000000000000000000000000000000000000000000000000000
No:7

0000000000
0000000000
0000000000
0000000000
1111111111
1111111111
0000000000
0000000000
0000000000
0000000000

0000000000000000000000000000001111111111000000000000000000000000000000000000000000000000000000000000

1111111111000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

No:21

0000110000
0000110000
0000110000
0000110000
1111111111
1111111111
0000110000
0000110000
0000110000
0000110000

0000000000000000000000000000001111111111000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000011111111110000000000000000000000000000000000000000
No:22

0000110000
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0000110000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000110000
0000110000

0000000000000000000000000000000000000000111111111100000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000011111111110000000000000000000000000000000000000000
No:23

0000000000
0000000000
0000000000
0000000000
1111111111
1111111111
0000000000
0000000000
0000000000
0000000000

0000000000111111111100000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000001111111111000000000000000000000000000000
No:24

0000000000
0000000000
0000000000
0000000000
1111111111
1111111111
0000000000
0000000000
0000000000
0000000000

0000000000000000000000000000001111111111000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000000000000001111111111000000000000000000000000000000

6.3.2 Permutation associative memory

The associations describe the possible moves of the robot. The premise represents
the position of the robot and the nearest passage way present, so that the robot
can move through it. The conclusion describes the new position after the robot
moved through the passage (see fig 6.66).

Four directions for every interior room are learned, two for the rooms at the
four corners and three for the border rooms.
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10 20 30 40 50 60 70

Figure 6.65: The world for the task robot. Robot stands in the Atelier.

robot |
(O | - |
S —
| i - ‘ ’
passage ;
| ‘
premise conclusion

Figure 6.66: One association describes a possible move of the robot.

Superposition problem Besides the learned associations, new associations
would emerge by superimposition. The symmetry is broken by representing the
different states of the robot dependent on its move. Four states are defined: 00,
11, 10, 01. The following eight rules determine the new state after the robot
moved:

e If the robot is in state 00 and it moves north or south, the new state is 11.

e If the robot is in state 00 and it moves west or east, the new state is 10.

If the robot is in state 11 and it moves north or south, the new state is 00.

If the robot is in state 11 and it moves west or east, the new state is 01.

If the robot is in state 10 and it moves north or south, the new state is 01.

If the robot is in state 10 and it moves west or east, the new state is 00.

If the robot is in state 01 and it moves north or south, the new state is 10.
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e [f the robot is in state 01 and it moves west or east, the new state is 11.

A state corresponding to a two digit binary number is represented by the position
of the robot in the room. This is possible because the represented rooms are big
enough. The first “one” indicates a slight postponement of the movement of
the robot in the vertical. The bar represented in the second associative field is
moved by two components to the right if an initial “one” of the two digit number
representing the state is present. Example of a bar:

1100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
The bar is moved by two components if a “one” is present:

0011000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

The second “one” indicates if a slight postponement of the movement of the robot
in the horizontal is realized. The bar represented in the third associative field is
moved by two components to the right if a second “one” is present. The post-
ponement of the position prohibits the emergence of superimposition.

Thirty-four associations are learned. Its premises and conditions are described
by two cognitive entities. Together the question and the answer vectors have the
dimension 600. The structure of the weight matrix represents the learned associ-
ations (see fig. 6.67). The positions of the robot are described by positions 101 to
200 and 301 to 400. In the corresponding diagonal sections the postponement of
the positions which break the symmetry can be recognized. (Compare positions
401 to 500 and 501 to 600 which describe objects of the maze. The weight matrix
is composed of 11 elementary blocks.) The correlation of smaller pattern parts
prevails (see fig. 6.68).

100
200
300
400
500

600

Figure 6.67: The weight matrix of the permutation associative memory for the
task robot. 15632 synapses are not zero, 4.3422% of the weight matrix.
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to 0.93 to prohibit the evaluation of not-valid associations.

40

30

20

10

G0

72 80

094

38

100

110

98 100

0176

122

2 4

6 8

10 12

Figure 6.68: The sum of the synapses of a column.
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Two layers of 24 cognitive entities were used. The threshold,,,.. Was increased

In

example the robot stands in the Atelier (see fig. 6.65):

Attention stage (threshold is 0.7):

Nr.

No.
No.
No.
No.

Nr.

No.
No.
No.
No.

1

No.2= -1
No.8= -1
No.14= -1
No.20= -1

No.2= 1
No.8= 1
No.14= 1
No.20= 1

No.3= -1

No.9= -1
No.15=
No.21=

No.3= 1

No.9= 1
No.15= 1
No.21= -1

No.4= -1

No.10= -1
No.16=
No.22=

1
1

No.4= -1

No.10= -1
No.16= 1
No.22= 1

the following

No.b= -1 No.6= -1
No.11= -1 No.12= -1
-1 No.17= -1 No.18=
-1 No.23= -1 No.24=
No.b= -1 No.6= -1
No.11= 1 No.12= 1
No.17= -1 No.18= 1
No.23= -1 No.24= -1

First layer recognizes the robot, the second the passes.

Binding stage (threshold is 0.93):
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, has qc=1 +

) has qc=0.896667
has qc=0.896667
) has qc=0.471111
1, has qc=0.85

has qc=0.725714
has qc=0.85

has qc=0.471111
has qc=0.619677
has qc=0.471111
has qc=0.556667
has qc=0.471111

-

-

-

= O 00 W N

N el e e T = ==
e v e e e
N B R R e e
S oG DN

N
N

One possible answer was recognized. There is only one way out of the Atelier.

6.3.3 Unsupervised learning

The pattern heuristic Al can not be used because no different overlaps exists
between different states. The prediction associative memory was empty at the
beginning of the unsupervised learning. Unsupervised learning of the six tasks
brought an improvement (see fig. 6.70), however not a significant one (see table
6.17). This is due to the interference of the problem Hangar — Remise with
other problems (see fig. 6.71). Context information led to the same results as
without context.

| task [t0  [t1  [t2-%10 |
Atelier — Hangar || 7 7 7
Atelier — Remise || 10 10 8
Hangar — Atelier || 5 17 5
Hangar — Remuse || 33 33 33
Remise — Atelier || 8 6 6
Remise — Hangar || 3 3 3
mean 11 12.67 | 10.33
sdev 11.05 | 11.04 | 11.24
p - 0.23 | 0.086

Table 6.17: Required steps.
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| task | t0-t10 |

Atelier — Hangar || 7
Atelier — Remise
Hangar — Atelier
Hangar — Remise
Remise — Atelier
Remise — Hangar || 3

S| | O Co

mean 5.33
sdev 2.07

Table 6.18: Plan length.

| task [t0 [t1 [62-t10 |
Atelier — Hangar | 0 0 0
Atelier — Remise || 1 1 0
Hangar — Atelier || 0 7 0
Hangar — Remuse || 15 15 15
Remise — Atelier || 1 0 0
Remise — Hangar || 0 0 0

mean 2.83 (383125
sdev 5.98 | 6.11 | 6.12

Table 6.19: Backtracking steps.
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Figure 6.69: Planning of the robot task Remise — Atelier, blind search.
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._|___.._!___.._|___
|

Figure 6.70: Planning of the robot task Remise — Atelier after unsupervised
learning. The robot choses the shortest path.
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Figure 6.71: Planning of the robot task Hangar — Remuse first part. Robot loses
its way to the Remise.
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Figure 6.72: Planinng of the robot task Hangar — Remise final part.
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6.3.4 Generalization after unsupervised learning

The 66 combinations of tasks in which the states ID4-1D9 were initial or desired
states were used to test the generalization performance after the unsupervised
learning. A significant improvement in the required steps was obtained. The
improvement was obtained because often the robot recognized that he had already
visited the rooms during previous explorations of the maze (see fig. 6.73).

‘ H ho ‘ ussmall ‘
mean || 6.85 | 5.36
sdev || 7.51 | 5.31

P - 0.00017

Table 6.20: Required steps for all 66 not-seen combinations.

‘ H ho ‘ ussmall ‘

mean | 3.18 | 3.21
sdev || 1.65 | 1.66

Table 6.21: Required plan length for all 66 not-seen combinations.

‘ H ho ‘ ussmall ‘
mean || 1.83 | 1.08
sdev || 3.63 | 2.53

p - 0.00012

Table 6.22: Required backtracking steps for all 66 not-seen combinations.

Figure 6.73: Planning of the robot task ID5 — Atelier after us*™! learning.



6.3. ROBOT 223
6.3.5 Learning of all examples

All 72 combinations were learned. Already at the end of stage one, an equilib-
rium for needed steps and backtracking steps occurred. Plan length remained
unchanged. The learning led to a significant improvement in the required steps
and reduced backtracking steps. The results were better than after the learning
of the six tasks. Context, however, led to worse results.

Figure 6.74: Required steps, big robot task during learning. Four main intefer-
ences of problems with other problems can be seen.
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L
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e

Figure 6.75: Mean steps for learning of all 72 combinations. t0: mean=7.19,
sdev="7.85; t2-t10: mean=5.69, sdev==6, p=0.00008
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Figure 6.76: Mean backtracking steps for learning of all 72 combinations. t0:
mean=1.92, sdev=_3.83; t2-t10: mean=1.17, sdev=2.93 p=0.00008
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‘ H hO ‘ us ‘ c-us ‘ us*mall ‘
mean || 7.19 | 5.69 5.86 | 5.78
sdev || 7.85 | 6 6.1 6.05

p - 0.00008 | 0.001 | 0.0001

Table 6.23: Required steps for all 72 combinations.

‘ H hO ‘ us ‘ c-us ‘ us®mall ‘
mean || 3.36 | 3.36 | 3.36 | 3.39
sdev || 1.77 | 1.77 | 1.77 | 1.78

Table 6.24: Required plan length for all 72 combinations.

‘ H hO ‘ us ‘ c-us ‘ Uus
mean || 1.92 | 1.17 1.25 | 1.94
sdev || 3.83 | 2.93 2.96 | 2.94

p - 0.00008 | 0.001 | 0.00004

small ‘

Table 6.25: Required backtracking steps for all 72 combinations.

The improvement of learning all possible combinations as opposed to the
learning of the six tasks resulted from the fact that the robot did not learn the
path which included the room ID9 (see table 6.26).

‘ task H us*mall ‘ us ‘
ID9 — ID1 4 4
ID9 — ID2 11 9
ID9 — ID3 10 6
ID9 — ID4 5 3
ID9 — ID5 3 3
ID9 — ID6 4 8
ID9 — ID7 11 9
ID9 — IDS 2 2

mean 6.25 5.5
sdev 3.77 | 2.88

Table 6.26: The only differences in required steps between us*™* and us. These
differences include the state ID9 which was not learned by us*ma!.



226 CHAPTER 6. EXPERIMENTS

The prediction associative memory is related to the prediction associative
memory of the task 8-puzzle. It is constructed conversely to the permutation
associative memory. There is a strong correlation of bigger pattern parts which
declines as the pattern parts decline (see fig. 6.77).
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Figure 6.77: 0.2579% synapses are not zero of associative memory of the task
us. (a) The frequency of different sum values of columns. (b) The corresponding
sum values of columns. (c¢) The frequency of different sum values of rows. (d)
The corresponding sum values of rows.

It is shown that despite the fact that a large quantity of information is present
in which the important clues describing the problem are hidden (such as the
position of the robot), the important information is extracted by the prediction
associative memory and leads to a significant improvement in the problem solving
behavior.
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6.3.6 Noise

The handling of noise by the associative computer in the task robot in the maze
was examined. Pixels of the associative field describing objects were either deleted
or added. In the table 6.27 the required steps dependent on the kind of noise
are shown. The thresholdn.. values were reduced to allow the treatment of
noise. The correct valid associations are chosen with the aid of the prediction
heuristic (us*™). The failure of the associative computer is indicated by none.
The failure resulted either from not recognizing any associations or by producing
mirage states (see fig. 6.78).

Figure 6.78: Failure of the task of robot Atelier — Hangar. The objects describ-
ing the maze are shifted and some pixels are deleted. The computations failed if
objects were shifted.



228 CHAPTER 6. EXPERIMENTS

task 0 2 | 2&41] -3 |-3&+1 -4 -4 & +1 -5

tresholdyhole 0.95 | 0.93 0.93 0.88 0.88 0.85 0.85 0.85
Atelier — Hangar 7 7 5 7 7 none none none
Atelier — Remise 8 8 6 8 8 none none none
Hangar — Atelier 5 5 5 5 5 none none none
Hangar — Remise 3 3 3 3 3 7,5 none none
Remise — Atelier 6 6 6 6 6 8,6 none none
Remise — Hangar 3 3 3 3 3 3 8,38 none

Table 6.27: Required steps, plan length for different types of noise for the robot
tasks after learning (us*™). The threshold value 0.85 is too low for correct
computation. For values separated by a comma the first value shows required
steps, the second shows the plan length.
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Figure 6.79: Planning of the robot Atelier — Hangar with noise after learning.
The robot made a detour. This was not the case for the task Atelier < Hangar.
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6.4 Conclusion

A model which attempts to explain the process of human problem solving must
not be constrained to only one area. It should have the same behavior in differ-
ent domains. In this chapter it was shown that the associative computer is not
constrained to a certain domain. Exemplary domains which are well known and
extensively studied in Artificial Intelligence were examined. It was shown, how
those domain can be represented with the aid of cognitive entities. It was also
shown that the associative computer has the same behavior in those domains.
It tolerates noise, learns, and uses heuristic information resulting from repre-
sentation. The choice of the appropriate example as teaching material is very
important. The prediction associative memory which was formed by learning the
Sussman anomaly describes the problem of building the CBA tower statistically
better than the pattern heuristic. One well-chosen example catches all the es-
sential information about the nature of building the CBA tower. Unsupervised
learning of many problems is difficult. This is because different states describing
problems differ only slightly. Despite this fact, the prediction associative mem-
ory extracts the relevant knowledge which leads to a significant improvement in
the problem solving behavior. The examined domains of problems indicate that
the associative computer is qualified for usage in a robot, as robots must solve
analogical problems which are presented.

6.4.1 Associative memories

The weight matrixes of the permutation associative memories were ordered and
built by not many elementary blocks. The weights were not equally distributed
over the whole matrix.

‘ task ‘ % ‘ #blocks ‘
geometric blocks | 5.4874 10
tower 9.5738 12
ABC blocks 5.2807 7
9 blocks 11.0849 11
puzzle 4.2450 6
robot 4.3422 11

Table 6.28: Structure of the permutation associative memories. The percentage
of synapses of the weight matrix which are not zero and the number of elementary
blocks are shown.

Prediction associative memories were formed by associations which were rep-
resented by patterns. The weight matrixes were very low loaded. This was the
case due to very high dimension which resulted from storage of whole patterns.
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‘ task ‘ y dim ‘ x dim ‘
geometric blocks | 19970 | 9970
tower 19990 | 9990
ABC blocks 19970 | 9970
9 blocks 19970 | 9970
puzzle 19521 | 9521
robot 19956 | 9956

Table 6.29: Dimensions for the prediction associative memory. For context 10000
is added to the y dimension.

Pattern representation of pictures also led to ordered weight matrixes as seen
by the building blocks.

| task | % | #blocks |
tower 0.4962 | 30,31
abc blocks | 0.0746 | 21,21
9 blocks | 0.3695 | 31,37
puzzel 0.006 20,17
robot 0.2579 6,7

Table 6.30: Structure of prediction associative memories. The percentage of
synapses of the weight matrix which are not zero and the number of elementary
blocks are shown.

Both results indicate that the vectors corresponding to the visual categorical
based representation in the problem solving domain are strongly correlated °.
There is only a minimal difference if the vectors result from cognitive entity
representation or pattern representation. This is because during problem solving
the world changes only minimally. The resulting vectors are not sparse and the
number of 1s is not as likely to be represented in coordinates of those vectors.
The storage capacity is much lower, but despite this fact associative properties
were preserved, as was shown by the prediction heuristic and experiments with
noise.

A question remains open: How is the equilibrium of the prediction associative
memory connected with the behavior of the associative computer?

weak hypothese 1 During a successful unsupervised learning, the equilibrium
of the prediction associative memory is reached, mostly after the stabilization in
the behavior of the associative computer.

5Task dependent coding: Representation of features which are relevant to a special problem
leads to better results.
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It was shown how superimposition can be treated:
e by constraints.

e by perturbation of the patterns which were learned.

6.4.2 Pattern heuristic

The division of the behavior of the model into basic behavior and additional prop-
erty behavior resulting from the pattern and prediction heuristic corresponds to
the Michalskis two tier philosophy of concept meaning [120, 121, 89].

It was shown that visual-categorical based representation led to a pattern heuris-
tic which increased the performance of problem solving significantly.

The basic behavior of associative computer models corresponds to the behav-
ior of a symbolic production system which performs a depth-first search strategy.
Depth-first search strategy is a blind search strategy (h0). It was shown by ex-
periments that an associative computer using the pattern heuristic (h2) needs
on average significantly fiewer steps than one using a blind search strategy (h0)
(see table 6.31). Because the pattern heuristic compares the similarity of pictures
representing states “Thesis 1”7 follows.

‘ task ‘ examples ‘ hO steps ‘ h2 ‘
geometric blocks 30 14.4 | 27.29%
ABC blocks 42 56.29 | 58.47%

Table 6.31: For a certain task for which a number of examples was presented,
shown in column task and examples; the blind search strategy h0 needed on
average the number of steps shown in column h0 steps; the pattern heuristic h2
brought a significant improvement in % which is shown in column h2.

Thesis 1 Shape similarity between representation of states through visual cate-
gories is significantly similar to the distance in the problem space.

6.4.3 Prediction heuristic

An associative computer which uses the prediction heuristic needs on average
significantly viewer steps, then when using a blind search strategy (h0) (see ta-
ble 6.21). Because the prediction heuristic was formed during learning and is
dependent on the knowledge which is represented by pictures “Thesis 2”7 follows.

Unsupervised learning (us) led to slightly worse results then the pattern
heuristic. Supervised learning with an observer (sup) brought the best results.
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The observer chose relevant examples which described the problems as well as
possible.

‘ task ‘ examples ‘ hO steps ‘ h2 ‘ us (c-us) ‘ sup ‘
geometric blocks 9 14.89 | 13.43% | 13.43% (20.89%) | 47.75%
ABC blocks 34 62 57.68% | 40.52% (46.48%) | 81.21%
robot 72 7.19 none | 20.86% (18.4%) | none

Table 6.32: For a certain task for which a number of examples was presented,
shown in column task and exzamples; the blind search strategy h0 needed on
average the number of steps shown in column h0 steps; the pattern heuristic
h2 brought a significant improvement in % which is shown in column h2. The
prediction heuristic which was formed by unsupervised learning without (us)
and with context (c-us) brought a significant improvement in % which is shown
in column us (c-us); the prediction heuristic which was formed by supervised
learning (sup) brought a significant improvement in % which is shown in column
sup.

Thesis 2 Representation of states through visual categories enables the access of
knowledge which was formed by learned experience during problem solving.



Chapter 7

Comparison to Related Works

The neural networks which model human problem solving are characterized by
different techniques. Depending on the technique, different abilities emerge, such
as the ability to deal with information that is fuzzy, probabilistic and noisy. Other
abilities include the ability of learning and the ability to work in parallel. The
presence of all these abilities is desirable.

7.1 Techniques

7.1.1 Representation
Localistic representation

In localistic representation each concept is represented by a unit. This repre-
sentation of knowledge by units is also called “grandmother coding”. Because
each unit represents a concept there is also a unit which represents the concept’s
“grandmother” [122, 32, 7, 207, 197, 59]. Localistic representation is widely used
in categorization systems. A direct map of symbolic structures onto a neural
network structure is possible with each symbol represented by a unit. The con-
nections between units directly reflect the linkage between symbolic structures.
A massively parallel system results, but it does not have, however, generalization
properties.

Distributed representation

In distributed representation concepts are represented as distributed patterns
(143, 116, 122, 7]. Distributed representation enables vector completion [143, 32].
The vectors may represent pictures or features.

Aleksander and Morton suggest the usage of icons for the representation of
states [4]. Icons are pictures which cannot be broken into meaningful pieces and
can be processed by a neural state machine.

233
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Vectors composed of features were used by Steinbuch [194] for weather pre-
diction and medical diagnosis with an associative memory. Since then, feature
representation has been widely used. A “present” feature is indicated by a “one”
at a certain position [114].

In “analogical representation” the features are represented in maps, which
can be usually thought as simulations of important aspects of the environment
of a robot [137].

Modular distributed representation

Localistic and distributed representations are present in real neural nets [68].
Smolensky suggested that both representations should be present in neural net-
works which model cognitive processes.

Another approach was suggested by James [78] and substantiated by Anderson
[7].  Vectors are broken into meaningful pieces. These pieces are themselves
vectors which involve operations and are therefore called by Anderson “cognitive
entities” [7]. Smolsky designates them “knowledge atoms” [186].

Skapura used three units to represent three states for each symptom (Present,
Absent, Unknown) [182]. Only one unit per symptom was activated. Units asso-
ciated with symptoms that were unknown or irrelevant were set to the “unknown”
state. After pattern completion by the neural network, the learned pattern which
best matched some partial input pattern was presented. Complete symptom pat-
terns could in this way be reconstructed.

7.1.2 Binding problem

The “binding problem” determines how to connect together all physically sepa-
rated fragments of a complex object so that they can be processed as a whole
by a neural network [122, 95, 219, 74]. For example, a red block is obviously a
different object then a blue block. The fragments in this example are the form
and the color.

Markers Discrete symbols called markers are propagated throughout the net-
work [29, 162, 138, 105]. For each complex object a different marker exists which
represents the corresponding group of fragments. Markers are identified with
transmitters [19] or signals [104].

Synchronicity Several researchers suggested the hypothesis that synchronicity
acts as a binding mechanism in real neural networks [39, 51, 181, 180]. When two
groups of neurons oscillate in synchrony, a bond between them is formed. Aj-
janagadee and Shastri [174] suggested the use of synchronicity instead of markers.
Different fragments are bound together by simultaneous activity. The number of
simultaneous bindings is limited by the available phase.
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Tensor product Tensor product bindings are represented in a matrix with
objects in one dimension, and their properties in another, with entries where
object and properties meet [35, 187]. Several bindings can be superimposed by
summing their tensor representation (see fig 7.1).

objectl object2

combined
bindings
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Figure 7.1: Tensor product bindings.

Concatenation Vectors representing different fragments are concatenated to a
vector representing the object. This kind of binding was realized by the cognitive
entity representation described in this work. This idea is motivated by the biolog-
ical hypothesis that in convergence zones which consist of ensembles of neurons,
the knowledge is bound together [210, 34]. This corresponds with the suggestion
that different objects are represented in different sub-networks [145, 158].

Markers and synchronicity are mainly used in models which use localistic repre-
sentation. Tensor product is used in models which use distributed representation.
Models which use modular distributed representation use concatenation.

7.1.3 Learning search control knowledge

There are different kinds of learning laws which can help a problem solver to learn
from past experience [21, 127]. “Chunking” and “learning by explanation” are
learning laws which were symbolically described and implemented, and integrated
into a symbolic problem solver. Folding architectures, analogy learning and as-
sociative prediction are neural methods which form, together with a symbolic
problem solver, a hybrid architecture.

Chunking

Chunking is a learning method which is used in the SOAR system [99, 133]. It
operates by summarizing the information examined while processing a subgoal.
If a state causes an impasse a new rule is learned which avoids it. An impasse is
present, for example, when no valid succeeding state exists. By the generalization
of new rules future impasses are avoided.
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Learning by explanation

Explanation-based learning can produce control knowledge by analyzing the trace
of problem solving examples. The system explains why the choices were made
and the explanation identifies the relevant features of the example [128; 126]. A
strong body of domain knowledge should be present as it is useful in explaining
both the problem and the generalization of that explanation. After learning, a
description is present which is a generalization of the example and which helps
to control the search of other examples.

Folding architecture

States described by logic formulas can be represented by trees. The folding ar-
chitecture network [93, 58, 92] is closely related to the recurrent neural network
and RAAM [154, 191]. It allows the representation of labeled trees. Each la-
bel is represented as a random real vector and all vectors are disjunct and of a
fixed length. Similarity between tress can be defined in this manner. A heuristic
evaluation function can be learned which computes numeric ratings for states.
All states lying on a solution path are used as examples with positive target rat-
ings, while all states lying close together in the search tree are used as negative
ratings. The heuristic evaluation function was used by an automated deduction
system SETHEO [129] on the “world problems in group theory”. Of 317 different
world problems in the group theory, 298 were solvable by SETHEQO. The length
of the proofs varied between one and eleven inference steps. Several neural fold-
ing architectures were trained on these examples. After the training, 16 of the
remaining 19 proofs could be solved [58].

Analogy learning

A recurrent neural network architecture learns analogies by examples [20]. Ex-
amples consist of analogy problems with solutions. Geometric spatial analogies
between states composed of different objects at different positions and different
colors are learned. The states are represented by the tensor product between two
vectors. The first vector describes the objects by feature coding, the second their
position. The analogy between two scenes corresponds to the learned similarity
between them. Experiments were also performed on letter part analogies and
family tree relations [71].

Associative Prediction

Giinther Palm suggested the usage of the associative memory to associate a situa-
tion with a list of moves, including in the association of the relative value of those
moves [143]. This idea was realized in the domain of game playing. A heuristic
for checkers and chess was learned with the aid of the associative memory [112, 9].
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In checkers, a game position represented the question. The succeeding position
and its value computed by the MINIMAX algorithms was the answer vector. The
associative memory learned game states and the succeeding game states (with its
relative values) by diverse example games. After training, the associative mem-
ory was used to retrieve the succeeding learned positions with their values during
a new game. A retrieved succeeding position reduced the needed search so that
an improvement in the game playing was observed. The game’s positions were
coded by feature vectors and a figure was coded by a “one” at a certain position.
A vector was composed of vectors who indicated, for each position, the figure
which occupied it. The numeric values resulting from the MINIMAX algorithm
were coded by a “one” at certain positions. The analogic method was used, on
the other hand, for chess play [9]. It led to the reduction of the size of the search
trees. The prediction associative memory of the associative computer also codes
succeeding states, however, it does not include any evaluation values.

Also Nils Nilsson [137] suggests the usage of a neural network to predict the
value of a state represented by a feature vector. After training, the prediction
network can be used to compute the feature vectors that would result from various
actions. These in turn could be used as new inputs to the network to predict the
feature vector two steps ahead, and so on. From [137], page 123.

7.2 Neural Systems

The main focus of statistical methods is on the mathematical description of the
learning methods, and not on their realization!. The perspective under which
they are discussed here is on their lack of defined interior representation. Other
approaches orient themselves on methods which were studied by artificial intelli-
gence and use defined interior representation.

7.2.1 Statistical methods
Markov Models

The Markov process generates a series of states. If each state depends only on
the preceding state, it is called the “first order” Markov process [113]. Both, the
choice made to move from one state to another depending on the state transitions,
and these transitions themselves may be determined by training. The associative
prediction heuristic corresponds to a first order Markov process. A state is only
dependent on the proceeding state?. It would be useful to have a description of a
state which also captures a notation of the status of the problem solver [13]. The
status could be dependent on the executed steps, or the changing environment if

1On example of which is by recurrent networks.
2The desired state is included in the state description.
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the problem solver is integrated in a robot. Different state transitions could be
implemented depending on the status. A description of the model is in this case
unknown and the model must be approximated by learned examples. Because
the model is not known, it is called the “hidden” Markov model [79]. A powerful
and provably convergent training algorithm exists for hidden Markov models.
However, the model has not yet been used in the problem solver domain. It
has been, however, successfully used in speech recognition, despite the fact that
speech signals can not be approximated by a first order Markov process [79].

Reinforcement Learning

The consequence of actions may not be known beforehand. The value of tak-
ing the action is not known, because the rewards are delayed. For example, for
a robot in a maze, the value of a taken action is only known after the robot
reaches the desired room. So the value of an action must be discovered by ex-
periments. The mathematics to handle delayed rewards is termed “reinforcement
learning” [13, 203]. It is possible to make local improvements because the best
local incrementally changing improvements in action are also the right thing to
do globally.

Q-Learning is an example of reinforcement learning which is mainly used in
Stochastic domains. V() is the expected reward from the policy f to take action
in state z. The policy is simply the action taken in state z. Let Q(z,u) be the
action value function which gives the expected return value of starting in state x
and taking action u, and the following policy f thereafter. The V;(z) function is
related to the Q-function by

Vi(2) = max|Q(z, u)].

The Q-function can be calculated by the Q-learning algorithm. A system can
also try to make consistency predictions. In this case, the learning is called the
“temporal-difference” learning.

Q-learning was used to learn to pick up a block of a certain color [13]. The
task is for the robot arm to move other blocks away from the block of the specified
color so that it can be picked up. Deictic frame representation was used for this
task instead of pattern representation. Q-learning was widely used in learning
complex kinematics [87, 216]. Temporal-difference learning [202] was used to
learn to play backgammon [13].

7.2.2 Partially recurrent networks

The connections of neural systems are mainly feed-forward but also include care-
fully chosen feedback connections. This recurrence lets the network “remember”
cues from the past and there is a special set of context units that receive feedback
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signals. Because of these context units, the state of the network depends on the
previous states as well as on the current input. Different architectures for im-
plementation have been suggested, all of which produce similar behavior. Elman
suggested that the context units are fed from the hidden layer® (see fig 7.2) [40].
Jordan suggested an architecture in which the context units are fed from the
output layer and also from themselves (see fig. 7.2) [80]. Hammer showed that
that Elman networks are universal approximators for sequences [63]. It was also
shown that slightly modified Elman networks posses Turing power [176].

output

context input context input

Elmann network Jordan network

Figure 7.2: Partially recurrent networks.

Lisa Meeden showed how recurrent networks can be used to plan actions of
a robot [117]. Stefan Wermter used modules of recurrent networks to implement
a natural language parser [220]. Risto Miikkulainen implemented a natural lan-
guage understanding system [122]. He used modules of feed forward networks
and topology preserving maps? which formed a recurrent connected module.

7.2.3 Expert networks

An inference network is constructed from the knowledge base of an expert system.
The rules of the expert system are directly mapped onto the structure of the
neural network [98, 97]. The connection between units directly reflects the rules
and the network forms an acyclic directed graph. The computation corresponds to
spreading activation from the input units to the output units, but only the input
units allow the entry of knowledge. Certainty factors and their algebra are used

3A hidden layer is the layer between the input layer and the output layer.
4A topology preserving map represents a high-dimensional input data on a low dimensional,
usually 2-D topological map [85].
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to represent the uncertainty. These certainty values are learned from examples
and are represented by the connection values. The units of the neural network
do the corresponding calculations. Training consists of a set of input/output
values. Wrong CF values converge during training to correct CF values. Here is
the previous example, in this instance, however, with certainty factors:

o If flies(x) V feathers(x)) A lays eggs(x) then bird(x) (with CF 1.0)
e If bird(x) A swims(x) then penguin(x) (with CF 0.5)
e If bird(x) A sings(x) then nightingale(x) (with CF 0.7)

is represented as an expert network in fig 7.3.

%de

Figure 7.3: Expert network.

Experiments were performed with a wine advisor system which was composed
of 44 rules. Expert networks represent a direct map of the symbolic structures
onto a neural network structure. The advantages of this approach are the parallel
computation and the learning of the CF values from examples.

7.2.4 Neural query-reply system

Hierarchical categorization is related to many neural networks which operate with
feature representation. The query-reply system of Anders Holst [73, 72] uses
Bayesian neural networks. In this system, only those questions are posed which
include the highest information content, as this is the most uncertain feature.
A system for categorization of 32 animals was introduced, with each animal
defined by approximately 15 features. In our approach this task is realized by a
taxonomical arrangement of the knowledge.
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7.2.5 First-order predicate calculus neural network

Reflexive reasoning is modeled by a neural network [174, 69, 173]. Reflexive
reasoning describes rapid and spontaneous reasoning without conscious effort.
The neural network emerges by the mapping of the first-order predicate calcu-
lus sentences to a directed acyclic graph. The binding of objects to variables is
performed by synchronicity. The nodes represent variables and objects, the con-
nections the conclusions. The reflexive reasoning is modeled by the propagation
of the bindings of the objects to the variables through out the network. The
system is also able to represent restricted first-order predicate calculus sentences.

7.2.6 Dual representation

A two-level neural system is used [198, 197]. A localistic representation is used
in the first level and a distributed in the second. The first level represents rules
by an acyclic directed graph. The precondition and the conclusion of the first
level correspond to concepts. These concepts are linked to the features of the
second level, which are fine grain elements. The features of the second level form
rules which are also represented by an acyclic directed graph. The two level
architecture allows the representation of uncertainty. During reasoning the rules
of the first level are executed first and corresponding distributed representation
of the concepts by features are activated. In the next phase, the distributed
rules of the second level are executed. The new activated features of the second
level activate with a different degree of strength the units of the first level which
represent the concepts. These activated concepts represent the result.

In a newer model [199, 200], the second level is replaced by a neural network
which performs reinforcement learning. In a task a robot learns to navigate
through a minefield. In the first level, rules describe the possible moves. These
rules enable a faster reinforcement learning of the second layer, compared to the
reinforcement learning without this additional knowledge.

7.2.7 Neural Production systems
DSCP

DSCP is the distributed connectionist production system [208, 209]. A production
rule of a DCPS consist of a premise and a conclusion. A premise is described
by two triples and these triples are matched against the working memory. A
conclusion consists of commands for adding and deleting triples of the working
memory. The rules are represented by a subpopulation of units in the rule space.
The working memory is also represented by a subpopulation of units in the work-
ing memory space. The system operates as a Boltzman machine, finding a rule
that matches the state of the working memory by simulated annealing. After
the network has settled into a low energy, indicating a consistent rule match,



242 CHAPTER 7. COMPARISON TO RELATED WORKS

the changes to the working memory are made according to the rule. The exe-
cution continues with another simulated annealing process, resulting in another
rule application. No backtracking or learning is performed in this model.

Neuro-Soar

Neuro-Soar is an attempt to show that the system SOAR can be implemented by
neural networks [30]. The atomic part of the model is the graph representation
which is interpreted as a neural network. Objects are represented by graphs,
binding by edges of the graph. Productions are also represented by graphs, just
like the elements of working memory. A production fires if the graph representing
the precondition, and the graph representing the working memory elements match
together. However, there is no possibility in this model to represent the problem
space or to perform a search.

7.2.8 Neuro solver

Each possible state of a certain domain is represented by a unit [17, 16]. All units
are connected together according to the possible state transitions between those
states. A breadth-first search in parallel can be performed in this manner. The
unit indicating the initial state is activated. The activation spreads out through
the network and if the activation meets a unit representing the desired state, a
corresponding state sequence is found.

7.2.9 Neural Assembly models

Thomas Wennekers described the simulations of finite automaton by synfire
chains which are closely related to the assembly concept [219]. The simulation of
finite automaton by neural networks [219] is also referred to in the control module
of our associative computer model.

Reasoning with assemblies is described by the “pump of thougths” model.
Thought pump is a theoretical assembly model in which thoughts are propagated
and changed by different assemblies [23, 25]. Palm substantiated this model
(143, 144]. In this model, the associative memory performs the computation of
an assembly. Thoughts correspond to situations and the associative memory as-
sociates to a situation a list of possible actions which lead to new situations,
along with the relative merit of each action. These associations with the evalua-
tion values are then learned by examples. A suggested model could be realized
through pattern completion performed by the associative memory. Only an ini-
tial situation is given, and the resulting pattern which emerges represents the
possible actions with evaluation values [143]. Intelligent input/output coding is
crucial for a reasonable performance of this model [143]. Parts of this model were
introduced in the section about associative prediction.
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Our approach is highly influenced by the assembly theory. It differs mainly
in the separation of representation of associations by a permutation associative
memory and the evaluation values which result from the pattern or prediction
heuristic. The permutation associative memory enables the representation of the
resulting associative states. The learning from experience is done separately by
the presiction associative memory. Through this separation, the computation
does not collapse when the predicted states contain errors.

7.3 Conclusion

It was shown that symbolic reasoning can be performed by neural networks. The
dual representation model used two levels of knowledge which allowed the repre-
sentation of uncertainty. Hidden Markov models pose a very promising and new
approach to problem solving. Reinforcement learning and Q-learning demon-
strated the abilities of learning from examples, Q-learning primarily in stochastic
domains. The neuro solver introduced a model for parallel problem solving if all
states are known in advance. Neural assembly models are psychologically and
biologically motivated. They describe the learning from experience by assemblies
of neurons. The assemblies are simulated by associative memories. The asso-
ciative computer is a working model of the abstract biological and psychological
pump of thougths. It can deal with information that is fuzzy, probabilistic or
noisy, it can learn and it is not constrained to only one problem domain.
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Chapter 8

Conclusion

Models of neural networks which simulate human problem solving capabilities
were examined. Ideas from the artificial intelligence field concerning the treat-
ment of the problem space combined with ideas on neural networks utilizing
internal distributed representation led to a fruitful union. A neural model for a
deduction system based on the assembly theory was introduced. It was shown
that hierarchical categorization can be efficiently performed by neural networks.
Based on the previous model, a neural model for a reaction system based on
the assembly theory was introduced: the associative computer. This biologically
inspired model shades some light on how some problem solving abilities might
actually be performed by the human brain. It also highlights the benefits of
distributed representation. These benefits include the ability to learn from expe-
rience, heuristics resulting from picture representation, the ability to deal with
noisy information, and the ability to do some work in parallel. The description of
the reasoning process by formation of associations represents a direction in which
different fields of study meet together.

8.1 Summary of central principles and contri-
butions

Associative memory is, despite its simplicity, an efficient and biologically
plausible model which captures the basic behavior principles of the cell assembly
theory. It is the basic building block of the succeeding models. An intital model
composed of associative memories which performs associative categorization was
introduced. The reliability of the answer was indicated by the defined quality
criterion.

Categorial representation Verbal categorization was introduced. Uncer-
tainty is identified with noise resulting from fault or fragmentary pattern rep-
resentation. The quality criterion representing the rating in the presence of a

245
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verbal category is based on counting which is performed by units of the associa-
tive memory. Consequently, there is no division between knowledge processing
and an uncertainty algebra. The table of belief values enables the separation of
the uncertainty of the expert who defines the knowledge base from the observer
who uses the system.

Visual representation by cognitive entities is motivated by the “what” and
“where” system of the brain. Picture representation by the cognitive entity en-
ables a solution of the binding problem. Associations can be defined which can
handle the uncertainty by the similarity principle. The cognitive entity includes
the holistic representation by patterns which neglects the modular structure. Pat-
tern representation enables the definition of the quality criterion that rates the
value of different states according to their similarity to a visual category.

Hierachical categorization A neural model for a deduction system based on
the assembly theory was introduced. The system consists of several neural asso-
ciative memories which are organized in a hierarchical way. The problem space
is represented by static connections between them. The knowledge is represented

Figure 8.1: Neural deductions system.

by a taxonomic arrangement of verbal categories. An availabity heuristic was de-
fined which models the effects of priming emphasis and forgetting. An availability
heuristic offers a combination of the frequency with the actual likelihood of the
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presence of a verbal category. The model learns to favor those categories which
often lead to a successful goal and this may help to speed up the search. Three
applications were presented. The representation and access of large knowledge
bases was demonstrated by the system Jurassic which helps the paleontologist to
determine creatures from uncertain knowledge. Experiments with the availabil-
ity heuristic in which parts of the knowledge base were primed or forgotten were
performed.

Associative Computer A neural model for a reaction system based on the
assembly theory was introduced. The system uses picture representation to per-
form planning instead of symbolic representation. Picture representation allows
the presence of noise and also enables learning from examples. Cognitive entity
representation of pictures allows the recognition and execution of associations
with the permutation associative memory. The permutation associative memory
solves two important problems which arise in the domain of neural networks.
First, the traditional associative memory can not learn several possible associa-
tions which arise from a single input. The second problem is the binding problem
which determines how to connect all separated fragments of a complex object.

e The retrieval phase of the permutation associative memory corresponds
to the determination of all possible instantiations of rules in a symbolic
production system.

e The retrieval phase is subdivided into two stages: the attention stage [5,
155] and the binding stage. Only when the attention is focused on certain
parts are they bound to a whole object [210, 34, 155] representing a question.

e The binding problem is solved after the attention stage by constraining the
formation of permutations of parts of an associative memory.

The permutation associative memory, the search chain and the controller
form the associative computer which models biologically plausible computation
in accordance with the pump of thoghts idea (see fig. 8.2).

Picture representation leads to the pattern heuristic which speeds up the
search. The solved problems were used to speed up the search of related prob-
lems significantly. Due to picture representation learning from examples by an
associative memory could be performed. After learning the associative memory
guided the search. Different learning strategies were examined.

Experiments with the associative computer It was shown that the used
representation is not constrained to a special domain through examples of three
different domains. It was demonstrated that the pattern heuristic and the pre-
diction heuristic sped up the search in problem solving significantly in different
domains. Because of these empirical results, two hypotheses were claimed. The



248 CHAPTER 8. CONCLUSION

search chain

marked chain prediction
associative memory

permutation associative memory

Figure 8.2: The permutation associative memory, the search chain and the con-
troller form the associative computer. The controller links the permutation as-
sociative memory, the prediction associative memory and the search chain. It
controls the computation.

best results were obtained with supervised learning with an observer who chose
relevant examples which described the problems as well as possible.

8.2 Implications

The associative computer uses picture representation. The similarity between
pictures can be computed. Because of this property, a far reaching interpretation
of the idea symbol is needed in the physical symbol system hypothesis by Newell
and Simon (1976) [135]. It was shown that picture representation leads to a sim-
plification in the simulation of some human intelligence behavior in machines.

It 1s often helpful to use picture representation which orients itself
on the real world when human intelligence behavior is simulated. The
elimination of this additional information is not helpful.

This predication is motivated by interpretation of uncertainty with noise in the
pattern representation and by the three theses which sustain themselves by the
experiments presented in this work.

Thesis 1 Shape similarity between representation of states through visual cate-
gories is significantly similar to the distance in the problem space.
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Thesis 2 Representation of states through visual categories enables the access of
knowledge which was formed by learned experience during problem solving.

Thesis 3 An adequate model of human thought uses the flexibility of similarity-
based inference and the compositionality and certainty of rule-based inference.

The third these, motivated by the associative computer architecture, gives an
answer to the ongoing rule- versus similarity-based processing debate in cognitive
science [61, 188].

8.3 Looking ahead

The permutation associative memory could also be used in other domains. Cer-
tain structures in sequences could be recognized, for example, structures in DNA
sequences.

Additional experiments with the associative computer could be performed:

e Asynchronous unsupervised learning could lead to improvement in the re-
sults. Examples which are learned are chosen randomly and not in a fixed
order.

e The performance of the associative computer with objects of different size
could be examined. Objects of not-learned size would by treated as “noisy”
patterns by the permutation associative memory. This is because the size
is indicated by two bars.

e Representation of three dimensional visual states. (Higher dimensoins are
also possible.)

e Different similarity measures could be examined.

e Improved bi-directional retrieval of the associative memory could be used
[190].

e Mathematical analysis of the behavior of the prediction associative memory
during learning (difference equations).

8.3.1 Search

Two modifications corresponding to the representation of the problem space could
be performed.

One modification is the principle of ignoring the local spreading activation val-
ues which are propagated by links in the search chain, and instead implementing
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a best-first search. A best-first [229, 166, 111] search does not get stuck in local
maxima. By a suitable definition of the evaluation function f(n) = g(n) + h(n)
algorithm A is obtained (n is any state encountered in the search, g(n) the cost
of n from the initial state and h(n) a heuristic estimate). If h(n) < h*(n) where
h*(n) is the minimal cost to the desired state, A* algorithm is obtained. A*
algorithm always finds the best solution (shortest plan length) [229, 166, 111].

The other possibility is the reduction of the memory requirements at the price
of impairing the search. The sequence of visited states is stored in an associative
memory in the same way that the sequence describing a plan is stored in the
prediction associative memory of the associative computer model (see fig. 5.21).
By comparison with these states, loops can be prevented. However, because of
the possibility of errors in reconstructing previous states, loops can emerge and
backtracking is not always possible.

8.3.2 Speculations

The examples of introduced problems indicate that the associative computer is
qualified for usage in an autonomous robot [10].

It would be useful, however, to have a preprocessing phase. Pictures of a
camera could be preprocessed into (visual-categorical) representation by the cog-
nitive entities. This could be done by neural networks such as the Neocognitrom
[49] or map transformation cascades [222].

Learning of associations could then be performed. From corresponding changes
in the succeeding pictures supplied by a camera, associations could be extracted.
Before the learning, a test could be performed to verify if those associations were
not already learned before (see paragraph about knowledge revision in chapter
2).

The generalization of the learned associations could be performed by a direct
manipulation on the weight matrix of the permutation associative memory. Pat-
tern representation of pictures would lead to ordered weight matrixes. The order
would enable a direct manipulation of particular zones of the weight matrix. This
could be done by a meta-neural network which examines and changes the weight
matrix of the permutation associative memory.

Finally, the associative computer could be integrated in a hierarchical planner
with the ability of chunking.

8.4 Associative Computation

In this work we examined how human problem solving can be modeled by neural
networks. We tried to ask the central question of whether or not neural systems
increase our understanding of cognition.
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Problem solving is an essential domain for understanding intelligence. The
Artificial Intelligence field has tried to model human intelligence behavior and the
production system model is an important model within the field which describes
problem solving. It is also utilized by some psychologists as a model of human
cognition.

Another idea is to describe the human reasoning process as the formation of
associations. There are many ideas as how to do it, but there is no sufficiently
detailed explanation of how those ideas might work. No complete model exist
which could be examined by computer simulations. Anderson writes in addition
[7], page 581:

“Associations can give flexibility and power in operation; however, the proper
way to use it, the proper data representations, and the proper network architec-
ture are still not known. We think that this area is one of the frontiers of the
cognitive science.”

As recently as in August 1998 Dave Touretzky asked on the connectionistic e-
mailing list: “Is connectionist symbol processing dead?”

From ml-connectionists-requestQmlist-1.sp.cs.cmu.edu Tue Aug 11 17:85:10 1998
From: Dave_TouretzkyQcs.cmu. edu

To: connectionistsQcs.cmu.edu

Subject: Connectionist symbol processing: any progress?

Date: Tue, 11 Aug 1998 03 : 34 : 27 -0400

“I’d like to start a debate on the current state of connectionist symbol processing?
Is it dead? Or does progress continue? ... People had gotten some interesting
effects with localist networks, by doing spreading activation and a simple form
of constraint satisfaction.... This approach does not create new structure on the
fly, or deal with structured representations or variable binding. Those localist
networks that did attempt to implement variable binding did so in a discrete,
symbolic way that did not advance the parallel constraint satisfaction/heuristic
reasoning agenda of earlier spreading activation research. ... So I concluded that
connectionist symbol processing had reached a plateau, and further progress would
have to await some revolutionary new insight about representations. ... The prob-
lems of structured representations and variable binding have remained unsolved.
No one is trying to build distributed connectionist reasoning systems any more,
like the connectionist production system I built with Geoff Hinton...” (see chapter
7, DSCP)

After an exchange of ideas it was clear that no revolutionary new insight about
representations was presented and that no one participating in the discussion is
currently trying to build distributed connectionist reasoning systems [77]. The



252 CHAPTER 8. CONCLUSION

present work tries to fill the explicatory gap. This is done by an evolutionary
approach in which ideas from Artificial Intelligence and the ideas from neuro-
computing lead to a new model, the associative computer.

8.4.1 Summary

Associative categorization which relied on the associative memories was intro-
duced. Already even in this uncomplicated application, the main advantages of
associative computation principles were demonstrated, namely fast computation
linked with toleration of errors.

Categories were shown to be the basic building blocks of knowledge represen-
tation when human problem solving is simulated by neural networks. Distributed
representation and similarity are the natural properties of categorical represen-
tation and it is these properties which distinguish categorial representation from
symbolical representation.

Similarity is used when uncertain knowledge is represented, without the need
of an additional calculus. In addition belief tables allow the detachment of the
uncertainty of the coded knowledge and the actually present knowledge.

Priming during hierarchical categorization eases the formation of hypothesis,
as more exact, possible hypothesis are formed. The human behavior of empha-
sizing knowledge areas which are often used and simultaneously disregarding of
knowledge areas which are seldom used was modeled. This policy is useful, if one
has to balance between completeness and speediness of retrieved knowledge.

The associative computer has the same behavior as a pure symbolical reac-
tion system (production system). It was shown how a mapping of a symbolical
reaction system to a neural network can be performed. For a cognitive-science
scientist it is important to understand how such computations can be performed
by the human brain.

An important research field in Artificial Intelligence is the usage of heuristics
to speed up the search. It is not easy to define heuristic functions, as there is no
rule which says how to do this. A heuristic function results automaticaly in the
associative computer from the representation of knowledge by pictures. Another
approach to the view of heuristic functions is shown: heuristic functions which
result from the manner of description of the knowledge. The first intuitive idea,
that a state represented as a picture is nearer to a desired state represented as a
picture, the more similar those pictures are, was confirmed statistically. In fact
a pattern heuristic speeds up the search. The real world give us insights on how
to solve the problem. Such an insight is used by the pictorial representation and
the resulting similarity criterion. This information is not always correct, but it
is generally better to obey it than to ignore it.

Another property of the associative computer is the possibility of learning with
a teacher. A teacher who chooses pertinent examples of a domain and another
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teacher who demonstrates how to solve those problems can help the associative
computer in learning, and in efficiently solving problems in this domain. Faulty
information which is sometimes indicated by the pattern heuristic can be in this
way prohibited. An important condition is the appropriate choice of material.
Wrong material, too much, or too little material can worsen the problem solving
behavior. A good education about the problem space is essential for fast and
effective problem solving. In our example, the pattern heuristic acted as the
second teacher.

The associative computer learns from experience if no additional information
from a teacher is available. It learns to prohibit faults. This kind of learning is
tedious, and different problems indicate contradictory recommendations. Despite
the low load of the prediction associative weight matrix, an overlearning occurs.
This is at first glance a contradiction, but by closer examination one recognizes
that important information is concentrated in a small area of the prediction asso-
ciative memory. This is because during problem solving, the world changes only
minimally. Those changes are represented in the prediction associative memory
and are concentrated in a small area of the weight matrix. Many more pat-
terns are stored than during the supervised learning. Some learning sequences
are needed until the stabilization of the behavior of the associative computer.
After the first learning session, an impairment is present while an improvement
is present in the succeeding steps. The improvement comes along with the gain
followed by the reduction of the weights of the prediction associative memory.
The behavior of the associative computer after the learning is comparable to the
pattern heuristic.

The information supplied by sensors during problem solving can often be
“noisy” or incomplete. Noise can also result from faulty hardware. For example,
the cameras of a robot can supply noisy pictures, such as when the sensors of a
space probe have a malfunction. In this case, it is important that the computing
system does not collapse. It was shown that the associative computer is a robust
model and can tolerate noise to some extent. It is an ideal model for performing
problem solving computation in a robot. On the other hand every biologically
plausible model which simulates human problem solving behavior performed by
the brain should tolerate noise to some extent, as noise is present in the real
human brain.

A model which attempts to explain the process of human problem solving
must not be constrained to only one area. It should have the same behavior
in different domains. Exemplary domains which are well known and extensively
studied in Artificial Intelligence were examined. It was shown how those domains
can be represented with the aid of cognitive entities. It was also shown that the
associative computer has the same behavior in those domains. It tolerates noise,
learns, and uses heuristic information resulting from representation. The choice
of the appropriate example as teaching material is very important. The predic-
tion associative memory which was formed by learning the Sussman anomaly
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describes the problem of building the CBA tower statistically better than the
pattern heuristic. One well-chosen example catches all the essential information
in about the nature building the CBA tower. Unsupervised learning of many
problems is difficult. This is because different states describing problems differ
only slightly. Despite this fact, the prediction associative memory extracts the
relevant knowledge which leads to a significant improvement in the problem solv-
ing behavior. The examined domains of problems indicate that the associative
computer is qualified for usage in a robot.

8.4.2 Epilogue

The human ability to process images and understand what they mean in order to
solve a problem holds an important clue to how the human thought process works.
This clue was examined by empirical experiments with the associative computer.
One general conclusion from the experiments is the claim that it is possible to
use systematically associative structures to perform reasoning by forming chains
of associations. In addition, beside symbolical problem solving, pictorial problem
solving is possible.
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Appendix A

A.1 Statistical tools

A.1.1 Hypothesis testing

It is assumed that the modified model has the same performance as the un-
modified one. This is called the null hypothesis. If this is not true then the
null hypothesis is wrong. Statistical hypothesis testing bounds the probability of
incorrectly asserting that the null hypothesis is false [33].

A.1.2 The t test

The sampling distribution of the mean approaches the normal distribution as
the sample size approaches infinity. If the sample size n is small, different dis-
tributions result depending on the sample size n. The ¢ test depends on the
assumption that the distribution from which the sample was drawn is normal.
However, unless n is very small and the distribution is skewed and the derived
score is marginal, it can be trusted [33]. t is a family of distributions, one for
each n

_Z—p

s/vn

t

with:
e 7 mean of this sample.

e ;, mean value.

s standard deviation of this sample.
e n sample size.

e n — 1 degrees of freedom.

The null hypothesis assumes that the mean value is the same as the mean value
of the sample. It is not the same if it is significantly different.
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A.1.3 p Value

The probability of obtaining a particular sample result given the null hypothesis is
called a p value. By convention the hypothesis is rejected if p < 0.05. This is the
bound on p which is considered statistically significant. p value can be determined
by given degrees of freedom and the t values from a table of ¢ distributions or by
a statistic computer program.

A.1.4 t statistic for two means

Given two random samples x1, 2o, -, Xn1 and y1, Yo, « - -, Yno from normal pop-
ulations with unknown means i, gz and the unknown variance o2. The null
hypothesis is:
Hy : g = pa.
It can be tested with the t statistic
T—y

T I, oy
ni n9 ni+ng—2

with the t distribution with n; + ns + 2 degrees of freedom.

t =

A.1.5 Paired t statistic

A paired sample ¢ test is used when two strategies are used on the same set of
problems. For example, a progam is run with and without a certain strategy
on the same data and the difference in performance is recorded. Given a set of
paired observations x1, 2, - - -, x,, and y1, ¥s, - - -, Y, from normal populations with
unknown means p1, o, the null hypothesis is:

Hoy : piy = pio
It can be tested with the t statistic

D
t = —

Vn

with the ¢ distribution with n — 1 degrees of freedom. The variable definitions
are:

w
>}

Dz:aji_yz
_ 12
D_E;Di
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A.1.6 Error Bars

Scale is arbitrary in plots of mean values over time. To suppress the scale effects
in the plot, error bars are added to the plot of means [33]. Each bar represents
an upper and lower bound of a 95 percent confidence. The 95 percent confidence
interval corresponding to the error bar is for p with ¢,, p = 0.025 and n — 1:

T+ t0,025 : S/\/ﬁ
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A.2 Object oriented laboratory

The hierarchy of the complexity of the models is reflected by the classes they use
(see fig. A.1) [119, 22].

1.

The basic classes which form the atomic part is the class which represents
the binary vector in the pointer format. The second atomic class imple-
ments the associative memory [221].

. The word recognition class is composed from both atomic classes. It enables

the implementation of associative categorization.

The word recognition class and the associative memory class allows the
definition of the module class. From these classes the hierarchical catego-
rization architecture is composed. The problem space is implemented by
connections between the modules.

. The associative computer model uses dynamical representation of the prob-

lem space. It uses one class permutation associative memory which is made
of the associative memories. The cognitive entity representation class uses
the binary vector representation. The techniques of the problem space ori-
ent themselves on the system for hierarchical categorization.

This section describes where central information concerning the implementa-
tion of the associative computer is located. The associative computer is composed
of the permutation associative memory, the search chain, the prediction associa-
tive memory and the controller.

First representation of states and associations should be implemented. In
section 3.4. representation of states and associations is described.

After that associative memory should be implemented. In chapter 2 the
principles of associative memory are described.

The principles of the permutation associative memory are described in sec-
tion 5.3.1.

The Associative computer is composed of the search chain and the controller
which links the permutation associative memory with the search chain. The
search chain is described in section 5.3.2. The controller is described by a
deterministic automaton in section 5.3.3.

The additional properties of the associative computer result from the pat-
tern heuristic described in section 5.3.5 and from the prediction heuristic.
The prediction heuristic is learned by experience and is described in the
section 5.3.6.
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Algorithm for the retrieval phase of the permutation associative memory:

DO
jota=0;Nr =20
recursion:
ita(jota)=0
forloop:
i f ((qCpart = part(jota)iagjota)) > thresholdpg,:)
DO
if(jota # (delta — 1))
DO
jota=jota+1; goto recursion
OD
else
DO
flag=0;
for(i=0;%#086—1;i+ +)
DO
for(j =i+ 1,#6;j++)
DO
if(itali] == italj]) flag=1; break
OD
if(flag == 1) break
OD
if(flag == 0)
DO
if((qCwhote = 2020 Part(t)ita()) > thresholdyhore)
DO
state(Nr) = Y2071 Part(t)ia()
Nr=Nr+1
OD
OD
OD
OD
ret:

if(ita[jota) # (A — 1)) ita[jota]=italjotal]+1; goto forloop
if(jota #0) jota=jota-1; goto ret
OD
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cognitive
entity

permutation associative
memory

' has-a ' has-a
hierarc_:hical S . associative
categorization computer

Figure A.1: Class hierarchy in the object oriented laboratory.
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A.3 Hierarchical Categorization in System Juras-
sic
A.3.1 Maiasaura
The species of fig. 4.13 is described by six features using the belief table.
1. probably bird hipped
2. certainly two legged
3. probably long arms
4. certainly long stiffly held tail
5. probably solid bony humps or crests

6. very probably length nine m

1) ! MODULE ORNITHISCHIAN with qc=0.33, <1> !x
2) ! MODULE ORNITHOPODS with qc=0.67, <2> !xx*
3) ! MODULE PACHYCEPHALOSAURIDS with qc=0.51, <3> !

I
I
I
4) ! MODULE THESCELOSAURIDS with qc=0.49, <3> !
I
I

5) ! MODULE HADROSAURIDS with qc=0.48, <3> !x
6) ! MODULE HADROSAURINE_DUCKBILLS with qc=0.36, <4> !«
RESULT

MATASAURA with qc=0.38
SAUROLOPHUS with qc=0.33

The first determined categoriy represents Maiasaura (see fig. 4.13). Maiasaura
and Saurolophus belong to the group Hadrosaurine duckbills. The search is con-

tinued according to the barrier *.

7) ! MODULE LAMBEOSAURINE_DUCKBILLS with qc=0.3, <4> !x

RESULT:

JAXARTOSAURUS with qc=0.33
HYPACROSAURUS with qc=0.28

lw=-05,w=0.2.
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8) ! MODULE HYPSILOPHODONTIDS with qc=0.46, <3> !
9) ! MODULE FABROSAURIDS with qc=0.43, <3> !

10) ! MODULE HETERODONTOSAURIDS with qc=0.42, <3> !
11) ! MODULE IGUANODONTIDS with qc=0.41, <3> !x

IGUANODON with qc=0.41

The category which corresponds to Iguanodon has the highest gc value. It is,
however, determined later because the presence of the group Iguanodontits is less
possible then the group Hadrosaurids. Maiasaura represents the qc local maxi-
mum, /quanodon the global maximum. Local maximum can emerge during hill
climbing search strategy.

12) ! MODULE CAMPTOSAURIDS with qc=0.4, <3> !
13) ! MODULE TROOEDONTIDS with qc=0.39, <3> !

14) ! MODULE THEROPODS with qc=0.42, <2> !x

15) ! MODULE COELUROSAURS with qc=0.28, <3> !

16) ! MODULE CAENAGNATHIDS_ELMISAURIDS with qc=0.21, <4> !
17) ! MODULE OVIRAPTORIDS with qc=0.21, <4> !

18) ! MODULE SEGISAURIDS with qc=0.21, <4> !

19) ! MODULE COMPSOGNATHIDS with qc=0.21, <4> !

20) ! MODULE DROMAEOSAURIDS with qc=0.19, <4> !

21) ! MODULE GARUDIMIMIDS with qc=0.19, <4> !

22) ! MODULE ORNITHOMIMIDS with qc=0.19, <4> !

23) ! MODULE SAURORNITHOIDIDS with qc=0.19, <4> !

24) ! MODULE ARCHAEOPTERYGIDS with qc=0.18, <4> !

25) ! MODULE COELOPHYSIDS with qc=0.18, <4> !

26) ! MODULE COELURIDS with qc=0.17, <4> !

27) ! MODULE NOASAURIDS_SHANSHANOSAURIDS with qc=0.16, <4> !
28) ! MODULE DEINOCHEIRIDS with qc=0.16, <4> !

29) ! MODULE AVIMIMIDS with gqc=0.13, <4> !

30) ! MODULE CARNOSAURS with qc=0.24, <3> !x

31) ! MODULE ALLOSAURIDS with qc=0.17, <4> !

32) ! MODULE TERATOSAURIDS with qc=0.17, <4> !

33) ! MODULE SEGNOSAURIDS with qc=0.16, <4> !x
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RESULT:

SEGNOSAURUS with qc=0.22

SPINOSAURIDS with qc=0.16, <4> |
CERATOSAURIDS with qc=0.15, <4> !
DRYPTOSAURIDS with qc=0.15, <4> !
TYRANNOSAURIDS with qc=0.15, <4> !
MEGALOSAURIDS with qc=0.15, <4> !x

34) ! MODULE
35) ! MODULE
36) ! MODULE
37) ! MODULE
38) ! MODULE
RESULT:

POEKILOPLEURON with qc=0.2
MEGALOSAURUS with qc=0.2

39)
40)

41)

42)
43)
44)
45)
46)
47)

48)
49)
50)
51)

52)

53)
54)
55)
56)
57)

MODULE
MODULE

MODULE

MODULE
MODULE
MODULE
MODULE
MODULE
MODULE

MODULE
MODULE
MODULE
MODULE

MODULE

MODULE
MODULE
MODULE
MODULE
MODULE

OTHER with qc=0.1, <4> |
THERIZINOSAURIDS with qc=0.1, <4> |

STAURIKOSAURIDS with qc=0.11, <3> |

FOUR_LEGGED_ORNITHISCHIANS with qc=0, <2> !
CERATOPSIANS with qc=-0.02, <3> !
PSITTACOSAURIDS with qc=-0.05, <4> !
PROTOCERATOPSIDS with qc=-0.05, <4> !
SHORT_FRILLED_CERATOPSIDS with qc=-0.06, <4> !x
LONG_FRILLED_CERATOPSIDS with qc=-0.07, <4> !

STEGOSAURIDS with qc=-0.05, <3> Ix
ANKYLOSAURS with qc=-0.06, <3> !
NODOSAURID_ANKYLOSAURS with qc=-0.09, <4> !
ANKYLOSAURID_ANKYLOSAURS with qc=-0.09, <4> !

SCELIDOSAURIDS with qc=-0.08, <3> !

SAUROPODOMORPHS with qc=-0.05, <2> !
PROSAUROPODS with qc=-0.07, <3> !
PROSAUROPOD_ODDITIES with qc=-0.05, <4> !
HERRERASAURIDS with qc=-0.07, <4> |
ANCHISAURIDS with qc=-0.11, <4> !

265
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58) ! MODULE PLATEOSAURIDS with qc=-0.12, <4> !
59) ! MODULE ROCCOSAURIDS with qc=-0.14, <4> !

! MODULE SAUROPODS with qc=-0.07, <3> !

! MODULE DIPLODOCIDS with qc=-0.07, <4> !
62) ! MODULE CAMARASAURIDS with qc=-0.08, <4> !

|

|

63) ! MODULE CETIOSAURIDS with qc=-0.08, <4> !
64) ! MODULE TITANOSAURIDS with qc=-0.1, <4> !x
RESULT

ALGOASAURUS with qc=0.01

65) ! MODULE BRACHIOSAURIDS with qc=-0.11, <4> !
66) ! MODULE ASSORTED_SAUROPODS with qc=-0.19, <3> !

67) ! MODULE SAURISCHIAN with qc=-0.33, <1> !%
68) ! MODULE STRANGE_KILLERS with qc=-0.17, <2> !

sorry, I have no more acceptable answer for You.....

A.3.2 Stenonychosaurus

Suppose we pose a question: Which dinosaur species is most similar to a human?
We describe a human being by seven features. The hierarchical categorization is
performed in which the most similar stored category is determined.

1. certainly two legged

2. certainly not four legged

3. probably thin walled fragile bones
4. very probably not big

5. very probably big eyes

6. certainly big brain

7. certainly capsule in the skull

8. very probably length two m
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I MODULE SAURISCHIAN with gc=-0.33, <1> Ix*x*
! MODULE THEROPODS with qc=0.05, <2> !x

3) ! MODULE COELUROSAURS with qc=0.12, <3> !kxx*x
! MODULE SAURORNITHOIDIDS with qc=0.2, <4> !x

SAURORNITHOIDES with qc=0.25
STENONYCHOSAURUS with qc=0.25

This answer is the same as the suggestion of Dale Russell [165] in the early
1980s that the Stenonychosaurus, see fig 4.14 (also now known as Troodon),
could have given rise to a brainy descendant, had dinosaurs survived instead of
dying out [101, 102]. The search is continued without any local maximal.

5) ! MODULE DROMAEOSAURIDS with qc=0.14, <4> !x

ADASAURUS with qc=0.2

6) ! MODULE OVIRAPTORIDS with qc=0.12, <4> !
7) ! MODULE GARUDIMIMIDS with qc=0.1, <4> !
8) ! MODULE CAENAGNATHIDS_ELMISAURIDS with qc=0.09, <4> !x

CAENAGNATHUS with qc=0.16
CHIROSTENOTES with qc=0.16
ELMISAURUS with qc=0.16
MACROPHALANGIA with qc=0.16

9) ! MODULE SEGISAURIDS with qc=0.09, <4> !

10) ! MODULE COMPSOGNATHIDS with qc=0.09, <4> !
11) ! MODULE ORNITHOMIMIDS with qc=0.07, <4> !
12) ! MODULE ARCHAEOPTERYGIDS with qc=0.06, <4> !
13) ! MODULE COELOPHYSIDS with qc=0.06, <4> !x
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RESULT:

LUKOUSAURUS with qe=0.1

14) ! MODULE COELURIDS with qc=0.05, <4> !x

RESULT:

ARISTOSUCHUS with qc=0.13
COELURUS with qc=0.13
COMPSOSUCHUS with qc=0.13
ORNITHOLESTES with qc=0.13

15) ! MODULE NOASAURIDS_SHANSHANOSAURIDS with qc=0.04, <4> !
16) ! MODULE DEINOCHEIRIDS with qc=0.04, <4> !
17) ! MODULE AVIMIMIDS with qc=0, <4> !

! MODULE ORNITHOPODS with qc=0.03, <3> !
! MODULE THESCELOSAURIDS with qc=0.01, <4> !

20) ! MODULE PACHYCEPHALOSAURIDS with qc=0.01, <4> !
! MODULE HYPSILOPHODONTIDS with qc=0, <4> !x

FULGUROTHERIUM with qc=0.08
LONCOSAURUS with qc=0.08

22) ! MODULE FABROSAURIDS with qc=0, <4> !
23) ! MODULE HADROSAURIDS with qc=0, <4> !
24) ! MODULE HADROSAURINE_DUCKBILLS with qc=-0.04, <5> !
25) ! MODULE LAMBEOSAURINE_DUCKBILLS with qc=-0.05, <5> !
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26)
27)
28)
29)

30)
31)
32)
33)
34)
35)
36)
37)
38)
39)
40)

MODULE
MODULE
MODULE
MODULE

MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE

MODULE

CAMPTOSAURIDS with qc=-0.01, <4> !
HETERODONTOSAURIDS with qc=-0.01, <4> |
TROOEDONTIDS with qc=-0.02, <4> !
IGUANODONTIDS with qc=-0.02, <4> !

CARNOSAURS with qc=-0.01, <3> !
SEGNOSAURIDS with qc=-0.02, <4> !
SPINOSAURIDS with qc=-0.03, <4> !
CERATOSAURIDS with qc=-0.03, <4> !
DRYPTOSAURIDS with qc=-0.04, <4> !
TYRANNOSAURIDS with qc=-0.04, <4> !
MEGALOSAURIDS with qc=-0.04, <4> !
ALLOSAURIDS with qc=-0.04, <4> !
TERATOSAURIDS with qc=-0.05, <4> !
OTHER with qc=-0.09, <4> !
THERIZINOSAURIDS with qc=-0.09, <4> !

STAURIKOSAURIDS with qc=-0.08, <3> Ix

STAURIKOSAURIDS with qc=0.05

42)

43)

! MODULE STRANGE_KILLERS with qc=-0.17, <2> !

! MODULE ORNITHISCHIAN with qc=-0.33, <1> !xx

sorry, I have no more acceptable answer for You.....

A.3.3 Parasaurolophus

269

The links between the categories are not initialized and a species from another
group is searched. It is Parasaurolophus of the “Lambe’s lizards” group (see fig
4.18). The tube inside a Parasaurolophus’s crest acted as a sound box, amplifying
the voice and producing low, resonant cries [102], page 150.

1. certainly short muzzle and curved hollow horn jutting back from

the head

2. very probably late cretaceous
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1) ! MODULE ORNITHISCHIAN with qc=-0.33, <1> !
2) ! MODULE FOUR_LEGGED_ORNITHISCHIANS with qc=-0.33, <2> !
3) ! MODULE STEGOSAURIDS with qc=-0.27, <3> !x

This was the learned path to another group. After backtracking the search is
continued:

4) ! MODULE ANKYLOSAURS with qc=-0.28, <3> !
5) ! MODULE NODOSAURID_ANKYLOSAURS with qc=-0.26, <4> !x
6) ! MODULE ANKYLOSAURID_ANKYLOSAURS with qc=-0.26, <4> !x

7) ! MODULE SCELIDOSAURIDS with qc=-0.3, <3> !

8) ! MODULE CERATOPSIANS with qc=-0.24, <3> !

9) ! MODULE PSITTACOSAURIDS with qc=-0.21, <4> !

10) ! MODULE PROTOCERATOPSIDS with qc=-0.22, <4> !x

11) ! MODULE SHORT_FRILLED_CERATOPSIDS with qc=-0.23, <4> !x
12) ! MODULE LONG_FRILLED_CERATOPSIDS with qc=-0.24, <4> Ix

13) ! MODULE SAUROPODOMORPHS with qc=-0.38, <2> !
14) ! MODULE PROSAUROPODS with qc=-0.29, <3> !
15) ! MODULE PROSAUROPOD_ODDITIES with qc=-0.22, <4> !
16) ! MODULE HERRERASAURIDS with qc=-0.24, <4> !
17) ! MODULE STAURIKOSAURIDS with qc=-0.27, <4> !
18) ! MODULE ANCHISAURIDS with qc=-0.28, <4> !
19) ! MODULE PLATEQOSAURIDS with qc=-0.29, <4> !
20) ! MODULE ROCCOSAURIDS with gqc=-0.3, <4> !

21) ! MODULE SAUROPODS with gqc=-0.29, <3> !

22) ! MODULE DIPLODOCIDS with qc=-0.24, <4> !x
23) ! MODULE CAMARASAURIDS with qc=-0.24, <4> !x%
24) ! MODULE CETIOSAURIDS with qc=-0.25, <4> !
25) ! MODULE TITANOSAURIDS with qc=-0.27, <4> !x
26) ! MODULE BRACHIOSAURIDS with qc=-0.27, <4> !

27) ! MODULE ASSORTED_SAUROPODS with qc=-0.41, <3> !x

28) ! MODULE THEROPODS with qc=-0.42, <2> !

29) ! MODULE COELUROSAURS with qc=-0.28, <3> !

30) ! MODULE CAENAGNATHIDS_ELMISAURIDS with qc=-0.21, <4> !x
31) ! MODULE OVIRAPTORIDS with qc=-0.21, <4> !x

32) ! MODULE SEGISAURIDS with qc=-0.21, <4> !

33) ! MODULE COMPSOGNATHIDS with qc=-0.21, <4> !
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34) ! MODULE DROMAEQSAURIDS with qc=-0.23, <4> !x%
35) ! MODULE GARUDIMIMIDS with qc=-0.23, <4> !x

36) ! MODULE ORNITHOMIMIDS with qc=-0.23, <4> !x

37) ! MODULE SAURORNITHOIDIDS with qc=-0.23, <4> !x
38) ! MODULE ARCHAEQPTERYGIDS with qc=-0.24, <4> !
39) ! MODULE COELOPHYSIDS with qc=-0.24, <4> !

40) ! MODULE COELURIDS with qc=-0.24 <4> !x

41) ! MODULE NOASAURIDS_SHANSHANOSAURIDS with qc=-0.26, <4> !x
42) ! MODULE DEINOCHEIRIDS with qc=-0.26, <4> !x

43) ! MODULE AVIMIMIDS with qc=-0.29, <4> !x

44) ! MODULE CARNOSAURS with qc=-0.32, <3> !

45) ! MODULE SEGNOSAURIDS with qc=-0.25, <4> !x

46) ! MODULE SPINOSAURIDS with qc=-0.26, <4> !x

47) ! MODULE CERATOSAURIDS with qc=-0.26, <4> !

48) ! MODULE DRYPTOSAURIDS with qc=-0.27, <4> !x

49) ! MODULE TYRANNOSAURIDS with qc=-0.27, <4> !x
50) ! MODULE MEGALOSAURIDS with qc=-0.27, <4> !x

51) ! MODULE ALLOSAURIDS with qc=-0.27, <4> !x

52) ! MODULE TERATOSAURIDS with qc=-0.29, <4> !

53) ! MODULE OTHER with qc=-0.32, <4> !

54) ! MODULE THERIZINOSAURIDS with qc=-0.32, <4> !
55) ! MODULE ORNITHOPODS with qc=-0.34, <3> !

56) ! MODULE THESCELOSAURIDS with qc=-0.27, <4> !%
57) ! MODULE PACHYCEPHALOSAURIDS with qc=-0.26, <4> !x
58) ! MODULE HYPSILOPHODONTIDS with qc=-0.28, <4> !x

I
I
I
I
59) ! MODULE FABROSAURIDS with qc=-0.29, <4> !
I
I
I

60) ! MODULE HADROSAURIDS with qc=-0.29, <4> !

61) ! MODULE HADROSAURINE_DUCKBILLS with qc=-0.27, <5> !x
62) ! MODULE LAMBEOSAURINE_DUCKBILLS with qc=-0.28, <5> !*x
RESULT

PARASAUROLOPHUS with qc=-0.16

A.3.4 Structure of the taxonomy

If a species is specified during categorization by a number of certain features for
each chained category (rule) used to determine it, the gc value of the subcategories
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mostly drops during chaining. This is because the rules in the middle of the
taxonomy have the most detailed premises. The premises of the rules in the root
of the taxonomy are mostly elementary and are composed of one feature. If this
category is present the category has the qc value “one”. In fig. A.2 the mean gc
value of twelve hierarchical categorization is shown. The species were described
by five features.

0,
0.5/
S1f
1 2 3 4 5
Figure A.2: Mean of qc value during five steps categorization, w = —0.5, w = 0.2

are also ploted.
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