
EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2008)
C. Alvarado and M.- P. Cani (Editors)

Using Sketches and Retrieval to Create LEGO Models

Tiago Santos Alfredo Ferreira Filipe Dias Manuel J. Fonseca

Department of Computer Science and Engineering
INESC-ID/IST/Technical University of Lisbon
R. Alves Redol, 9, 1000-029 Lisboa, Portugal

Abstract
In this paper we describe a system to create LEGO R©models using sketches. Although there are a few applications
to create LEGO models, they are difficult to use, mainly due to the searching and manipulation mechanisms that
they (do not) offer. Here, we propose a sketch based approach, where users can easily insert parts, by specifying
their dimensions through sketches and the system suggests a list of possible parts. To help with the modeling and
the manipulation we also developed a constraint based mechanism, which keeps parts connected, performs snap-
to-grid and detects collisions. Experimental tests with users revealed that our approach is easier and faster to use
than a conventional application, such as LeoCAD.

Categories and Subject Descriptors (according to ACM CCS): H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval H.5.2 [Information Interfaces and Presentation]: User Interfaces

1. Introduction

The construction of LEGO models is still in the memories
and in the hobbies of many people around the world. Nowa-
days, besides the construction of real models, we can also
build virtual models using specific LEGO applications, such
as, the MLCAD [Lac], LeoCAD [leo] and LEGO Digital
Designer R© [ldd].

Although these tools allow the creation of different types
of LEGO constructions, they fail to mimic the physical in-
teraction between parts, like collisions and connections. Ad-
ditionally, they do not provide any efficient search/retrieval
mechanisms to help users find parts in large collections.

To overcome these problems, we developed a system,
which combines calligraphic interaction, a constraint solver
and a retrieval mechanism. Our solution uses sketches to
specify the dimensions of the desired part, to control the
camera and to perform actions on existing elements.

The retrieval component uses the dimension or dimen-
sions of the part, specified through sketches, to perform a
search into the database. Results that satisfy the specifica-
tions are presented to users in a suggestion list (see list on
the right of Figure 1). After selecting the desired part from
the list, users can manipulate it as they do with real parts.
This is possible due to our constraint solver and snap-to-grid

Figure 1: General overview of the LSketchIt application,
showing the suggestion list on right and the color palette
on the bottom.

mechanisms. Our system also detects if parts are above oth-
ers, and in this case it creates connections. Additionally, it
detects collisions and moves parts to the top of others, when
users force the collision. This collision and constrain mod-
ules also know how to deal with connected parts, moving
them all together. Moreover, it has the concept of gravity,
preventing parts to remain in the air when users delete blocks
that are below them, to mimic real constructions. Finally, we

c© The Eurographics Association 2008.



T. Santos, A. Ferreira, F. Dias & M. J. Fonseca / Using Sketches and Retrieval to Create LEGO Models

added a snap-to-grid constraint to easier the positioning of
parts and to reduce the construction time.

Experimental evaluation with 10 users showed that users
can make more complex creations with our solution than
with LeoCAD, mainly due to the searching and manipula-
tion facilities provided by our system.

The rest of the paper is organized as follows. In the next
section we describe some existing applications for creation
of virtual LEGO models and we analyze some constraint
based systems. Section 3 gives an overview of our solution,
while section 4 describes the retrieval mechanism. In sec-
tion 5 we describe the construction process and how parts
are combined. Section 6 describes the calligraphic interface,
while in section 7 we present the results and analysis of the
tests performed with users. In the last section we present
conclusions and discuss future work.

2. Related Work

As we identified previously, there are some solutions to
allow the creation of LEGO virtual models. In this sec-
tion we shortly describe the most used applications to this
end. Additionally, and to complement the knowledge needed
to develop a more complete solution, we analyzed some
constraint-based 3D modeling systems, identifying possible
solutions to integrate into our approach.

2.1. LEGO Modeling Systems

During our research on existing applications for LEGO cre-
ation, we identified three main tools: the MLCAD [Lac], the
LeoCAD [leo] and the LEGO Digital Designer [ldd]. The
first two applications are open-source projects, with a large
user community, and they use the LDraw open-source li-
brary to represent parts in 3D. The other tool is a proprietary
system from the LEGO company.

The LEGO Digital Designer is an application, based on
the WIMP paradigm. It is a 3D space modeler with snap-to-
grid and connections between parts. The main drawbacks of
this application are the searching mechanism and the manip-
ulation of the camera.

The MLCAD is a very complete and also very complex
system for experts, where the main advantage lays in the
background community that supports it. Although, it is a
very complete application with a large creativity freedom,
it is almost impossible to edit the model in 3D or select a
part from the database. Additionally, it does not have any
constraint like connection between parts nor collision detec-
tion.

LeoCAD, like MLCAD, is also based on the LDraw li-
brary. It is a simple application, with little functionality, but
it allows users to model LEGO creations in 3D. The part
and camera manipulation are very difficult and unnatural,

because users have a lot of freedom and are not guided to
complete the operation. Moreover, this system does not have
any constraint, collision or connection mechanism to be ap-
plied to parts. The big advantage of LeoCAD is in the fact
that it already includes a library of parts, translated from the
LDraw library. This way, users do not have to install the
LDraw library, as they have in the case of the MLCAD.

More recently Baradaran presented a comparative evalu-
ation between real LEGO bricks and a virtual LEGO soft-
ware [BS06]. Authors created two user interfaces, one con-
trolled by a 2D mouse, and other by a 3D input device with
force-feedback. Experimental results showed that using real
LEGO parts is significantly faster for first-time users than
using virtual LEGO software. Although this study is inter-
esting, it focus only on manipulation, since parts are already
placed in the model and users never have to search for them.

2.2. Constraint-based 3D modeling

A lot of work has been done in the past years in the field of
modeling with constraints. The first system introducing the
concept of gestures and constraints was Sketchpad [Sut63],
which allowed users to specify constraints between objects,
such as, parallelism, perpendicularity, etc.

Zeleznik et al. [ZHH96], developed SKETCH, a gesture-
based interface to create 3D primitives, such as cubes, cylin-
ders and pyramids. Geometric transformations, translations
and rotations are conditioned by constraints. The dragging
allows users to pick an object and drag it freely or according
to a line drawn by the user.

Google SketchUP [ske] has a friendly and simple inter-
face with good help tips. It uses construction lines that are
familiar to users. The constraints are presented via sug-
gestions, using snapping techniques. For example: intercep-
tions, parallelism, perpendicularity, medium points, etc.

Some applications use suggestive interfaces, through the
use of expectation lists, which allow users to resolve am-
biguous situations. Chateau [IH01], by Igarashi, is a sys-
tem that combines a gesture interface with the suggestions
from Pegasus [IMKT97]. Chateau provides hints to users, in
a tentative to decipher the intentions of the user by analyzing
the surrounding context. Snapping and prediction is used to
solve some constraints.

Another system that uses a suggestive interface is
Gides++ [PBJ∗04]. This tool uses the paper and pencil
metaphor and is suitable for the initial stages of the design
process. It uses a large variety of constraints, combined with
an incremental drawing paradigm and a suggestion mecha-
nism. Users can also use construction lines to help or con-
straint the modeling task.

The CIGRO [CNJC03] uses only sketches to create 3D
models. It is dedicated manly to the preliminary stages of
product design. To help users in their modeling task, the

c© The Eurographics Association 2008.



T. Santos, A. Ferreira, F. Dias & M. J. Fonseca / Using Sketches and Retrieval to Create LEGO Models

system uses auxiliary (or construction) lines, which serve as
skeleton of the model. On top of these lines users refine the
model by pressing the pen harder. It has a set of constraints,
like parallelism perpendicularity, proximity, as well as a set
of gestures to edit. This system is limited to lines and axono-
metric projection.

Zou and Lee describe in [ZL07] an approach that uses a
"beautification" mechanism to reconstruct 3D models from
inaccurate 2D sketches. Their method detects geometric
constraints, such as parallel and orthogonal faces and then
perform a selection of a subset of constraints depending of
their type.

Shin and Igarashi presented recently a system for quick
construction of 3D scenes composed of multiple ob-
jects [SI07]. Their system takes simple 2D sketches of mod-
els as input. Then, it automatically identifies corresponding
models in a database and puts them in the appropriate loca-
tion and posture, matching the user’s input sketches. Their
system, combines a 3D search mechanism with a 3D pos-
ture estimation technique (constraints) to obtain the desired
result.

There are also commercial modeling applications that use
proprietary constraint solvers, such as 3D Studio Max or
Maya. These give users complete control over the creation,
leading to a very painful task that requires a lot of visits to
the help. Another major disadvantage is that the 3D models
are, basically, individual objects.

3. System Overview

As we have seen previously, there are several studies on the
use of constraints in 3D modeling. In this paper, we describe
the integration of constraints, calligraphic interfaces and re-
trieval mechanisms, to simplify and speed up the creation of
LEGO models.

Figure 2 presents an overview of the different components
of our system, called LSketchIt.

Figure 2: System overview.

The main components of our system are the constraint and
the retrieval modules. In the retrieval part, we implemented
a mechanism to search parts according to various character-
istics, such as width, height, etc., trying to improve one of

the major problems in the current applications, the location
of specific parts.

To improve the combination/construction of LEGO mod-
els, we implemented a module that deals with the constraints
between parts. This module is responsible to create the con-
nections between parts, to propagate the transformations
(translation and rotations) and to maintain the reality (grav-
ity) when a part is deleted or moved.

The calligraphic interface connects the two previous mod-
ules, and gives a simple way for users to specify the part to
search for. Additionally, we also implemented some com-
mands to allow the manipulation, construction and visual-
ization of LEGO models.

4. Retrieving LEGO Parts

In this section we describe how the retrieval mechanism for
LEGO parts was developed and how it works.

4.1. Part Library

The LEGO parts belong to the LEGO Company and they are
not freely available. To overcome this, we searched for ex-
isting open-source libraries and found the LeoCAD library.
We chose this because of the information that it has associ-
ated to each part, namely, name, dimensions and category,
which are very useful for our retrieval mechanism. The orig-
inal LeoCAD library started from the set of LEGO parts and
created 32 categories. For our work, we analyzed these cat-
egories and managed to reduce them to nine main groups
(Plates, Bricks, Tile, Slope Brick, Technic, Space, Train,
Other Bricks and Accessories).

4.2. Search Mechanism

Our search mechanism relies mainly on the information
about dimensions and categories of parts that are stored in
the library. When users want to search for a part, they can
specify only one dimension (e.g. width, length or height)
or more than one dimension (e.g. width and length), while
modeling (see Figure 3). Then, our retrieval system com-
pares dimensions defined using sketches with the part di-
mensions stored in the pattern "width x length x height".

Figure 3: Searching a part by specifying its width and
length.

c© The Eurographics Association 2008.



T. Santos, A. Ferreira, F. Dias & M. J. Fonseca / Using Sketches and Retrieval to Create LEGO Models

Figure 4: Refinement of the results by sketching (a triangle)
over an existing part.

When this information is not associated to the part, we use
the dimensions of its bounding box.

To enrich the retrieval process, we allow the over sketch-
ing of gestures on parts to refine the search and find spe-
cific types of parts. For instance, if we draw a triangle in-
side the retrieved or selected brick, the system will refine the
query, showing only bricks with slopes (see Figure 4). Ta-
ble 1 shows the different combinations of gestures and the
produced result.

Gesture Outside part Inside part
Line Pin

Circle Tyre, Wheel, Round Side, Hole
Rectangle Baseplate, Plate, Brick
Triangle Slope Brick

Table 1: List of gestures available to refine the part search.

Users can also reduce the number of returned results dur-
ing search, by selecting the desired type of part (Plates,
Bricks, Tile, etc.), clicking on the small icons illustrated on
the right of Figure 1.

4.3. Result Presentation

All existing applications for LEGO creation typically
present the search results in an exhaustive text list. This way
of presenting information is very uncomfortable and not very
user friendly for users, since it forces them to recall rather
than doing recognition. Users must preview several items in
the text list before selecting one.

To overcome this, we use a suggestion list to present
search results, allowing users to quickly recognize the part
they want. We decided to limit the preview to 3 parts, mainly
to deal with limited screen resolutions (800x600). A possible
solution, in a near future, is to change the number of shown
parts according to the size of the main window. On the right
side of Figure 1 we can see a suggestion list, with the pre-
view of three parts and the indication of the total number
of parts in the list. On the right of this we have nine small
buttons, which allow us to filter the results by category.

5. Constructing LEGO Models

Although, the addition of our retrieval approach makes the
finding and re-use of LEGO parts easier and faster, we still
need mechanisms to simplify the positioning, assembly and
manipulation.

We observed users doing LEGO constructions using real
parts to categorize the main constraints involved during the
process. We identified three constraints: connections be-
tween parts, gravity and snap-to-grid. In our solution we re-
laxed the idea of connections and consider that two parts are
connected, if and only if, one is above the other.

5.1. Assembly

Connections between parts are created when a part is placed
over another. While users move a part or group of parts, our
system detects collisions between them, using the bounding
boxes. When a collision is detected, the system automati-
cally places the moving part(s) on top of the static parts and
connects them.

Internally, each part knows the parts that are above and
below. This way, it is easy to propagate the movement to
parts that are above the moved one. To improve the efficiency
of the system, we associated a group number to parts that are
connected. Thus, when doing collision detection, only parts
from other groups are checked.

5.2. Transformations

Since our system has information about the connections be-
tween parts, we can perform transformations as we do in the
real world. For instance, if we move a part, all the parts that
are connected (on top) are also moved, due to the propaga-
tion of movement. First, only the moving part is processed.
Then, it propagates the translation to the parts that are above.
Next, the parts, which are above the moving part, propagate
the translation to all their connected parts. To avoid circular
dependencies and to guaranty that a connected part is moved
only once in a movement, we use a flag to mark parts already
processed.

Before the movement is made, and the translation calcu-
lated, collision detection is performed between the moved
parts and other parts in the model. This has the advantage
of detecting when a connected part, that is moving, but not
selected, collides with other objects. When a collision is de-
tected the system places the part that is moving on top of the
collided part.

The rotation is done in a similar way as translation. The
rotated part is rotated and the rotation is propagated to all
connected parts. However, in this case no collision detection
is performed.

c© The Eurographics Association 2008.



T. Santos, A. Ferreira, F. Dias & M. J. Fonseca / Using Sketches and Retrieval to Create LEGO Models

Figure 5: Application of the gravity when moving parts.

5.3. Snap-to-grid and Gravity

Due to the particular characteristics of LEGO parts, we im-
plemented a snap-to-grid constraint that is applied when
users place a part. The system automatically changes the part
position to fit the grid in the 2D plane.

Additionally, we created a gravity mechanism that mim-
ics the real interaction of parts. Thus, when users remove a
part from a model, the parts that are above it fell over (see
Figure 5). The algorithm works like this: While a part and
all those that are connected to it are in the air, the algorithm
moves them down one step. Then, it performs collision de-
tection, to see if the parts are on top of other parts. If exists
a collision, then parts that collide are fixed on top of the col-
lided parts. If it does not collide, the cycle begins again, until
there are no more parts in the air.

6. Calligraphic Interface

To connect the different components described above we
developed a calligraphic interface to allow the creation of
LEGO models using sketches, gesture commands and re-
trieval. We designed an application with a simple and easy to
use user interface, with the most used commands available
in toolbars (see Figure 1).

6.1. Sketch Recognition

The searching and manipulation of parts are done using cal-
ligraphic input. To search for a part users can use a contin-
uous sketch or draw a set of incremental sketches defining
lines. We call continuous sketch, for instance, when users
draw two lines in the base grid with just one stroke, to spec-
ify a part (see Figure 3). In these cases the system recognizes
the two lines, by identifying the points that are collinear and
breaking the stroke in different lines when this condition
changes.

Incremental drawing is used when users sketch lines one
at a time. These lines are used mainly to specify the width
and depth of a part. Additionally, users can also define the
height of the part by drawing a vertical line, or refine the
search by drawing specific gestures inside or outside the part,
as explained in Table 1 and illustrated in Figure 4. These
individual gestures are recognized using the CALI library
[FPJ02].

Drawn sketches and gestures recognized by CALI are all
in 2D. To convert them into 3D we use a common technique,
called the unprojection of points, where 2D points are con-
verted into 3D points by computing the intersection of a ray
from the user point of view with a plane.

In our application we use a subset of the gestures recog-
nized by CALI, such as, Triangles, Rectangles, Diamonds,
Circles, Ellipses, Lines and Delete. These gestures have dif-
ferent meanings, depending of the state of the system. If the
system is in the edition mode, all gestures are passed to the
retrieval component and a search is performed or refined, as
illustrated in Figure 4.

To select parts, users can perform the lasso command, by
drawing a circle around an existing part, do a simple click or
use the CTRL+click to select multiple parts.

To delete parts, users can perform a scratch over the parts
they want to delete. The system identifies the delete gesture
using CALI and then removes the affected part(s) from the
model. When parts are deleted, the gravity constraint is acti-
vated and parts are moved to the correct position.

6.2. Parts Manipulation

To represent the parts graphically we used the representation
provided by LeoCAD. However, we implemented a new ma-
nipulation mechanism, based on dragging and snapping, to
fit the needs of the calligraphic input. To accomplish this we
use the cursor position to unproject to the base grid. This
way when moving parts the cursor is always mapped to the
base grid, and the part to the cursor.

Due to the incremental drawing paradigm, the system ac-
cepts the edition of an inserted part in two different ways.
One, changing the dimension of a part, by drawing a line
starting in any bounding box corner. And second, by draw-
ing a gesture over a selected part, as illustrated in Figure 4.

The base grid is used to simplify and to improve the po-
sitioning of parts. We use thin lines to represent one LEGO
unit and thicker lines to represent two LEGO units. Addi-
tionally, the application changes the grid dimension accord-
ing to the camera and parts position.

Our system also supports the copy operation, which can
be applied when there are parts selected. To execute this
command users need to press the CTRL key while moving
parts. Feedback is given to users by changing the shape of
the cursor to a "+" and the surrounding lines of parts, to con-
vey information about selection.

The color palette of LSketchIt (see bottom of Figure 1)
is composed by a small number of colors, since we found
out that these are the most used colors (black, white, red,
gray, yellow and blue). We also included the correspondent
transparent colors for each opaque color.

c© The Eurographics Association 2008.



T. Santos, A. Ferreira, F. Dias & M. J. Fonseca / Using Sketches and Retrieval to Create LEGO Models

6.3. Camera Manipulation

For camera manipulation, we keep most of the functional-
ity from LeoCAD, changing only the camera pan, and the
interface to access its controls, because it was very difficult
to use. Our solution offers a mechanism to manipulate the
camera similar to the dragging of parts. The camera position
is mapped to the ground, when the user moves it, and the
camera follows the movement incrementing its position and
providing the concept of camera dragging.

There are two ways to rotate the camera in LSketchIt, us-
ing the widget’s buttons in the camera toolbar or using the
orbit function. The orbit function can be accessed by draw-
ing a circle in an empty area of the window. After the orbit
circle appear, users can rotate the camera in any direction
using the pen.

7. Experimental Evaluation

To evaluate our system, we decided to compare it to the Leo-
CAD modeling tool. To that end, we performed tests with ten
users, who had already played with physical LEGO parts,
but had never used any software tool for creating LEGO
constructions. Each user performed three tasks on both ap-
plications. However, to prevent users from learning tasks in
one application and perform quicker on the other, five users
performed the tasks first on the LeoCAD and the other 5 per-
formed first on LSketchIt.

The model to create in the first task was very simple and
was used mainly for users to get used to the applications.
The second and third tasks had a higher complexity and were
used to evaluate the assembly, searching and manipulation of
parts, and camera operations.

Before executing the tests with users, we conducted a pi-
lot test with two people to validate the experience protocol
and to check if the predefined times for each task were rea-
sonable.

The majority of the participants were males (80%), with
age between 20 and 25 (70%) and with superior degrees
(80% BSc and 10% MSc). From the ten users only two
(20%) used a TabletPC or any other calligraphic device be-
fore this experiment.

In the next sections we present and analyze the results col-
lected during the tests with users. We collected information
about the time to complete tasks, time spent searching parts,
errors and number of movements applied to parts. While
users were executing the tasks we captured the screen for
later analyzes.

7.1. Time to Complete Tasks

We measured the time each user took to complete each task
on both applications. Achieved results are presented in Fig-
ure 6. As we can see, our system performs better than Leo-

Figure 6: Average time to complete each task.

CAD, being the difference more significant for Task 3, where
users had to create the complex model presented in Figure 1.

Comparing the times for the first and second task, we can
see that there is no significant difference between the two
tools. In task one LSketchIt average time is only 5% higher
than in LeoCAD, while for task two the average time of LS-
ketchIt is 27% smaller than in LeoCAD.

However, the result for the last task was particularly inter-
esting, since the majority of the users did not finish it in the
predefined time. In LSketchit 60% of the users finished the
task in the expectable time, while the other 40% managed
to complete more than 90% of the task. In LeoCAD, only
20% of the users finished the task, and only 40% completed
more than 90% of the task. So, while in LSketchIt all users
managed to conclude more than 90% of the task, in LeoCAD
only 60% achieved this value.

The average time for Task 3 presented in Figure 6 was
computed using just the times from users who finished the
task. This small number of users caused a bigger standard
deviation than previous tasks, but we can still compare both
applications and see that users perform 41% faster using LS-
ketchIt than using LeoCAD.

7.2. Searching Times

Currently, one of the main drawbacks of existing applica-
tions is the time users spent to locate a specific part to include
into their constructions. We measured the time users spent
searching for a part, to see if LSketchIt solves this problem.

Figure 7 presents the searching times for individual parts.
Note that the chart is in a logarithmic scale of 2, to make the
reading simpler. We show the minimum, the maximum and
the average time users took for searching a part on each task.
As we can observe, LSketchIt outperforms LeoCAD in all
tasks and in all measures. It is also interesting to notice that
the difference is bigger in the first task. This is explained by
the simplicity of the parts used in the first task, that appear in
the first set of parts of the suggestion list, without the need

c© The Eurographics Association 2008.



T. Santos, A. Ferreira, F. Dias & M. J. Fonseca / Using Sketches and Retrieval to Create LEGO Models

Figure 7: Searching times on each task.

to scroll. Thus, it was almost immediate to select a part in
LSketchIt.

From Figure 7 we notice that the difference between the
two applications is almost constant for the 3 tasks. So, the
big difference registered in the time needed to complete Task
3 (see Figure 6) is due to manipulation. We can conclude that
our snap-to-grid, gravity, collision detection and connection
mechanisms, give some advantage to users when they have
to create complex models, as the one from Task 3. Our sys-
tem reduces the manipulation time, making the creation of
complex models easier and faster.

7.3. Errors

During the execution of tasks we also count the number of
errors that users did (see Figure 8). Contrary to our expecta-
tions, users committed to many errors with LSketchIt. In the
first task users did 8.8 errors on average using LSketchIt, in
opposition to 3.4 errors in LeoCAD, a difference of 159%.
In the second task the number of errors reduced to 7.6, and
in LeoCAD increased to 4.8, a difference of 58%. In the last
task the number of errors reduced to 4.6 and in LeoCAD was
registered an average of 4.5 errors, showing a small differ-
ence of only 2%.

To identify the cause for so many errors, we analyzed the
screen captures. We notice that the main cause for the higher
number of errors in LSketchIt was the difficulty that users
felt in using a calligraphic device (70%). We believe that
this is due to the lack of experience in using calligraphic
devices (Tablet PCs and/or digitizing tablets). Another cause
for errors was the difficulty in identifying the correct state of
a part (20%). It was hard to distinguish between a part being
edited or already created.

Figure 8: Average number of errors per task for each appli-
cation.

In LeoCAD, the main problems were due to its interface.
Users had difficulty in finding the correct action, in locat-
ing the desired part and in placing parts in the correct place
(sometimes parts were placed below the grid base).

We can observe from Figure 8 that the number of errors
decreases from Task 1 to Task 3. Users learned how to use
the calligraphic device, committing less errors. We believe
that the number of errors in LSketchIt will largely reduce
if users had have a training session to get used to the calli-
graphic device and interaction.

7.4. Coloring and Number of Movements

Finally, we count the number of movements applied to parts
and the use of the coloring tool. The color function was less
used in the LSketchIt tool than in LeoCAD (less 33% in Task
1, 41% in Task 2 and 26% in Task 3), to achieve the same
result. The number of movements were also smaller in LS-
ketchIt than in LeoCAD (less 42% in Task 1, 34% in Task
2 and 10% in Task3). With these results we can conclude,
that to complete a task in LSketchIt, users perform less op-
erations than with LeoCAD, making the interaction simpler
and faster.

7.5. Satisfaction Evaluation

After performing the three tasks, we asked participants to
evaluate both applications in terms of satisfaction, by filling
a short questionnaire.

In general, users liked more the LSketchIt prototype than
LeoCAD, giving the following grades. LSketchIt: 60% Good
and 40% Very Good. LeoCAD: 60% Bad and 40% Good.
When we asked about searching and insertion of parts, LS-
ketchIt outperformed again the LeoCAD with 40% Very
Good and 60% Good, against 80% Bad and 20% Good for

c© The Eurographics Association 2008.



T. Santos, A. Ferreira, F. Dias & M. J. Fonseca / Using Sketches and Retrieval to Create LEGO Models

LeoCAD. The importance of connections and gravity be-
tween parts was also surprising, 60% find them Important
and 40% found them Very Important. Finally, we asked if
users would use the program in the future, and every users
answered Yes for LSketchIt, and only 50% would use Leo-
CAD.

8. Conclusions and Future Work

We started this project with the objective of creating a simple
and easy to use tool for LEGO constructions. After analyz-
ing existing tools we found out that in most of them it was
hard to construct LEGO models. Their user interfaces were
difficult to use and do not mimic the real interaction users
are used to have with real parts. Another problem of these
tools was the searching of parts, which is a slow and painful
process.

We also researched more general 3D modeling applica-
tions, to study their constrain and modeling mechanisms. Af-
ter analyzing this state of the art, we concluded that a simple
relationship between parts and a simple constraint solver us-
ing propagation of constraints, should suit users needs.

To solve the searching problem, we developed a retrieval
technique that uses sketches to specify the characteristics of
the part to locate. Search results are presented in a sugges-
tion list, organized by categories. This in combination with
a calligraphic interface to manipulate parts and the camera
produced a simple and easy to use application.

To evaluate our prototype we compared it to the LeoCAD
application. Results show that our system is able to reduce
the construction time, of simple and complex LEGO models,
and that users were very satisfied with the tool. Users con-
sidered specially important the concept of connected parts
and gravity, because it mimics the real interaction.

Contrary to our expectations, we observed a large number
of errors in LSketchIt, especially on the first tasks. The num-
ber of errors decreased for Task 2 and 3, which we think was
due to the adaptation of users to the calligraphic device. We
believe, and we want to test it, that if we performed the tests
with users accustomed to calligraphic devices, the number
of errors would be smaller.

Acknowledgements

This work was funded in part by the Portuguese Foundation
for Science and Technology, project Augmented Decoration,
POSC/EIA/59938/2004.

References

[BS06] BARADARAN H., STUERZLINGER W.: A com-
parison of real and virtual 3d construction tools with
novice users. In Proceedings of the International Confer-
ence on Computer Graphics & Virtual Reality, CGVR’06
(2006), pp. 10–15.

[CNJC03] CONTERO M., NAYA F., JORGE J., CONESA

J.: Cigro: A minimal instruction set calligraphic interface
for ketch-based modeling. In Computational Science and
Its Applications - ICCSA’03 (2003), vol. 2669 of Lecture
Notes in Computer Science, Springer, pp. 549–558.

[FPJ02] FONSECA M. J., PIMENTEL C., JORGE J. A.:
CALI: An Online Scribble Recognizer for Calligraphic
Interfaces. In Proceedings of the 2002 AAAI Spring Sym-
posium - Sketch Understanding (Palo Alto, USA, Mar.
2002), pp. 51–58.

[IH01] IGARASHI T., HUGHES J. F.: A suggestive inter-
face for 3d drawing. In UIST ’01: ACM symposium on
User interface software and technology (New York, NY,
USA, 2001), ACM, pp. 173–181.

[IMKT97] IGARASHI T., MATSUOKA S., KAWACHIYA

S., TANAKA H.: Interactive beautification: A technique
for rapid geometric design. In UIST’97: ACM Sympo-
sium on User Interface Software and Technology (1997),
pp. 105–114.

[Lac] LACHMANN M.: Mike’s lego cad. Website. http:
//www.lm-software.com/mlcad/ (Accessed Septem-
ber 2007).

[ldd] Lego digital designer. Website. http://ldd.lego.
com/ (Accessed September 2007).

[leo] Leocad. Website. http://www.leocad.org/ (Ac-
cessed September 2007).

[PBJ∗04] PEREIRA J. P., BRANCO V. A., JORGE J. A.,
SILVA N. F., CARDOSO T. D., FERREIRA F. N.: Cas-
cading Recognizers for Ambiguous Calligraphic Interac-
tion. In Eurographics workshop on Sketch-Based Inter-
faces and Modeling (Grenoble, France, Aug. 2004), Eu-
rographics Association, pp. 63–72.

[SI07] SHIN H., IGARASHI T.: Magic canvas: interactive
design of a 3-d scene prototype from freehand sketches. In
Proceedings of Graphics Interface, GI’07 (2007), ACM,
pp. 63–70.

[ske] Google sketchup. Website. http://sketchup.
google.com/ (Accessed September 2007).

[Sut63] SUTHERLAND I. E.: Sketchpad:a man-machine
graphical communication system. In AFIPS Spring Joint
Computer Conference (1963), pp. 329–346.

[ZHH96] ZELEZNIK R. C., HERNDON K. P., HUGHES

J. F.: Sketch: an interface for sketching 3d scenes. In
SIGGRAPH ’96: Conference on Computer graphics and
interactive techniques (New York, NY, USA, 1996), ACM
Press, pp. 163–170.

[ZL07] ZOU H. L., LEE Y. T.: Constraint-based beautifi-
cation and dimensioning of 3d polyhedral models recon-
structed from 2d sketches. Computer Aided Design 39, 11
(2007), 1025–1036.

c© The Eurographics Association 2008.

http://www.lm-software.com/mlcad/
http://www.lm-software.com/mlcad/
http://ldd.lego.com/
http://ldd.lego.com/
http://www.leocad.org/
http://sketchup.google.com/
http://sketchup.google.com/

