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Abstract. We present a shape classification technique for structural
content–based retrieval of two-dimensional vector drawings. Our method
has two distinguishing features. For one, it relies on explicit hierarchical
descriptions of drawing structure by means of spatial relationships and
shape characterization. However, unlike other approaches which attempt
rigid shape classification, our method relies on estimating the likeness of
a given shape to a restricted set of simple forms. It yields for a given
shape, a feature vector describing its geometric properties, which is in-
variant to scale, rotation and translation. This provides the advantage of
being able to characterize arbitrary two–dimensional shapes with few re-
strictions. Moreover, our technique seemingly works well when compared
to established methods for two dimensional shapes.

1 Introduction

Since shape is one of the primary low level features used in content-based image
retrieval, shape representation has become a fundamental issue in these applica-
tions. The main objective of shape description is to measure geometric attributes
of an object, that can be used for classifying, matching and recognizing objects.
Moreover, a shape representation scheme should be affine invariant, robust, com-
pact, easy to derive, easy to match and perceptually meaningful. Also, it is im-
portant that shape description schemes work well for practical applications. We
have thus validated our work with two “real–life” applications, one to retrieve
technical drawings and other to search for clip-art drawings. In this paper, after
a short discussion of related work, we will briefly present our approach to draw-
ing classification, consisting of topological and geometrical components. Then we
focus on geometry extraction and describe our technique for shape classification.
Next, we discuss experimental results obtained by comparing our method to five
known techniques and briefly describe the two prototypes that use our method.
Finally we present conclusions and future work.

2 Related Work

There is an extensive body of related work on shape representation. Mehtre et al
group existing techniques into two categories: boundary-based and region-based
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Fig. 1. Block decomposition of our approach to drawing classification.

[17]. The former use only the contour or border of an object, which is crucial to
human perception in judging shape similarity, completely ignoring its interior.
The latter methods exploit shape interior information, besides its boundary.
More recently Safar et al presented a taxonomy [22] that complements Mehtre’s
classification.

As examples of boundary-based methods we have Fourier descriptors [20],
chain codes [11], autoregressive models [15], polygonal approximations [13], cur-
vature scale space [18] and shape signature [3]. In region-based methods, we
encountered geometric moments [14], Zernike moments [17], grid representation
[16] and area.

Although contour-based methods such as Fourier descriptors, present good
results in these studies, they have limited application. For one, these methods
cannot capture shape interior content or deal with disjoint shapes, where single
boundaries may not be available. Also, region-based methods can be applied to
more general shapes, but usually require more computational resources.

3 Drawing Classification

Content-based retrieval of pictorial data, such as digital images, drawings or
graphics, uses features extracted from the corresponding picture. Typically, two
kinds of features are used; visual features (such as color, texture and shape)
and relationship features (topological and spatial relationships among objects
in a picture). However, in the context of our work, we consider that color and
texture are irrelevant features and we focus only on topology (a global feature
of drawings) and geometry (a local feature).

Our feature extraction technique processes drawings via two separate stages
(topology and shape) until they are mapped into geometric and topological de-
scriptors, as depicted in Figure 1. For retrieval purposes, these descriptors may
be inserted in an indexing structure, during classification, or used to query a
database, when searching for similar drawings.

To describe the spatial organization in drawings, we use two relationships,
inclusion and adjacency. While these two topological relationships are weakly
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Fig. 2. Block diagram for computing the geometric descriptor.

discriminating, they do not change with rotation and translation, allowing un-
constrained drawing classification. We then construct a topology graph repre-
senting the relationships among shapes. From this graph, we derive descriptors
based on its spectrum [2]. We compute the graph spectrum by determining the
eigenvalues of its adjacency matrix. Eigenvalues are then stored in a multidi-
mensional vector, defining the topological descriptor. A detailed description of
the topology extraction and the correspondent descriptor computation using
eigenvalues can be found in [4].

4 Geometry Extraction

To describe the geometry of entities from drawings, we developed a general, sim-
ple, fast, and robust recognition approach called CALI [8, 7]. This was initially
devised for recognition in calligraphic interfaces. However, since CALI performed
well in recognizing hand-drawn input, we decided to generalize that approach
by using it to classify more general shapes for retrieval. Thus, instead of using
CALI to identify specific shapes or gestures from sketches, we compute a set
of geometric attributes from which we derive features such as area and perime-
ter ratios from special polygons and store them in a multidimensional vector
(see Figure 2). Indeed, our approach can be thought as a two–stage process.
First, we evaluate a shape’s geometric characteristics. Then we convert these
into affine–invariant geometric features by simple arithmetic operations which

Feature Description

Ach Area of the convex hull
Aer Area of the (non-aligned) enclosing rectangle
Alq Area of the largest quadrilateral
Alt Area of the largest triangle
Her Height of the (non-aligned) enclosing rectangle
Pch Perimeter of the convex hull
Per Perimeter of the enclosing rectangle
Plq Perimeter of the largest quadrilateral
Plt Perimeter of the largest triangle
Tl Total length, i.e. perimeter of original polygon

Wer Width of the (non-aligned) enclosing rectangle
Table 1. List of relevant geometrical features.



Fig. 3. Special polygons computed from shape.

combine these attributes with known commensurable values for simple convex
primitives, such as quadrilaterals and triangles. What is more important, using
geometric features instead of polygon classification, allows us to index and store
potentially unlimited families of shapes in a scalable manner.

Our geometric description method uses a set of global geometric properties
extracted from drawing entities. We start the calculation of geometric features
by computing the Convex Hull of the provided element, using Graham’s scan
[19]. Then, we compute three special polygons from the convex hull: the Largest
Area Triangle and the Largest Area Quadrilateral inscribed in the convex hull
[1], and finally, the Smallest Area Enclosing Rectangle [12]. Figure 3 depicts an
example of polygons extracted from a irregular shape.

Finally, we compute the ratios between area and perimeter from each special
polygon. We experimentally evaluated several ratios, as described in detail in
[9], before we reach the set of features listed in Table 1. This set of features
allow the description of shapes independently of their size, rotation, translation
or line type. This way, such features can either be used to classify drawings or
hand-sketched queries. Then, we combine these geometric features to produce a
feature vector that describes the shape (descriptor).

Figure 4 shows the geometric features that compose the feature vector. To
decide whether two shapes are similar we just compare (e.g. using dot–product)
their feature vectors. This contrasts to using the feature vectors to compute a
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Fig. 4. Geometric feature vector.



Fig. 5. Example of objects stored into the test database.

classification (e.g. rectangle or circle) and then comparing the classes ascribed
to each shape. Our approach tends to work well if individual features are stable
and robust, which we have found out experimentally in [8].

5 Experimental Results

In order to evaluate the retrieval capability (i.e. accuracy) of our method, we
measured recall and precision performance figures using calibrated test data.
Recall is the percentage of similar drawings retrieved with respect to the total
number of similar drawings in the database. Conversely, precision is the percent-
age of similar drawings retrieved with respect to the total number of retrieved
drawings.

We compared our method to describe shapes (CALI) with five other ap-
proaches, namely Zernike Moments (ZMD), Fourier descriptors (FD), grid-based
(GB), Delaunay triangulation (DT) and Touch-point-vertex-angle-sequence (TP-
VAS). To that end we used results of an experiment previously performed by
Safar [21], where he contrasted his approach (TPVAS) to the FD, GB and DT
methods.

In that experiment, authors used a database containing 100 contours of fish
shapes, as the ones presented in Figure 5. From the set of one hundred shapes
in the database, five were selected randomly as queries. Before measuring the
effectiveness of all methods, Safar performed a perception experiment where
users had to select (from the database) the ten most similar to each query. This
yielded the ten most perceptually similar results that each query should produce.

We repeated this experiment, on the same database and performing the same
queries, using our method and an implementation of Zernike moments.

First we computed descriptors for each of the hundred shapes in the data set.
Then for each query, we computed the corresponding descriptor and used it to
search for the ten nearest-neighbors. For each of the five queries, we determined
the positions for the 10 similar shapes in the ordered response set. Using results
from our method and the values presented in Table 2 from [21] we produced the
precision-recall plot shown in Figure 6.



Looking at the precision-recall chart we can see that our approach outper-
forms all other algorithms studied, including for the most part, the Zernike mo-
ments, which according to a previous experimental evaluation [23], were consid-
ered the best method to describe geometric shapes. Furthermore, our technique
yields superior precision to all methods for all measured recall values except for
recall values equal or below 20% where Zernike moments show a slight advantage.

Thus we can say that our method presents better results when drawings in
the database are slightly different from the query, while Zernike moments tend
work better for elements in the database which are very similar to the query.
While Zernike moments tend to present better results in the topmost three to
five queries, our method will likely yield more correct matches, although some
of these might be ranked in lower positions. Thus, we believe that our technique
to describing shape geometry is more suited to approximate queries in content-
based retrieval than Zernike moments.

Although the features used by CALI were mainly selected to classify and
describe geometric shapes, we can conclude from this experimental evaluation,
that it can also be used to describe more general shapes, as the contours from this
database. Furthermore, our geometric features were chosen to classify convex
objects out of a limited vocabulary. One interesting finding is that the set is
surprisingly expressive and general enough for measuring shape similarity instead
of classification.

To assess the applicability of our approach for content-based retrieval in real-
life settings, we developed two prototypes, one to retrieve technical drawings
(SIBR) [10] and other for clip-art drawings (BajaVista) [5]. The SIBR prototype
allows retrieving sets of drawings similar to a hand-sketched query or a digitized
drawing. Figure 7(a) depicts a screen-shot of the calligraphic interface of the
SIBR application. On the left we can see the sketch of a part and on the right
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(a) SIBR (b) Bajavista

Fig. 7. Screen-shots of prototypes.

the results returned by the implied query. These results are ordered from top to
bottom and from left to right, with the most similar on top. On the other hand,
the BajaVista prototype can index and retrieve clip-art drawings by content,
either using sketches or querying by example. Figure 7(b) depicts a screen-shot
of this application. On the top-left we can see the sketch of a cloud and on the
bottom results returned by the implied query. These results are ordered from
left to right, with the most similar on the left. It is also possible to perform
query-by-example, thus allowing the user to select one of the results and using
it to specify the next query, since our classification scheme handles graphics and
sketches in the same manner.

These two prototypes were evaluated using medium–size databases. The
SIBR prototype was tested on a database containing one hundred elements,
while the database used to test BajaVista indexed 968 drawings. Tests with both
prototypes showed effective results when searching for both technical or clip-art
drawings. Furthermore users were satisfied that returned results matched their
expectations. Indeed, while in first instances we presented the topmost five draw-
ings in each case, feedback from tests convinced us to increase the displayed set
to ten or twenty drawings. Surprisingly to us, users assigned greater importance
to being able to retrieve the desired result among the top 10 or 20 elements,
rather than finding the two “best” candidates. Indeed, we were told by users
that they preferred recall over precision (at least in this limited sense) which
empirically supports our claims about the precision–versus–recall performance
of our technique against Zernike moments.

6 Conclusions

We presented a shape classification method which can be applied to content–
based retrieval of two–dimensional vector graphics. Unlike other approaches, our
method works not by a-priori classifications but by estimating the resemblance
of a given shape to each of the forms in a restricted set. In this manner we are
able to characterize many different two–dimensional shapes with few restrictions.
Experimental evaluation of our method seems to indicate superior performance



against other known sound approaches. However, we have not tested it with
strongly concave shapes, for which it is not clear whether convex geometrical
features will work well. This is the subject of ongoing work.

From an analysis of experimental results, our approach on shape classification
for retrieval proved well on both theoretical and practical grounds.

We have developed successful applications for retrieving two–dimensional
CAD drawings and clip–art images. One area for future work lies in extending
our approach to three–dimensional vector drawings, where preliminary findings
seem to yield promising results [6]. We strongly believe that an approach based
on explicit structural descriptions has the potential to find a wide range of ap-
plications for human–made vector drawings.
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