
π1t1

t2

t3

t4

t5

t6

t7

c1

c2

c3

c4

c5

c6

c7

π2

π3

π4

π5

π6

π7

A Thesaurus-based Approach to
3D Shape Retrieval

Alfredo Manuel dos Santos Ferreira Júnior
(Master of Science)

Dissertation for the degree of Doctor of Philosophy in
Information Systems and Computer Engineering

Adviser: Doutor Manuel João Caneira Monteiro da Fonseca
Co-adviser: Doutor Joaquim Armando Pires Jorge

Chairman: Reitor da Universidade Técnica de Lisboa

Members: Doutor Karthik Ramani
Doutor Joaquim Armando Pires Jorge
Doutor Nuno Manuel Robalo Correia
Doutor Manuel João Caneira Monteiro da Fonseca
Doutor Andreas Wichert
Doutora Michela Spagnuolo

July 2009

A Thesaurus-based Approach to 3D Shape Retrieval

Alfredo Manuel dos Santos Ferreira Júnior

A Thesis submitted to the Graduate School
for the degree of

Doctor of Philosophy in
Information Systems and Computer Engineering

Department of Information Systems and Computer Engineering
Instituto Superior Técnico - Technical University of Lisbon

Adviser

Doutor Manuel João Caneira Monteiro da Fonseca

Assistant Professor from the
Department of Information Systems and Computer Engineering

Instituto Superior Técnico - Technical University of Lisbon

Co-Adviser

Doutor Joaquim Armando Pires Jorge

Full Professor from the
Department of Information Systems and Computer Engineering

Instituto Superior Técnico - Technical University of Lisbon

This work was funded in part by the Portuguese Foundation for Science and Technology, grant
SFRH/BD/17705/2004 and the European Commission, through the FP6 Integrated Project Euro-
Tooling21 and the FP7 Specific Targeted Research Project MAXIMUS.

c©2009 by Alfredo Ferreira

http://vimmi.inesc-id.pt/∼afj

alfredo.ferreira@inesc-id.pt

Resumo

À medida que a dimensão das colecções de modelos tri-dimensionais cresce, a recu-
peração destes modelos torna-se um verdadeiro desafio. Actualmente, uma colecção ref-
erente a um domı́nio especı́fico pode conter milhares de modelos, enquanto que uma
colecção genérica pode ser ainda maior. Este cenário cria a necessidade de motores de
pesquisa baseados no conteúdo para modelos tri-dimensionais. Na realidade, a investiga-
ção em recuperação de modelos 3D baseada no conteúdo já existe e várias abordagens
foram entretanto propostas. No entanto, o sucesso das soluções existentes fica bastante
aquém do obtido pelas suas congéneres textuais.

A maior desvantagem dos actuais sistemas de recuperação tri-dimensional é o facto
destes não suportarem pesquisas parciais. Presentemente uma interrogação submetida
ao sistema deve corresponder a um modelo completo, não sendo possı́vel interrogar o
sistema usando apenas parte do modelo que se pretende, à semelhança do que acontece
com os documentos textuais, onde a interrogação contém apenas algumas palavras e não
todo o texto. Para resolver este problema, vários investigadores encontram-se a trabalhar
em pesquisas parciais de objectos tri-dimensionais.

Neste âmbito, as abordagens propostas até agora focaram-se no reconhecimento de
sub-partes semelhantes em objectos globalmente diferentes, no emparelhamento de sub-
partes semelhantes em objectos estruturalmente idênticos, e na identificação de uma dada
sub-parte num objecto. Não temos, no entanto, conhecimento de nenhuma solução que
indexe modelos 3D com base em todas as suas sub-partes, permitindo dessa forma uma
eficiente recuperação de modelos com recurso a interrogações parciais.

Na presente dissertação apresentamos uma nova abordagem à recuperação de mod-
elos tri-dimensionais. Esta nova abordagem usa um mecanismo de decomposição de
objectos sensı́vel ao conteúdo da coleção, combinado com um thesaurus de formas e
ı́ndices invertidos para descrever, indexar e recuperar modelos 3D. O algoritmo CAS re-
aliza a decomposição de modelos com base nas semelhanças entre objectos na colecção,
produzindo um conjunto de sub-partes dos modelos apropriado para a utilização com the-
saurus de formas. Ao transpor conceitos bem sucedidos no contexto de documentos de
texto para modelos 3D, resolvemos algumas das questões deixadas em aberto por abor-
dagens anteriores. Na realidade, testes experimentais demostraram a validade da nossa
abordagem. Assim sendo, acreditamos que a nossa solução providencia as bases para a
construção de um motor de pesquisa 3D com suporte para interrogações parciais.

i

ii

Palavras-Chave

Recuperação baseada no Conteúdo

Recuperação de Modelos 3D

Pesquisas Parciais

Segmentação de Objectos 3D

Thesaurus de Formas

Classificação e Indexação

iii

iv

Abstract

Index, search and retrieval of 3D models is becoming a key issue, as the size of
available digital libraries of three-dimensional models grows. A regular domain-specific
collection can contain thousands of items, and the number of generic 3D models available
on generic collections is much larger. Such scenario leads to a demand for a content-based
search engine for 3D models. Indeed, research in content-based 3D retrieval has already
started, and several approaches have been proposed. However, the success of existing
solutions is far from the success obtained by their textual counterparts.

A major drawback of most 3D retrieval solutions is their inability to support partial
queries, that is, a query which does not need to be formulated by specifying a whole query
shape, but just a part of it, for example a detail of its overall shape, just like documents
are retrieved by specifying words and not whole texts. Recently, researchers have focused
their investigation on 3D retrieval which is solved by partial shape matching.

The approaches developed so far address recognition of similar sub-parts in objects
having different overall shape (partial matching) as well as recognition of similar sub-
parts in objects that are both structurally globally similar (sub-part correspondence), and
identification of a given sub-part in a model (part-in-whole matching). However, at the
extent of our knowledge, there is still no 3D search engine that provides an indexing of the
3D models based on all the interesting subparts of the models, allowing efficient retrieval
with partial queries.

In this dissertation we present a novel approach to 3D shape retrieval that uses the in-
novative collection-aware shape decomposition (CAS) combined with a shape thesaurus
and inverted indexes to describe, index, and retrieve 3D models using part-in-whole
matching. The CAS is an approach for automatic decomposition of models, which takes
into account geometrical similarities among objects in the collection to produce a set of
model sub-parts suitable for thesaurus-based indexing. Then, by transposing successful
concepts from textual retrieval to 3D shape retrieval we overcome some issues faced by
previous approaches. Indeed, experimental evaluation showed the validity of our solution
in a controlled environment. Thus, we believe that our approach will provide the foun-
dations for a fully-fledged content-based search engine for collections of 3D models with
support for partial queries.

v

vi

Keywords

Content-Based Retrieval

3D Model Retrieval

Partial Matching

Shape Decomposition

Shape Thesaurus

Classification and Indexing

vii

viii

Acknowledgements

First, I would like to express my appreciation to my adviser Professor Manuel J.
Fonseca and co-adviser Professor Joaquim A. Jorge for their continuous support during
the last years. To both I thank their availability to discuss my ideas, providing me constant
comments and good guidance. At the end of this journey, I am glad to see that the initial
advisory relations turned into friendships.

In second place, I would like to thank all the members of CNR IMATI-Ge, whom
welcomed me so warmly in Genoa. Part of the work presented in this thesis was developed
with their support. Indeed, some ideas and concepts come out from discussions with
them. Despite my fellowship have fallen in a period of high work load, Bianca Falcidieno,
Michela Spagnuolo, Simone Marini, Francesco Robbiano, Silvia Biasotti, Marco Attene,
Daniela Giorgi, Michela Mortara and Chiara Catalano were wonderful and made my stay
in Italy unforgettable, both from a professional and personal point of view.

Next, I would like to show gratitude to all the members of VIMMI group for their
friendship and help, specially to Ricardo Jota for his companionship and his assistance
during experiments, Bruno Araújo for his deep knowledge on Computer Graphics and his
availability to share it, Tiago Guerreiro for being a superb office mate and Paula Monteiro
for her assistance on bureaucratic stuff. Also, a special thank to Manuela Sado for her
support during thesis writing.

Finally, I dedicate this thesis to my wife Sandra, who supported me unconditionally
since when I was an undergraduate student (without her I had never get this far), to my
son Tiago, with whom I do not share all the time he deserved, and to my aunt Bernardete
for her love and support during all my life.

Lisboa, July 2009

Alfredo Ferreira

ix

x

Contents

Resumo i

Abstract v

Acknowledgements ix

Contents xi

List of Figures xvii

List of Tables xx

List of Publications xxiii

Glossary xxv

1 Introduction 1
1.1 Problem Description . 2

1.2 Thesis Statement . 3

1.2.1 The ultimate goal . 3

1.2.2 Problem statement . 4

1.2.3 Research hypothesis . 5

1.3 Approach Overview . 6

1.3.1 Indexing and Searching Text Collections 7

1.3.2 Thesaurus-based 3D Shape Retrieval 9

1.4 Contributions . 12

1.5 Dissertation Outline . 13

2 Background and State-of-the-Art 15

xi

2.1 Research Context . 16

2.1.1 The Key Players . 16

2.1.2 Model Databases . 19

2.1.3 Benchmarking 3D shape retrieval 19

2.2 From Shapes to Descriptors . 21

2.2.1 Taxonomy of 3D Shape Descriptors 22

2.2.2 Histogram-based Descriptors . 23

2.2.3 Transform-based Descriptors . 29

2.2.4 Graph-based Descriptors . 33

2.2.5 Image-based Descriptors . 37

2.2.6 Other Methods . 41

2.2.7 Comparative Studies . 44

2.2.8 Discussion on Shape Descriptors 45

2.3 Query and Matching . 48

2.3.1 Query Types . 48

2.3.2 Similarity Measuring . 49

2.4 Content-based Retrieval of 3D Models 51

2.4.1 Nefertiti . 52

2.4.2 Princeton 3D Model Search Engine 52

2.4.3 Purdue 3D Engineering Shape Search 52

2.4.4 NTU 3D Model Retrieval System 52

2.4.5 CCCC . 53

2.4.6 FOX-MIIRE Search Engine . 53

2.5 Retrieval using Partial Queries . 54

2.5.1 Spin Images . 54

2.5.2 Salient Geometric Features . 54

2.5.3 Distinctive Regions . 56

2.5.4 Structural Descriptors . 58

2.5.5 Scale-space Feature Extraction 61

2.5.6 Part-in-Whole Matching . 63

2.6 Summary . 64

3 Collection-Aware Segmentation 67

3.1 Algorithm Overview . 68

xii

3.2 Hierarchically Segmented Meshes . 71

3.3 Shape Pool . 73

3.4 Identification of Decomposable Segments 75

3.4.1 Nearest Neighbor Search . 77

3.4.2 Within Range Search . 78

3.5 Sub-segments . 80

3.6 Similarity Threshold Determination . 83

3.7 Comparing CAS/HFP with HFP . 89

3.8 Summary . 91

4 Thesaurus-based 3D Shape Retrieval 95
4.1 Overview of the Framework for 3D Shape Retrieval 96

4.1.1 Classification . 97

4.1.2 Retrieval . 98

4.2 Shape Thesaurus . 98

4.3 Shape Pool Clustering . 100

4.3.1 Shape signature as term of the thesaurus 101

4.3.2 Clustering High-Dimensional Data 102

4.3.3 Lloyd’s Algorithm . 104

4.3.4 Clustering Shape Signatures . 104

4.4 Thesaurus Construction . 107

4.4.1 Creating the shape thesaurus . 107

4.4.2 Building the inverted index . 110

4.5 Shape Retrieval . 112

4.5.1 Signature Computation . 113

4.5.2 Similar Term Searching . 114

4.5.3 Matching Models Identification 115

4.6 Summary . 116

5 Experimental Results 119
5.1 Mesh Complexity in ESB and PSB . 120

5.1.1 Experiment Description . 121

5.1.2 Analysis and Results . 122

5.2 Worst Case Simulation . 123

5.2.1 Experiment Description . 123

xiii

5.2.2 Shape Pool Growth . 124

5.2.3 Decomposability Determination Time 125

5.3 Decomposing a Benchmark Collection 127

5.3.1 Experiment Description . 127

5.3.2 Shape Pool Growth . 128

5.3.3 Used Memory . 129

5.3.4 Execution Time . 130

5.3.5 Time Distribution . 132

5.4 Updating a Decomposition . 133

5.4.1 Experiment Description . 133

5.4.2 Execution Time . 135

5.4.3 Decomposition Stability . 137

5.5 Building a Shape Thesaurus . 138

5.5.1 Experiment Description . 139

5.5.2 Segment Clustering Time . 139

5.5.3 Execution time . 142

5.5.4 Thesaurus and Inverted Index 144

5.6 Retrieval of 3D models . 145

5.6.1 Experiment Description . 146

5.6.2 Search Time . 147

5.6.3 Memory Usage . 148

5.6.4 Retrieval Results . 149

5.7 Summary . 151

6 Conclusions and Perspectives 153

6.1 Dissertation Overview . 153

6.1.1 Research Background . 153

6.1.2 Approach Description . 154

6.1.3 Experimental Results . 155

6.2 Conclusions and Discussion . 155

6.2.1 Contributions . 155

6.2.2 Benefits . 156

6.2.3 Limitations . 157

6.3 Perspectives . 158

xiv

6.4 Final Remarks . 160

A Shape Similarity Study 163
A.1 Random shapes . 163

A.1.1 Similarities among all models 168

A.2 Geometrically similar shapes . 169

A.3 Nearest Neighbours . 177

A.4 Summary . 182

B Building a Thesaurus from Primitive Shapes 183

C Prototypes 191
C.1 Support Prototypes . 191

C.1.1 File conversion (and more) . 191

C.1.2 Counting faces on meshes . 192

C.1.3 Visual representation of a shape signature 192

C.2 Research Prototypes . 193

C.2.1 Collection Decomposition . 193

C.2.2 Segment Clustering . 194

C.2.3 Thesaurus Building . 194

C.2.4 Shape Retrieval . 194

C.3 Conclusions . 195

Bibliography 197

xv

xvi

List of Figures

1.1 Example of text collection . 7

1.2 Example of text thesaurus . 8

1.3 Classification Pipeline . 10

1.4 Retrieval Pipeline . 12

2.1 Taxonomy of 3D shape descriptors. 22

2.2 2D examples space decomposition techniques 26

2.3 EGI descriptor versus VEGI descriptor 27

2.4 Cross sections of binary and inverse distance functions of 3D object . . . 30

2.5 Multi-resolution representation of the spherical extent function 31

2.6 Princeton methodology for computing spherical harmonics descriptor . . 32

2.7 Symmetries relative to planes selected via PRST 33

2.8 Reeb graph of a bi-torus . 34

2.9 Results of shape matching with MRG versus ARG 36

2.10 Spin-images for three oriented points on the surface of a model 38

2.11 Silhouette images of an aeroplane model on the coordinate hyper-planes . 39

2.12 Extraction of the depth buffer-based shape descriptor 40

2.13 Computing spherical images from a 3D model 42

2.14 The unit sphere under three most common Minkowsky distances 50

2.15 MIIRE search engine on PC and PDA 53

2.16 Salient geometric features . 56

2.17 Selecting distinctive regions . 58

2.18 Sub-part correspondence of two mechanical parts 60

2.19 Scale-space decomposition of a mechanical part 62

3.1 CAS pipeline . 69

3.2 Example collection . 70

xvii

3.3 HSM tree . 72

3.4 Block diagram of CAS/HFP alorithm. 73

3.5 3D model S and corresponding signature FVS 74

3.6 Evolution of decomposition . 76

3.7 k-NN versus k-WR . 80

3.8 Decomposition trees produced by CAS/HFP for models in collection Deg. 81

3.9 Shape pool . 83

3.10 Distances between similar shapes . 84

3.11 Distances between SHA feature vectors. 86

3.12 Feature vector distances . 87

3.13 Histogram of feature vector distances 88

3.14 Decomposition trees . 89

3.15 Model segmented using HFP and CAS/HFP 90

4.1 Overview of thesaurus-based 3D shape retrieval framework. 96

4.2 Decomposition of collection Deg using the CAS/HFP algorithm. 97

4.3 Collection Dp of models represented using primitive instancing. 99

4.4 Shape thesaurus and inverted file for primitive instancing collection. . . . 100

4.5 Shape pool after processing example collection 102

4.6 Far from optimal partition estimation produced by Lloyd’s algorithm . . . 105

4.7 Signature space partition . 106

4.8 Shape pool partition . 107

4.9 Shape thesaurus . 109

4.10 Inverted index . 112

4.11 Shape retrieval pipeline. 113

4.12 Query Q and corresponding shape signature FVQ. 114

5.1 Sample of PSB collection . 120

5.2 Mesh complexity distribution . 122

5.3 Mesh complexity histogram . 123

5.4 Shape pool growth . 124

5.5 Memory required to stored the shape pool growth 125

5.6 Decomposability determination . 126

5.7 Shape pool growth . 128

5.8 Memory required to store the shape pool 129

xviii

5.9 CAS/HFP detailed execution time . 131

5.10 CAS/HFP execution time wrt collection size 131

5.11 Time distribution during CAS/HFP execution 132

5.12 Sample of six LEGO models . 133

5.13 Sample of twenty LEGO models . 134

5.14 Execution time while updating CAS/HFP 136

5.15 Decomposition stability chart . 137

5.16 Segment clustering time . 141

5.17 Collection classification time . 143

5.18 Query shapes . 146

5.19 Query results for Q1 . 149

5.20 Query results for Q5 . 150

A.1 Models randomly selected from the ESB collection. 164

A.2 SHA signatures of models in ξrand. 165

A.3 Similarity values between random models. 166

A.4 Chart representing similarity values between random models. 167

A.5 Distribution of similarity values between random models. 167

A.6 Distribution of similarity values between all models in the collection. . . . 168

A.7 Distribution of similarity values between all models in the collection. . . . 169

A.8 Set ξsim1 of similar shapes and corresponding SHA signatures. 171

A.9 Distances between SHA feature vectors of models in ξsim1 171

A.10 Set ξsim2 of similar shapes and corresponding SHA signatures. 172

A.11 Distances between SHA feature vectors of models in ξsim2 172

A.12 Set ξsim3 of similar shapes and corresponding SHA signatures. 173

A.13 Distances between SHA feature vectors of models in ξsim3 173

A.14 Set ξsim4 of similar shapes and corresponding SHA signatures. 174

A.15 Distances between SHA feature vectors of models in ξsim4 174

A.16 Set ξsim5 of similar shapes and corresponding SHA signatures. 175

A.17 Distances between SHA feature vectors of models in ξsim5 175

A.18 Set ξsim6 of similar shapes and corresponding SHA signatures. 176

A.19 Distances between SHA feature vectors of models in ξsim6 176

A.20 Chart representing similarity values between models in each set ξsimi
. . . 177

A.21 Similarity between models and nearest neighbours 179

xix

A.22 Similarity between models and nearest neighbours for 1st neighbour . . . 179

A.23 Similarity between models and nearest neighbours for 2st neighbour . . . 179

A.24 Similarity between models and nearest neighbours for 3st neighbour . . . 180

A.25 Similarity between models and nearest neighbours for 4st neighbour . . . 180

A.26 Similarity between models and nearest neighbours for 5st neighbour . . . 180

A.27 Example of k-NN query . 181

B.1 Primitives used in the example collection. 183

B.2 Collection of models represented using primitive instancing. 184

B.3 Scene graph for model S1. 185

B.4 Scene graph for model S2. 185

B.5 Scene graph for model S3. 185

B.6 Scene graph for model S4. 186

B.7 Scene graph for model S5. 186

B.8 Scene graph for model S6. 186

B.9 Scene graph for model S7. 187

B.10 Scene graph for model S8. 187

B.11 Scene graph for model S9. 187

B.12 Scene graph for model S10. 188

B.13 Shape thesaurus and inverted index for the example collection. 189

C.1 Diagram of SHaVisRep prototype. 192

xx

List of Tables

2.1 Summary of 3D shape descriptors. 47

3.1 Statistics of feature vector distance . 87

5.1 Distribution of mesh complexity in ESB and PSB collections 121

5.2 Clusters of ESB collection . 127

5.3 Experiment CAS/HFP settings . 127

5.4 Decomposition update execution time. 135

5.5 Segmentation difference distribution . 138

5.6 Collections for clustering test . 140

5.7 Retrieval time . 147

A.1 Description of models in ξrand. 166

A.2 Description of models in sets ξsim1 to ξsim6 170

A.3 Statistics of feature vector distance . 178

xxi

xxii

List of Publications

The work we developed within this PhD research has been the subject of original
peer-reviewed publications. Although some work focused on topics marginal to the thesis
core, the respective research contributed with valuable knowledge and experience. The
relevant publications are listed below in reverse chronological order.

1. Alfredo Ferreira, Simone Marini, Marco Attene, Manuel J. Fonseca, Michela
Spagnuolo, Joaquim A. Jorge and Bianca Falcidieno
Thesaurus-based 3D Object Retrieval with Part-in-Whole Matching. International
Journal of Computer Vision, Springer, Jun 2009.

2. Tiago Santos, Alfredo Ferreira, Filipe Dias and Manuel J. Fonseca
Using Sketches and Retrieval to Create LEGO Models. Proceedings of the Fifth Eu-
rographics Workshop on Sketch-Based Interfaces and Modeling (SBIM’08), pages
89–96, Annecy, France, Jun 2008.

3. Manuel J. Fonseca, Elsa Henriques, Alfredo Ferreira, Joaquim A. Jorge and Rui
Soares
Assisting Mould Quotation through Retrieval of Similar Data. Chapter in ”Digital
Enterprise Technology - Perspectives and Future Challenges”, Springer, June 2007

4. Manuel J. Fonseca, Elsa Henriques, Alfredo Ferreira and Joaquim A. Jorge
Assisting Mould Quotation through Retrieval of Similar Data. Proceedings of the
3rd. International CIRP Sponsored Conference on Digital Enterprise Technology
(DET’06) Setúbal, Portugal, September 2006

5. Manuel J. Fonseca, Alfredo Ferreira and Joaquim A. Jorge
Generic Shape Classification for Retrieval. Springer Lecture Notes in Computer
Science (LNCS 3926), Wenyin Liu and Josep LLadós (eds.), 2006.

xxiii

xxiv

Glossary

3DHT

Descriptor for 3D shapes based on the generalized 2D Hough transform.

3D SSD

Shape descriptor for 3D models based on the histogram of the shape index values.

CAH

Simple 3D shape descriptor that uses the length of vectors from the barycenter of
the shape with its surface and corresponding angles with the coordinate axes.

CAS

Decomposition technique devised during this dissertation based on multilevel shape
segmentation where objects are decomposed according to others in the collection.

CSG

Modelling technique that allows the creation of complex 3D models by using boolean
operators to combine objects.

EGI

Histogram-based technique to represent the shapes of surfaces that define a 3D
object.

ESB

Benchmark collection of 3D models for evaluating shape-based search methods
relevant to the mechanical engineering domain.

HFC

Method to compute and represent the hierarchy of regions in a polygonal surface.

HFP

Automatic mesh segmentation algorithm that produces a binary tree of mesh seg-
ments using fitting primitives.

xxv

HSM
Binary tree structure representing an hierarchically segmented mesh.

PSB
Repository of 3D models and software tools for evaluating shape-based retrieval
and analysis algorithms.

SHA
Numerical representation of 3D shapes commonly used as rotation invariant shape
descriptor.

SHREC
A retrieval contest for 3D models widely accepted as a reference benchmark.

VEGI
Extension of the EGI technique that captures the volume distribution of an object
without canonical alignment.

WTM
Collection of four hundred watertight mesh models collected from several web
repositories.

xxvi

1
Introduction

In the last decades the volume of multimedia information, such as images and video,

stored into databases and over the internet has been growing. In particular, recent ad-

vances on modeling, digitizing and visualizing techniques led to a clear tendency to in-

crease the number of 3D models both on the internet and in domain-specific databases.

Three-dimensional models are used in a wide range of fields, such as engineering, virtual

reality, medicine, molecular biology, geography or not to mention the growing entertain-

ment industry. As a result, today we have a lot of 3D model collections available for usage

on a wide range of areas.

The growing number of three-dimensional objects stored in digital libraries makes

searching and browsing these collections a non-trivial task, since a regular domain-specific

database can contain thousands of items. Indeed, unless effective meta-data have been as-

signed to models, it is not easy to find the sought model. Aware of this, during the last

decade, researchers proposed several approaches based on shape similarity to retrieve

3D models. Some of these content-based retrieval systems are able to find a model in a

database using query-by-example, a set of keywords, or a sketched query. However, re-

sults produced by such systems are far from the successful query results obtained by their

textual counterparts.

The following section describes one of the problems that, in our opinion, contribute

for the lack of success of 3D model retrieval systems and which we tackled during our

research. Next, we suggest a solution for this problem, enumerating the key objectives

and presenting a brief overview of our work. Finally, we summarize the main contribu-

tions and list the original publications presented to peer-reviewed journals and scientific

conferences.

1

2 Chapter 1. Introduction

1.1 Problem Description

Existing approaches to content-based 3D shape retrieval work mostly by comparing

the complete models [37]. Even those who use local features to represent a model in a

collection usually do not allow matching of object subparts. Indeed, a major handicap

of most existing retrieval systems is the fact that they only support queries of the com-

plete object and do not allow partial queries to be formulated, which greatly hinders their

usefulness. We can illustrate this problem with a parallel between 3D and text retrieval.

Most 3D search engines work mostly by simply matching entire objects: the query is

a complete 3D object and the items against which it is matched are also complete objects.

In a text-based system, this would mean to require that detailed specifications of pages,

or even complete documents, are used as query initiators instead of typing a few words

to a search engine to find the results sought. This might explain why 3D model retrieval

systems enjoy limited usefulness and there is no equivalent of a GoogleTM search engine

for three-dimensional geometric shapes.

Recently, a few 3D shape retrieval approaches with partial matching capabilities have

been proposed. These new approaches allow searching for a model by supplying as a

query only a part of the desired model. However, regarding models in the collection,

such solutions rely on representing only a few selected sub-parts of each of these mod-

els [59, 114] and not the complete models as a combination of all its sub-parts. Indeed,

considering a small set of distinctive features of an object to classify it proved to be an

efficient short-cut, but some eventually relevant object information is discarded in this

process. Using again a parallelism with text documents, this kind of approach is simi-

lar to using only a few keywords to classify each document, which is clearly insufficient

when compared to full text search.

On the other hand, the partial matching approaches that does not discard shape fea-

tures [31, 125, 123] face the problem of time complexity, since they rely on performing

comparisons with all shapes. When considering large collections of 3D models, such ap-

proach is not practical. In these cases, query time depends on the collection size. For

instance, considering that a fast partial matching between two objects take around one

tenth of a second, if we query a collection with several thousand elements using this tech-

nique it will need too much time to execute.

1.2 Thesis Statement 3

The main goal of our research is to devise a solution that overcomes the problems

referred above: (1) for large collection of 3D models, retrieval is time-efficient only with

complete object matching or (2) when only a smal set of features are considered in each

model. Such solution should be able to perform partial queries whose execution time does

not depend on collection size and where the complete models are included on the search

process, instead of only a few selected sub-parts.

1.2 Thesis Statement

To attain the goal identified above, regarding efficient retrieval of three-dimensional

shapes using partial queries, we propose a novel approach to retrieval with part-in-whole

matching 1. We aimed for a solution similar to the one adopted by existing text retrieval

systems, which classifies all words from the entire document and not only a small set of

selected keywords. In these systems the submitted queries usually contain just a couple of

terms [118] and documents containing such words are retrieved. Likewise, our approach

propose the retrieval of models from a collection based on geometrical similarity between

a query and parts of the models in that collection.

Devising such retrieval solution faces two major challenges, besides those shared with

the global matching approaches, such as query formulation and shape feature extraction.

The first challenge is to devise an effective and efficient decomposition of models into

sub-parts. The second is to find an effective way to index the extracted information to

allow a fast and accurate search. In the present research work we dedicated a special

attention to these challenges.

1.2.1 The ultimate goal

Ignoring for a while the practical problems, we present an overall description of what

we think a fully fledged content-based 3D model retrieval system should be. In our opin-

ion, an ideal system should be able to decompose models into its components, eventually

in multiple scales, and classify all of them correctly. After an effective object decompo-

1In the literature, two distinct approaches to object retrieval with partial queries can be found. The
partial matching aims on finding objects in a collection that share similar sub-parts with the query. The
part-in-whole matching aims on retrieving models that contain the query.

4 Chapter 1. Introduction

sition and corresponding sub-part classification, it should be possible to submit a query

to the system, representing a subpart of existing objects in the database, and it will re-

turn a list of models containing similar parts. Despite no such system had been devised

yet,achieving such solution is the ultimate goal of research on 3D retrieval.

During our research we intended to develop novel techniques that provide some of

the functionality necessary to build a retrieval system with partial queries. Assuming

that models in the database are not previously decomposed by human operators, devising

a system that behaves as described above is a complex task. Although our goal was

not to devise a final solution for this problem, we believe to have provided some major

contributions to it. Namely through a novel technique for automatic model decomposition

and a methodology to clssify, index and retrieve 3D models.

1.2.2 Problem statement

Concerning a 3D search engine, performing retrieval with partial matching on large

collections of three dimensional models using all of its features remains an open chal-

lenge. Although some techniques seems practical for indexing large models, and even

large collections of complex models, these only consider a small set of relevant local

features of each object. Such approaches do not fulfill the main goal of the research

on shape retrieval with partial matching: the ability to find models with different global

shape properties but having just some characteristics in common with the query, which

might not even be the most relevant geometric features. In this dissertation research work

we aimed at achieving a slightly different goal: 3D model retrieval with part-in-whole

matching, i.e. find in a collection models containing sub-parts similar to teh query shape.

To that end, we followed a different approach from those proposed by other re-

searchers and described ahead in Section 2.5. Like them, we aim to provide a solution

that will allow successful searches on 3D databases with partial queries. However, we

considered not only relevant parts of models, as some of them do, but the whole set of

parts that compose objects. Moreover, we undertake the challenge of supporting large

collections, and not only small sets with hundreds of models. Thus, we had to overcome

a major problem: the time and space complexity associated to indexing all components of

each model, even the irrelevant ones. This is even worst when considering a multi-scale

1.2 Thesis Statement 5

approach to shape decomposition [97]. Nevertheless, indexing and searching contents of

large collections have been already addressed with success in text information retrieval.

In this dissertation, we suggested adapting techniques from this field to 3D shape retrieval.

Words are the basic elements of textual information retrieval. Every document in a

collection is composed by words and these are used to classify and retrieve it. Thus, to

transpose the textual information retrieval concepts to 3D shape retrieval, we should es-

tablish a parallel between words in document and parts from three-dimensional models.

Since a model can be defined by merging its sub-parts, we considered that the basic el-

ement of our retrieval approach is a three-dimensional shape. However, text documents

are based on a finite vocabulary of words, while models are defined in a continuous 3D

space, thus not generally defined by a finite set of shapes. To overcome this divergence,

we cluster model sub-parts according to their similarity and consider the resulting finite

partition a vocabulary of basic shapes. Thus, to classify 3D models we use their sub-parts

as words are used in textual information retrieval.

1.2.3 Research hypothesis

Well known indexing and matching techniques, widely-used in text information re-

trieval, produce successful practical results, such as the GoogleTM search engine. In these

systems, all words from the documents in the entire collection are classified and not only

a small set of selected keywords. The queries usually contain just a couple of terms [118]

and documents containing such words are retrieved. Likewise, our approach will retrieve

models from a collection based on geometrical similarity between a query shape and parts

of models in that collection.

We believe that through the use of an effective shape decomposition mechanism and

a shape thesaurus with inverted indices we will be able to describe and retrieve 3D models

using part-in-whole queries, similarly to what happens with word thesauri. This approach

will allow us to take advantage of some well known techniques from text information

retrieval, such as tf-idf 2 to rank the relevance of every subpart in the database or data

compression techniques to reduce indices size.

2The term frequency and inverse document frequency (tf-idf) is a quantitative measure commonly used
in information retrieval and text mining to determine the relevance of a word to a document in a collection,
regarding to the contents of the whole collection.

6 Chapter 1. Introduction

Having identified the major challenges and how we intended to address them, we can

now present the research hypothesis we formulated:

Retrieval of 3D objects with partial queries can be achieved by de-

composing a model into a set of sub-shapes that describe the whole model,

combined with a shape thesaurus for indexing.

This hypothesis summarizes our main ideas and clearly indicates our final objective:

to contribute to the development of a 3D shape retrieval solution that supports part-in-

whole matching. But such goal could be decomposed into a set of research objectives in

order to clearly identify the focus of our work. According to the hypothesis and taking

into account the problems we faced, our research had three major goals:

1. Devise a solution to decompose a three-dimensional model according to the context

where it lies (i.e. other objects in the collection), producing a set of segments (3D

”words”) suitable for the construction of a shape thesaurus;

2. Identify methods for shape matching and indexing that supports a thesaurus-based

approach on 3D shape retrieval;

3. Develop a thesaurus-based framework for 3D shape retrieval with partial queries

combining the methodologies referred above.

To achieve these objectives we devised a novel approach to 3D shape retrieval, de-

scribed briefly in the next section and with more detail ahead in this document.

1.3 Approach Overview

In the dissertation work described in this thesis we researched the viability of trans-

posing the matching and indexing approaches widely-used in text information retrieval to

the 3D shapes field. Thus, we will start by briefly describe the concepts and basic ideas

behind the text information retrieval approach used by successful search engines. After

describing these concepts, we introduce our approach to shape retrieval.

1.3 Approach Overview 7

We will illustrate the description of text information retrieval concepts with a trivial

example. For that end we use a simple collection presented in Figure 1.1, which contains

only six text documents. Note that, despite its simplicity, this collection allows a clear

representation of the basis of indexing mechanisms used by most text retrieval engines,

which is our objective.

1.3.1 Indexing and Searching Text Collections

In theory, it is possible to query the contents of a textual documents collection by

performing a sequential search. Sequential searches, often called serial scanning, consists

in directly scan the document contents by finding the occurrences of a given text pattern -

the query - in the documents. This strategy can be used when the collection is small (i.e. a

few megabytes) and is the best choice when the collection is volatile (i.e. is frequently

modified) [17].

However, if the collection grows, sequential searches are no longer feasible. In this

case, data structures should be built over the text to allow efficient searches. Inverted

indexes are widely used for this purpose in semi-static collections, providing good re-

trieval results with the cost of overhead space. These semi-static collections can be huge

and updated, for instance, on a daily basis or at least indexed with such frequency even

if thousands of documents are changed, inserted or removed every second. Indeed, web

search engines adopted this approach and their success proves its goodness.

Conceptually, an inverted index (or inverted file) is a data structure composed by two

That government is best which governs least1:

That government is best which governs not at all2:

The mass of men serve the state not as men, but as machines3:

Wooden men can be manufactured that will serve the purpose as well4:

Government is at best but an expedient5:

But most governments are usually inexpedient6:

Doc. Text

Collection

Lexicon

Num. Term

best1:
expedient2:
government3:
governs4:
inexpedient5:
least6:
machines7:
manufactured8:
mass9:
men10:
purpose11:
serve12:
state13:
wooden14:

Inverted File

Num. Inverted List

<3; 1, 2, 5>1:
<1; 5>2:
<4; 1, 2, 5, 6>3:
<2; 1, 2>4:
<1; 6>5:
<1; 1>6:
<1; 3>7:
<1; 4>8:
<1;3>9:
<2; 3, 4>10:
<1; 4>11:
<2; 3, 4>12:
<1; 3>13:
<1; 4>14:

Figure 1.1: Example of a textual document collection.

8 Chapter 1. Introduction

That government is best which governs least1:

That government is best which governs not at all2:

The mass of men serve the state not as men, but as machines3:

Wooden men can be manufactured that will serve the purpose as well4:

Government is at best but an expedient5:

But most governments are usually inexpedient6:

Doc. Text

Collection

Lexicon

Num. Term

best1:
expedient2:
government3:
governs4:
inexpedient5:
least6:
machines7:
manufactured8:
mass9:
men10:
purpose11:
serve12:
state13:
wooden14:

Inverted File

Num. Inverted List

<3; 1, 2, 5>1:
<1; 5>2:
<4; 1, 2, 5, 6>3:
<2; 1, 2>4:
<1; 6>5:
<1; 1>6:
<1; 3>7:
<1; 4>8:
<1;3>9:
<2; 3, 4>10:
<1; 4>11:
<2; 3, 4>12:
<1; 3>13:
<1; 4>14:

Figure 1.2: Example of a lexicon and corresponding inverted file for a textual document
collection.

elements: the lexicon (or thesaurus) and the occurrences list, often called inverted file.

To avoid misinterpretations, we will refer to these elements as thesaurus and inverted file

for the remaining of this document. The thesaurus contains the vocabulary used in the

collection, i.e. the words used in the documents. Respecting the concept of a lexicon,

different forms of the same word clustered together, such as run, ran and running, which

are different forms of the same lexeme - run. Thus, the construction of a word thesaurus

is more than just listing all words in the documents.

For each entry in the thesaurus, called term, the occurrences of any form of that word

in the collection are stored in the inverted file. To that end, an inverted list containing

the number of occurrences and the documents where they occur is built for every term

in the thesaurus. The inverted file is no more than the set of all these lists, as illustrated

in Figure 1.2. In this example we show a sample lexicon, extracted from the collection

presented in Figure 1.1 and the corresponding inverted file, where is represented a list of

occurrences for each term in the lexicon.

Eventually, additional information can be included on this structure to improve its effi-

ciency, such as referring the position in the document where each word occurs. The space

complexity issue must also be addressed when indexing large collections of documents.

1.3 Approach Overview 9

Indeed, several techniques are used to reduce space requirements of inverted indices, but

since we only intend to explain the basic concepts, we will not take into consideration all

the capabilities and problems of such structure. Instead, for more complete details and

discussion on these topics we refer our readers to specialised literature [92, 17].

After indexing the collection,a three-stages algorithm is used to retrieve documents. It

starts by performing a search in the lexicon, in which it identifies the terms that match the

given query. Then, the corresponding list of occurrences is retrieved from the inverted file,

identifying the documents where the query appears. In the last stage these occurrences

are processed, usually using additional information stored in the inverted file, in order to

improve the query results.

1.3.2 Thesaurus-based 3D Shape Retrieval

Our research aims at transposing to 3D retrieval the matching and indexing concepts

widely-used in text information retrieval. We propose to use a shape thesaurus for model

classification, indexing and retrieval. Similarly to a word thesaurus (or lexicon) in text

retrieval, which contains the list of words that compose the vocabulary used in the docu-

ments, our shape thesaurus will contain shapes that compose the indexed models. Con-

ceptually, the shape thesaurus should consist of a list of segments extracted from models

in the collection and the inverted index will consist of a list of terms in the thesaurus with

the corresponding lists of models containing that segment.

However, while words are explicit in text, subpart identification in a three-dimensional

object is not trivial. Moreover, the success of our approach depends greatly on the quality

of this identification. Unfortunately, no automatic detection of Geons - primitive shapes

that, according to neuroscientist Irving Biederman, are used to construct structural repre-

sentations of objects in human brain [32] - have yet been devised. Indeed, from a practical

point of view, sub-part identification in 3D object is an hard task, not only due to its com-

putational complexity but also because of the ambiguity of such decomposition. This

task is even harder when aiming for automatically decompose 3D models. Therefore, we

dedicated a significant part of our research on devising an effective technique for model

segmentation, suitable to be used as a basis for building a shape thesaurus.

An ideal approach to model decomposition will segment the model according to se-

10 Chapter 1. Introduction

mantic meaning of sub-parts or according to human visual perception of shapes. However,

we consider that pursuing an automatic and time-efficient decomposition technique using

these approaches in this stage of our research might be too ambitious. Therefore, we

followed a distinct decomposition approach based on geometrical features of shapes to

attain a solution that provides efficient automatic identification of sub-parts of models in

a collection.

We developed a novel approach to shape decomposition that performs multilevel

shape segmentation of each model based on the concept of decomposable regions. De-

composable regions are determined according to their distinctiveness regarding regions

from all other models in the collection. We called this decomposition method Collection-

aware Segmentation (CAS). This algorithm processes all models in the collection and

produces a multilevel set of segments that compose these models. These segments (our

”3D words”) will be then used to construct the shape thesaurus, equivalent to a lexicon in

textual information retrieval.

In a typical textual information retrieval system, the number of words in a lexicon

is usually measured in millions [35]. However, to ensure time efficiency, we designed

our shape thesaurus having just around a few thousand terms. To that end, instead of

using directly all segments extracted from models, we grouped them according to their

geometric properties and used these groups to construct the thesaurus. Indeed, something

similar occurs in text indexing when different forms of the same word correspond to

a unique term. Likewise, each term in the thesaurus of shapes represent a cluster of

geometrically similar segments.

Thus, to make our approach useful and effective, segments obtained through model

decomposition are meaningfully clustered. Terms for the thesaurus will spring up from

these clusters and will be associated to all models containing segments in the correspond-

Thesaurus ConstructionSegmentation

3D
 M

od
el

s
C

ol
le

ct
io

n

Sh
ap

e
Th

es
au

ru
s

Segment Clustering Thesaurus
CreationModel Segmentation

Figure 1.3: Pipeline for constructing a 3D shape thesaurus.

1.3 Approach Overview 11

ing cluster. When looking for a model in a collection, the query is matched with the terms

of the thesaurus and results are obtained using the measured similarities.

While the thesaurus is constructed by listing the estimated terms, the inverted index

stores the list of segments belonging to the cluster that originated with each term. Af-

ter creating a thesaurus, computing the inverted index is straightforward. We just look

for segments associated to each term and create the corresponding inverted list with the

models that contain these segments, i.e. the occurrences of that term in the collection.

Summarizing, our approach to index a 3D model collection using a shape thesaurus

can be divided into three distinct steps, as depicted in Figure 1.3. The first is the seg-

mentation of models in the collection, performed by the CAS algorithm. The second is

the clustering of the resulting segments in order to identify the thesaurus terms. Finally,

based on these terms, the last step creates a shape thesaurus and the corresponding in-

verted index. Basically, the classification process receives a 3D model and constructs

the corresponding shape thesaurus to be used for 3D shape retrieval using part-in-whole

matching.

The retrieval component of our approach combines 3D shape matching techniques

with text information retrieval concepts. The overall idea can be described as a pipeline of

two steps, illustrated in Figure 1.4. First, a typical shape matching is performed between

the query and the terms. This matching process allows the identification of terms in the

thesaurus geometrically similar to the given query. Notice that searching for similar terms

in the thesaurus does not depend directly of the collection size. Instead, it only depends on

the thesaurus size, which contains a small number of shapes, making the search process

relatively fast.

After finding the similar terms, the remaining process is approximately the same as

in text retrieval after identifying matches in the lexicon. The inverted index is used to

identify models associated with the terms matching the query. These models correspond

to the search result and can be identified in linear or even constant time, depending on

indexing structure used and on the additional processing applied.

12 Chapter 1. Introduction

1.4 Contributions

The work described in this dissertation introduces a novel approach to 3D shape re-

trieval. It provides a solution for performing partial queries in large collections of three-

dimensional models. This is achieved by combining concepts from textual information

retrieval with 3D shape analysis and classification techniques in a modular framework for

3D shape retrieval. The major contributions of this research are the following:

• Novel shape decomposition technique

To fulfill our needs of model decomposition, we devised a new technique to segment

shapes automatically, without human intervention. Instead of considering only the

model to be decomposed, the Collection-aware Segmentation (CAS) analyses all

models in the collection and decompose them according to each other, i.e. model

decomposition depends on the collection where it lies.

• Collection indexing based on a shape thesaurus

A completely new concept was introduced during our research: a 3D shape the-

saurus. This structure, together with an inverted-index, allows fast retrieval of 3D

models with part-in-whole matching. The search time on a thesaurus-based retrieval

solution is independent of the collection size, which makes this approach suitable

for indexing large collections.

• Generic framework for 3D shape retrieval with partial matching

The overall idea behind our approach diverges from existing approaches to shape

retrieval. Thus the framework we devised combines a shape decomposition tech-

nique (that can be other than the one we suggest) with thesaurus-based indexing.

Shape Retrieval

Q
ue

ry

(3
D

 S
ha

pe
)

Q
ue

ry

R
es

ul
ts

Similar Term Search Model Identification

Figure 1.4: Pipeline for retrieving a 3D shape from the indexed collection.

1.5 Dissertation Outline 13

1.5 Dissertation Outline

The remaining of this document is organized in five chapters. The next chapter

presents the research background related with our work, namely by pointing the key play-

ers who developed pertinent and ground-breaking work in our field of research. In this

chapter we also introduce the commonly used 3D model collections and benchmarks, as

well as relevant details on query and matching techniques. Besides this research context

information, this chapter includes surveys on the state-of-the-art in 3D shape description,

shape segmentation and retrieval using partial queries.

In Chapter 3 we describe in detail the shape decomposition algorithm devised during

this dissertation research. The CAS is a novel approach to shape segmentation and cor-

responds to an important contribution of our work. Chapter 4 describes our approach to

retrieve 3D models with partial queries from large collections. This approach relies on

a shape thesaurus and corresponding inverted index to provide efficient shape retrieval.

We also describe the thesaurus construction, the indexing techniques and the retrieval

methodology.

Chapter 5 presents experimental results obtained during our research, describing the

behavior of the different algorithms. In this chapter we also present and discuss the results

achieved by our retrieval solution as a whole. Finally, in Chapter 6 we present an overall

discussion of our work, delineating conclusions and introducing perspectives for future

research.

14 Chapter 1. Introduction

2
Background and
State-of-the-Art

To familiarize the reader before deepen the description of our research, we present

in this chapter the background we consider necessary to easily understand our work. We

present the current 3D shape retrieval research context. To that end, we will firstly intro-

duce the key players in this field of research, i.e. the groups whose research is closely

related with ours and whose recent contributions are relevant to the progress of this re-

search area in our opinion. We also present a list of existing 3D model collections, with

special emphasis in shape benchmark collections.

Shape descriptors play a fundamental role in object analysis and classification, thus

in 3D model retrieval. Therefore we dedicate part of this chapter to present a survey on

3D shape descriptors. Here, we introduce a taxonomy to classify shape descriptors and

present the state-of-the-art on shape description techniques. Based on the conclusions

of this survey we selected a shape descriptor to be used by our approach to 3D shape

retrieval.

Additionally, in this chapter we will give the reader a quick overview of query strate-

gies and similarity measures. These topics are not specific for 3D shapes, instead they

are common for any kind of data. However, due to the importance of these subjects in

our research, we consider important to provide the reader with the basic concepts behind

querying and similarity measuring.

Finally, we present the more relevant solutions for content based retrieval of 3D mod-

els, followed by the state-of-the art in retrieval using partial queries. While the first will

focus on solutions that support complete queries, the second will present several works

that tackled the problem of partial matching.

15

16 Chapter 2. Background and State-of-the-Art

2.1 Research Context

In this section we intend to introduce the reader into the current context of research

on three dimensional shape analysis, classification and retrieval. To that end, we will

start by presenting some people whose work is closely related or has a major relevance to

our research. Additionally, we will overview existing model collections, with particular

emphasis on benchmark collections.

2.1.1 The Key Players

Following the increasing importance of content-based retrieval of three-dimensional

shapes, several research groups around the world focused their interests on this area. Pro-

ducing an exhaustive list with all of them is difficult, with the additional risk of excluding

some important researchers. Therefore, we will only present a short list containing those

whose work we consider more relevant regarding our research focus.

Princeton During the last eight years, the Princeton Shape Retrieval and Analysis Group,

leaded by Thomas Funkhouser, have been addressing key issues in shape-based retrieval

and analysis of 3D models. Focusing on effective shape representations and query inter-

faces, they have developed a search engine for 3D polygonal models and later released

a classified set of 3D models that can be used by researchers in this area. The Princeton

Shape Benchmark is now widely accepted as a major benchmarking tool within 3D shape

retrieval and classification.

PRECISE In Purdue University, Karthik Ramani leads the Purdue Research and Educa-

tion Center for Information Sciences in Engineering (PRECISE). Their research lies at the

intersection of design, shape analysis, and information sciences. They focus on develop-

ing representations for two and three-dimensional shapes for engineering and proteomics.

In the last few years, they developed interfaces for querying, interacting, and navigat-

ing intelligently in 3D shape databases. Similarly to the Princeton team, researchers at

PRECISE deployed a widely known benchmark focused on engineering models, the En-

gineering Shape Benchmark (ESB).

2.1 Research Context 17

Konstanz The Multimedia Signal Processing Group chaired by Dietmar Saupe and the

Databases, Mining and Visualization Group leaded by Daniel Keim, both from Kon-

stanz University, join their efforts in a research project focusing the retrieval of three-

dimensional shapes. The 3D Model Similarity Search project is part of the strategic re-

search initiative on Distributed Processing and Delivery of Digital Documents and aims

at effective content based model retrieval and efficient indexing and accessing methods.

CNR IMATI-Ge People at the Shape Modeling Group, a research team of the Institute

of Applied Mathematics and Information Technology at Genova headed by Bianca Falci-

dieno, have been working on geometric modeling for several years. Their main research

goal is to describe the shape of an object through the definition of geometric primitive en-

tities and the classification of the reference context. To that end, they have been working

in a variety of topics, ranging from graph comparison to free-form modeling, producing

some interesting work on shape retrieval. Moreover, Bianca Falcidieno was coordinator

of the AIM@SHAPE project.

AIM@SHAPE The Advanced and Innovative Models And Tools for the development

of Semantic-based systems for Handling, Acquiring, and Processing knowledge Embed-

ded in multidimensional digital objects (AIM@SHAPE) was a sixth framework program

project that fostered the development of new methodologies for modeling and processing

the knowledge related to digital shapes. This project embraced a multi-disciplinary field,

which integrated Computer Graphics and Vision with Knowledge Technologies and built

on using knowledge formalization mechanisms for linking semantics to shape or shape

parts. Today, AIM@SHAPE turned into a Network of Excellence and a global reference

to the our field of research.

Utrecht Also participating on AIM@SHAPE, Multimedia and Geometry group headed

by Remco Veltkamp at the Center for Geometry, Imaging and Virtual Environments of

Utrecht University has been working on multimedia information retrieval. Along with

their research in areas such as music or image retrieval, they have developing some inter-

esting work on 3D shape analysis and retrieval, namely on 3D facial models.

18 Chapter 2. Background and State-of-the-Art

FOX-MIIRE In the Multimedia, Images, Indexing and Recognition (FOX-MIIRE) re-

search group at the University of Sciences and Technologies of Lille, Jean-Philippe Van-

deborre, Mohamed Daoudi and their teams are working on three-dimensional model in-

dexing and topological analysis. The recently published FOX-MIIRE 3D-Models Search

Engine based on adaptive views clustering algorithm is the first search engine that ac-

cepts 3D-Models retrieval from photos [10]. Additionally, they developed a 3D retrieval

application for mobile devices, which were presented in the 2007 ACM International Con-

ference on Image and Video Retrieval. The FOX-MIIRE group is a partner of DELOS

Network of Excellence.

DELOS Partially funded by the European Commission in the frame of the Informa-

tion Society Technologies Programme, DELOS is a Network of Excellence on Digital

Libraries. The main goal behind DELOS is to provide global access to knowledge con-

tained in the digital collections created by organisations and individuals around the world.

To that end, DELOS is conducting a joint program of activities aimed at developing the

next generation of Digital Library technologies, based on sound comprehensive theories

and frameworks for the life-cycle of Digital Library information. Within the large number

of research topics covered by DELOS, the work leaded by Alberto del Bimbo from the

University of Florence is of major relevance for our research.

Firenze At the Media Integration and Communication Center of the University of Flo-

rence, researchers leaded by Alberto del Bimbo presented a prototype system for content

based retrieval of 3D objects, briefly described in Section 2.4. Besides, they have been

developing relevant research on curvature maps and spin images as descriptors for 3D

shape retrieval.

Boǧaziçi At the Image and Video Processing Group of Boǧaziçi University, Bülent

Sankur’s team is developing, together with people from the multimedia, vision and graph-

ics laboratory at Koç University relevant research on 3D shape retrieval. In the last two

years, they focused their research on analysis and description of 3D shapes and on 3D

face recognition, achieving remarking results.

2.1 Research Context 19

2.1.2 Model Databases

Besides identifying the key players in three dimensional shape retrieval, it is impor-

tant to identify the existing sources of three dimensional models to which shape retrieval

can be useful. Indeed, as a result of recent advances on modeling, digitizing and visualiz-

ing techniques, there are a large number of 3D model collections available for usage both

on the internet and in domain-specific databases. Since it will be hard and out of scope of

this work to exhaustively enumerate all of this databases, we will refer in the following

paragraphs just a few of these databases offering public access.

The Protein Data Bank (PDB) [21, 22], an archival for macro molecular structures, is

an early example of such collections now considered the single worldwide archive for bio-

logical macro molecules. Another example of a 3D model collection was produced during

the Digital Michelangelo Project [87, 86], an archive with digital models of Michelangelo

sculptures and architecture containing an aggregate of nearly eight billion polygons.

The National Design Repository [107, 127, 108] is a collection of public domain

computer-aided design data from a variety of sources. This data includes tens of thou-

sand solid models and CAD files. Recently, GoogleTM released the GoogleTM 3D Ware-

house [69], an online service that hosts 3D models of existing objects (mainly buildings)

created in GoogleTM SketchUp [68].

Besides the collections referred above, several research databases are available for

public use. An exhaustive list of these databases will be too long to include on this doc-

ument. However, Akgul compiled a rather complete list and published it in his thesis

dissertation [4]. Relevant for our work are the databases associated with shape bench-

marks, very useful for evaluating retrieval algorithms.

2.1.3 Benchmarking 3D shape retrieval

Like in other information retrieval research areas, effective testing and comparison of

different techniques in multimedia information retrieval requires the existence of widely

accepted evaluation frameworks, such as the TRECVid [119].Regarding 3D shape re-

trieval, a few benchmarks are already publicly available. Below we present most relevant

with respect to our research.

20 Chapter 2. Background and State-of-the-Art

Princeton Shape Benchmark In the three-dimensional models domain, the Princeton

Shape Benchmark (PSB), deployed by Thomas Funkhouser team [115], has become the

standard and is being widely used for evaluating various representation methods and shape

retrieval techniques. The PSB provides a repository of around 1,800 models collected

from the web and software tools for evaluating shape-based retrieval and analysis algo-

rithms.

Shape Recognition Contest A retrieval contest for 3D models was established a few

years ago, following the experience of other information retrieval research areas. Cur-

rently, Shape Recognition Contest (SHREC)is widely accepted as a reference benchmark

in 3D shape retrieval and is expected to become an objective tool for evaluating and com-

paring 3D retrieval techniques. This contest has been organized by the network of excel-

lence AIM@SHAPE.

AIM@SHAPE The AIM@SHAPE network of excellence, introduced in Section 2.1.1,

released their shape repository which makes several 3D models available for researchers

to compare shape matching algorithms. It is a shared repository populated with a col-

lection of digital shapes and a integral part of the framework of tools and services for

modeling, processing and interpreting digital shapes, developed within the AIM@SHAPE

project.

SHREC 2009 partial retrieval track dataset The latest edition of the shape recogni-

tion contest (SHREC 2009) included a track on partial retrieval of 3D models. One of

the objectives of this track is to evaluate solutions that perform retrieval of objects using

partial queries. To that end, a set of queries and a collection of target objects are given.

Unfortunately, these datasets were made available in December 2008, after we have fin-

ished our experiments.

Engineering Shape Benchmark Despite the existing work on shape repositories, there

has been limited work in developing domain dependent benchmark databases for 3D

shape searching. Indeed, the most popular benchmarks do not include model classes from

specialized application domains. To overcome this in the engineering field, the PRE-

2.2 From Shapes to Descriptors 21

CISE group at Purdue proposed [71] a benchmark database for evaluating shape-based

search methods relevant to the mechanical engineering domain. They developed a pub-

licly available Engineering Shape Benchmark (ESB) for comparing various shape-based

search algorithms.

Since our research focused on engineering CAD models and the Engineering Shape

Benchmark (ESB) is widely accepted as a valuable benchmark in this domain, we used

this collection during our experiments.

Benchmarking CAD search techniques Having also identified the problems referred

above, Bespalov et al. presented benchmark datasets to assess the relevance of existing

3D shape retrieval techniques for engineering problems [23]. They proposed several dis-

tinctive repositories for evaluating techniques for automated classification and retrieval

of CAD objects. These collections includes sets of primitives, industrial models and

LEGO R© models. The models on these datasets were extracted from the National Design

Repository [107, 127, 108] and manually classified by their appearance, manufacturing

process and function, since these are typical classification schemes for CAD models.

2.2 From Shapes to Descriptors

Three-dimensional models are useful in a wide range of domains. This application

diversity lead to a myriad of domain-specific collections with several distinct forms of

model representation [39]. However, these different representations can always be con-

verted or approximated to a more generic one, such as a polygonal mesh, which could be

interpreted by classification and retrieval algorithms.

These algorithms usually rely on a numerical representation to describe both mod-

els and queries. The most common numerical representation for 3D shapes are feature

vectors. These feature vectors allow representing models and queries as points in a

multi-dimensional space. Thus, searching for similar objects is reduced to a search in

the feature-vector space instead of comparing objects directly. Indeed, the usage of fea-

ture vectors is the standard approach for multimedia retrieval [52]. Generally, a feature

vector, also referred as descriptor or object signature, is a set of values extracted from a

multimedia object that describe it numerically in a high-dimensional space.

22 Chapter 2. Background and State-of-the-Art

An important goal of any 3D shape description approach is to preserve the maximum

shape information on a feature vector with the lower dimensionality possible. Indeed,

finding such computational representation of a shape is considered as the primary chal-

lenge in building a shape based retrieval system [55].

In this section we will briefly describe existing approaches to 3D shape description.

Although we tried, in this document to produce a comprehensive survey, readers are en-

couraged to consult recent publications entirely dedicated to this topic, as the survey by

Tangelder and Veltkamp [128] or the state-of-the-art review published by Iyer et al. [70].

2.2.1 Taxonomy of 3D Shape Descriptors

In a noticeable work, Bustos et al. extensively surveyed methods for 3D shape de-

scriptor computation [37] and proposed a taxonomy for these methods. This taxonomy

of 3D shape descriptors, although well-grounded, was not universally accepted due to the

variety of distinct approaches to shape descriptor categorization. Nevertheless, we will

follow a general classification scheme, very similar to the taxonomy proposed by Bus-

tos et al.. This scheme, depicted in Figure 2.1, emphasizes the specific way to exploit the

shape information contained in a 3D object and was suggested by Akgül [3].

3D Shape Descriptors

Histogram-Based Transform-Based Graph-Based 2D Image-Based Other

Cord and Angle Histograms

Color Distribution

Shape Distributions

Volumetric Extended Gaussian Images

3D Hough Transform

Shape Spectrum

Voxel-3D Fourier Transform

Distance Transform and
Radial Cosine Transform

Spherical Harmonics Transform

Rotation Invariant Spherical Harmonics

Reeb Graphs

Multiresolution Reeb Graphs

Silhouette Descriptor

Depth Buffer Descriptor

Lightfield Descriptor

3D Zernike Moments

Reflective Symmetry Descriptor

Density-Based 3D Shape Descriptors

Elevation Descriptor

Shape Histograms

3D Shape Contexts

Modified Shape Distributions

Shperical Moments

3D Angular Radial Transform

Size GraphsPlanar-Reflective Symmetry Generalised Shape Distributions

Curvature Histogram

Spin Images

Extended Gaussian Images

Complex Extended Gaussian Images

Morphing Effort Descriptor

Augmented Reeb Graphs

Skeletal Graphs

Scale-Space Decomposition

Salient Visual Features

Figure 2.1: Taxonomy of 3D shape descriptors.

2.2 From Shapes to Descriptors 23

The taxonomy we followed classifies descriptors according to the technique used to

build the shape numerical representation. As a result of this classification methodology,

the taxonomy adopted in this dissertation is divided into five categories: histogram based;

transform-based; graph-based; image-based; and other shape descriptors. In the following

sections we will present the most relevant approaches in each category.

2.2.2 Histogram-based Descriptors

Widely used in computer graphics to represent the color distribution in an image, the

color histogram is computed by counting the number of pixels for each color. Adopted

to 3D shape description, an histogram is often referred as an accumulator that collects

numerical values of certain features calculated from the shape to represent. Based on

this loose definition, many 3D shape descriptors can be considered as histogram-based

methods, although they are not based on histograms in rigorous statistical sense.

Cord and Angle Histograms

The use of cord and angle histograms for 3D shape descriptors were presented by

Paquet et al. in [103, 104]. The authors define a cord as a vector that goes from the

centre of mass of an object to the center of mass of a bounded region on the surface of the

object. Then, compute the descriptor based in a collection of three histograms. The first

and second histogram represents the distribution of the angles between the cords and the

first and second reference axis, respectively.The third histogram provides the distribution

of the radius.

Despite its computational simplicity and efficiency, this approach simplifies triangles

to their centers and does not consider the size and shape of the mesh triangles. More-

over, since only global features are used to characterize the overall shape of the objects

this method is not very discriminating about objects details, but their implementation is

straightforward. It is often used in object retrieval as an active filter, after which more

detailed comparisons can be made, or can be used in combination with other methods to

improve shape descriptors.

24 Chapter 2. Background and State-of-the-Art

Color Distribution

Paquet and Rioux [103] proposed, along with the cord and angle histograms, a pecu-

liar color based descriptor for 3D shapes. In their approach, a voxelised representation

of the 3D object, where each voxel has a color value associated with it. This value is

computed using information from the texture map, material properties and vertex color

extracted from the object representation.

Authors suggest three distinct approaches to compute the histogram that describes

the object. If color location is irrelevant, they compute the color histogram of the object

or, alternatively, they use the dominant colors to compute three histograms. Otherwise,

if color location is relevant, authors suggest using a wavelet approach based on a model

with six dimensions: three for position and three for color. The six-dimensional wavelet

transform is computed and then used to construct a histogram.

Curvature Histogram

Koenderink and van Doorn [81] defined the curvature index as a function of the two

principal curvatures of the surface. This index gives the possibility to describe the shape

of the object at a given point. However, it loses the information about the amplitude

of the surface shape and is sensitive to noise. Later, Vandeborre et al. used this index to

compute a curvature histogram of the shape [131], a local descriptor invariant to geometric

transformations.

Shape Distribution

Osada et al. proposed a method for computing shape signatures for arbitrary 3D

polygonal models [101]. They use a collection of shape functions computed with random

sampling of the surface of the 3D object to describe. This shape function measures global

geometric properties of the shape, based on distance, angle, area and volume measure-

ments between random surface points.

Authors suggest five distinct one dimension functions to measure the object proper-

ties, which are quick to compute, easy to understand, and produce distributions that are

invariant to rigid motions (translations and rotations). To compute these functions, the

2.2 From Shapes to Descriptors 25

object surface is sampled, with a predetermined density. The shape descriptors are con-

structed from the histograms of a set of the above mentioned shape functions, controlling

histogram accuracy through sampling density. The descriptor of shape distributions is

fast, simple to implement, and useful for 3D shapes discrimination. However, the pro-

posed shape functions are not adequate to fully describe the 3D shape effectively. Indeed,

this approach distinguish models in broad categories very well, but perform poorly when

used to discriminate between models with similar gross shape properties but vastly differ-

ent detailed shape properties.

Modified Shape Distribution

Ohbuchi et al. [99] extended the D2 shape functions proposed by Osada et al., by

devising a set of shape features that are tolerant to topological variations and geometrical

degeneration. In the proposed technique, the mD2 is similar to original D2, but authors

used a quasi-random number sequence1 to select points instead of the pseudo-number

sequence2 suggested by Osada et al..

Shape Histograms

The shape histograms were proposed by Akerst et al. as an intuitive approach to

describe 3D solid models [9]. In this approach the space where the object resides is parti-

tioned using one of three space decomposition techniques: a shell model, a sector model

and a spider web model (depicted in Figure 2.2).In any of these techniques, each cell of

the decomposed 3D space correspond to a bin in the histogram. Then, the histogram can

be constructed by accumulating the surface points in the bins.

The shape histograms method is an intuitive and discrete representation of complex

spatial objects. However, authors illustrate the shortcomings of Euclidean distance to

compare two shape histograms and make use of a Mahalanobis3 quadratic distance mea-

sure taking into account the distances between histogram bins. On the other hand, this

approach needs pose normalization to be performed in the pre-processing stage.
1The quasi random number sequence, is not really random since a predictable sequence of numbers is

generated. However, the numbers generated will provide uniform sampling.
2A pseudo random number sequence exhibits statistical randomness while being generated by an entirely

deterministic causal process.
3A short explanation of Mahalanobis distance can be found in Section 2.3.2

26 Chapter 2. Background and State-of-the-Art

Figure 2.2: 2D examples of the space decomposition techniques proposed by Akerst et al.
in [9]. With a single bin marked, are depicted, from left to right, shell, sector and spider
web model.

3D Shape Contexts

The shape contexts was introduced by Belongie et al. [19] as a descriptor for comput-

ing similarity between 2D images. Using reference points, authors assign a shape context

to each one, by capturing the distribution of the remaining points relative to it. Körtgen et

al. extends the 2D shape contexts into a 3D shape description and combines it with the

shape histogram, thus proposing a set of descriptors called 3D shape contexts [84].

To compute the 3D shape contexts, a set of points are sampled from the shape bound-

aries, as in the shape distribution approach [101]. Then, the vectors originating from one

sample point to all other points in the shape are computed. Using the distribution over

relative positions, is computed for this point a coarse histogram of the relative coordi-

nates of the remaining points. Indeed, this histogram is an adapted version of one of

the Ankerst’s [9] shape histograms centred upon the sample point. This method is ap-

plied to all sampled points, producing a 3D shape descriptor that is composed by a set of

histograms.

Extended Gaussian Images

Defined by Horn in [67], the Extended Gaussian Image (EGI) is a histogram-based

technique to represent the shapes of surfaces that define a 3D object. Initially devised for

recognition in machine vision systems, this approach was later adapted for pose determi-

nation and for computing 3D shape descriptors [75], by means of the complex extended

Gaussian images (CEGI) representation.

2.2 From Shapes to Descriptors 27

Convex shape Non-convex Shape

Figure 2.3: Two objects with the same EGI descriptor, but different volumes, thus differ-
ent VEGI descriptors.

Basically, the EGI of a 3D object is a histogram that records the variation of sur-

face area with surface orientation. The CEGI concept, presented by Kang and Ikeuchi,

extended the EGI approach by taking also into account the distance of faces to the origin.

More recently, Zhang et al. further extended the EGI representation to capture the vol-

ume distribution of an object without canonical alignment, while maintaining the transla-

tion, scale and orientation invariance. The Volumetric Extended Gaussian Image (VEGI)

shape descriptor [144] is thus able to differentiate between convex and non-convex shapes

that share the same EGI such as the objects depicted in Figure 2.3. Furthermore, VEGI

directly extracts shape features avoiding pose normalization, since it does not depends on

canonical alignment of shapes.

3D Hough Transform

Based on the 2D generalized Hough transform [18], Zaharia and Prêtoux proposed

in [143] the 3D Hough Transform (TDHT) to represent a three-dimensional object. In

their later work [142], developed canonical 3D Hough transform descriptor (C3DHT).

These descriptors are constructed by accumulating points within a set of planes in 3D

space. Indeed, TDHT can be considered as a generalized version of EGI. In fact, Agkül et

al. have experimentally proven [6] that the TDHT descriptor captures the shape informa-

tion better than the EGI descriptor.

28 Chapter 2. Background and State-of-the-Art

Shape Spectrum

The shape spectrum was introduced by Dorai and Jani [49] as a view-based repre-

sentation of 3D free-form objects. The shape spectrum characterizes quantitatively the

object shape by summarizing the area on the surface of an object at each shape index

value. The shape index is a local geometrical attribute of a 3D surface, expressed as the

angular coordinate of a polar representation of the principal curvature vector. It provides

a scale for representing salient elementary shapes and is invariant with respect to scale

and Euclidean transforms. However, an important problem regarding the shape index, in

fact all curvature-related quantities, is the estimation unreliability.

Such shortcoming was alleviated by Zaharia and Prêtoux in [142] by augmenting the

shape index histogram by two additional attributes named planar surface and singular

surface. Then, the proposed 3D Shape Spectrum Descriptor (TDSSD) was applied to 3D

retrieval within the MPEG-7 framework for multimedia content description. The TDSSD

of a 3D mesh is defined as the histogram of the shape index values, calculated over the

entire mesh.

The TDSSD locally characterizes free-form surfaces represented as discrete polygo-

nal 3D meshes. One major advantage of this descriptor is its generality, since 3D meshes

may include open surfaces that have not an associated volume. Furthermore, inherited

from the shape index properties, the TDSSD is invariant with respect to scale, translation,

rotation and reflection transforms. On the other hand, this descriptor, as a simple local

feature representation, is better to be combined with some global representation schemes

to effectively describe 3D object for shape retrieval purposes.

Density-based shape descriptors

A density-based descriptor of a 3D object is defined as the sampled probability den-

sity function4 (PDF) of some surface feature. The feature is local to the surface patch

and treated as a random variable. This analytical framework was proposed by Akgül and

Sankur [6, 7] to extract 3D shape descriptors from local surface features characterizing

the object geometry. In [5], the authors suggest using as features the radial distance, the

4The probability density function [2], also called probability function or density function, is a function
that represents a probability distribution in terms of integrals.

2.2 From Shapes to Descriptors 29

radial direction, the normal direction, the radial-normal alignment and the tangent-plane

distance.

Akgul mentioned in [6] that the density-based descriptor shown very good results

when compared with other well-known 3D shape descriptors.However, the features used

in this descriptor are neither scale nor rotation-invariant and, since the method depends

on them, pose normalization must be accomplished during the preprocessing phase.

2.2.3 Transform-based Descriptors

Instead of estimating the shape descriptor from the three dimensional space, some

approaches rely on mathematical transformations to switch from the spatial domain to

a more suitable one and compute from there a shape descriptor. These new spaces are

usually the frequency domain, although some recent approaches use different spaces.

Voxel-based 3D Fourier transform

Vranić and Saupe suggest switching from the spatial domain to the frequency domain

via a 3D Fourier transform [135] (3DFT). Authors start by performing pose normalization,

then voxelise the object using the so-called bounding cube5 (BC). This voxelisation is

achieved by subdividing the BC into N3 equal sized cubes (cells) and calculating the

proportion of the total surface area of the object inside each cell. Then, authors apply a

3D discrete Fourier transform to the voxelised model, i.e. calculated values in cells, to

compute the descriptor that represents the feature in the frequency domain.

Distance Transform and Radial Cosine Transform

Following the initial ideas from Vranić and Saupe of applying Fourier transforms to

feature extraction, Dutagaci et al. proposed estimating a 3D discrete Fourier transform

descriptor using two different voxel representations of 3D objects [50], namely, binary and

continuous, as depicted in Figure 2.4. While in the first case the voxel values are simply

5Vranić and Saupe consider the bounding cube of a 3D-model as the tightest cube in the canonical co-
ordinate frame that encloses the model, with the center in the origin and the edges parallel to the coordinate
axes.

30 Chapter 2. Background and State-of-the-Art

Figure 2.4: From left to right: voxelised 3D object; cross section of the binary function;
cross section of the inverse distance function (Figures taken from [50] c© 2005 IEEE).

set to 1 in the surface of the object and 0 elsewhere, in the continuous representation the

space is filled with a function of distance transformation.

Additionally, Dutagaci et al. suggest the use of 3D radial cosine transform (RCT) as

an alternative to 3DFT [50]. The RCT coefficients constitute a set of rotation invariant

shape descriptors. Such descriptor represents a 3D model with a small number of fea-

tures, thus being easy and fast to be calculated. However, the retrieval results of RCT are

generally worse than 3DFT or some other approaches. Therefore, it is always considered

to be mainly suitable to be used together with other descriptors as an preliminary filter.

Spherical Harmonics Transform

In their initial approach, Saupe and Vranić [134] took a coarse number of samples

of the spherical extent function 6 to construct a feature vector. However, this simple

technique is sensitive to small perturbations of the model. Therefore, to improve the

robustness of this approach, they later proposed [111] extracting a dense sample of the

spherical function and then compute spherical harmonics for this function to describe the

shape.

The descriptor accuracy can be defined by changing the parameter that defines the

sampling size, as well as the number of spherical harmonic coefficients to use. Figure 2.5

depicts the reconstruction of an object by using different number of coefficients. The

shape descriptor is derived from these of coefficients, thus providing an embedded multi-

resolution approach for 3D shape description.

6A 3D object can be characterized by a function on the sphere. To that end, rays are cast from the center
of mass the object and is estimated, for each ray, the value of the distance from origin to the last point of
intersection with the object surface. These values yield a sample of such function, called spherical extent
function for a shape.

2.2 From Shapes to Descriptors 31

Original k = 8 k = 16 k = 24

Figure 2.5: Multi-resolution representation of the spherical extent function applied to the
original model using k2 spherical harmonic coefficients (Figures taken from [111]).

Vranić and Saupe [135] improved the robustness of the proposed feature vector by

taking samples of the spherical function at many points, but characterizing the map by just

a few coefficients in the spectral domain. In [136], they enhanced the spherical harmonics

transform approach described above by taking in account the orientation of the surface,

along with the extent vector. Later, Vranić [132] proposed considering a set of concentric

spheres with different radii, instead of a single one, thus using a collection of spherical

functions to compute the descriptor.

Morphing Effort Descriptor

On a slightly different approach, Yu et al. proposed measuring the amount of effort

required to morph7 a 3D object into a canonical sphere [140] to describe the geometry

and topology of the object. To that end, they use a descriptor similar to the spherical

extent function together with a descriptor counting the number of intersections from a ray

casted from the origin with the object surface. A surface penetration map is constructed

by counting the shape surfaces intersected by a ray shot from the center of the sphere and

provides information about object topology and concavity.

Rotation Invariant Spherical Harmonics

After identifying several limitations of canonical alignment used in other approaches,

Kazhdan et al.proposed [78] an alternate method to obtain rotation invariant represen-

tation of three-dimensional objects based on spherical harmonics. First, the object to

describe is converted into a voxel grid. Then the object is intersected with a set of con-

centric spheres and a spherical function is constructed from voxel values for each sphere.

Next, the frequency decomposition of each one of these functions is computed, as well as

7Morphing is a technique that changes one object into another through a seamless transition, generally
by producing a sequence of intermediate objects.

32 Chapter 2. Background and State-of-the-Art

Figure 2.6: Princeton methodology for computing spherical harmonics shape descriptor
(Figure taken from [56] c© 2003 ACM).

the norms of each frequency component at each radius. The resulting rotation invariant

descriptor is a 2D grid indexed by radius and frequency. Following this idea, the Princeton

group derived a practical methodology [56], illustrated in Figure 2.6, to compute rotation

invariant descriptor using spherical harmonics.

Papadakis et al. presented recently [102] a 3D shape retrieval methodology also based

on spherical harmonics. The proposed model decomposition and feature extraction is very

similar to previous approaches. They compute the spherical functions using not only the

intersections of the surface with emanating rays but also points in the direction of each

ray which are closer to the origin than the furthest intersection point.

3D Angular Radial Transform

Adopted as region-based shape descriptor in MPEG-7 standardization, the angular

radial transform [34] is a moment based description method that expresses pixel distri-

bution within a 2D region. Ricard et al. proposed a generalization of this descriptor to

index 3D models [109]. The 3D angular radial transform (3D ART) descriptor preserves

the properties of the original 2D descriptor, such as robustness to rotation, translation,

noise and scaling. Moreover, the 3D ART produces compact descriptors and allows short

retrieval times. Authors argue that their approach outperforms the spherical harmonics

descriptor in speed while keeping a close accuracy.

Planar-Reflective Symmetry Transform

In [105] Podolak et al. introduced the planar reflective symmetry transform (PRST).

The PRST is a transform from the space of points to the space of planes that captures

2.2 From Shapes to Descriptors 33

Figure 2.7: Symmetries with respect to planes representing the four strong local maxima
of the PRST. (Figures taken from [105] c© 2006 ACM).

a continuous measure of the symmetry of a shape with respect to all planes through its

bounding volume. This transform combines and extends previous work that has focused

on global symmetries with respect to the center of mass in 3D meshes [77, 79], briefly de-

scribed in Section 2.2.6, and local symmetries with respect to points in 2D images [141].

Authors also provide an iterative refinement algorithm to find local maxima of the

transform precisely. In Figure 2.7 triangles of the model are grayed to show how symmet-

ric they are with respect to the plane of symmetry displayed. The triangles with highest

symmetry values are lighter than the ones with less or no reflection in the given plane.

2.2.4 Graph-based Descriptors

The above referred approaches focus on describing the geometry of model to clas-

sify, ignoring or giving just few relevance to topological information. At most, these

approaches attempt to integrate topological information in the shape descriptor of the ob-

ject. In contrast, graph-based approaches extract both topology and geometry of 3D ob-

jects, focusing on topological relationships between object components and using graphs

to represent such relationships. These approaches are generally more complex than the

previous ones, but despite their ability to encode geometry and topology, they do not gen-

eralize for any type of 3D shape, forcing each approach to restrict its scope to a specific

type of object. Therefore, graph-based approaches are not effective in general-purpose

retrieval applications.

Furthermore, due to the complexity associated to graph matching, alternative solu-

tions to graph isomorphism are used, such as application of techniques from spectral

graph theory to convert graphs into numeric descriptors [54, 117]. However, during re-

34 Chapter 2. Background and State-of-the-Art

Figure 2.8: Reeb graph of a bi-torus and some cross sections. (Figure taken from [27])

cent years several researchers focused their attention in graph-based descriptors due to

its potential. In the following paragraphs we will present the most commonly used ap-

proaches for graph-based descriptors.

Reeb Graphs

Back in 1946, Georges Reeb proposed considering a topological graph defined as a

quotient space of a manifold8 which, under opportune hypotheses defines the skeleton of

the manifold itself [106]. Indeed, the Reeb graph is just a topological skeleton determined

using a scalar function defined on an 3D object. To automatically construct a Reeb graph,

Shinagawa and Kunii [116] proposed defining a scalar function and using a series of

cross-sections of the object to determine nodes and arcs of the graph.Figure 2.8 illustrates

a Reeb graph of a bi-torus computed using a height function as mapping function.

Several approaches to 3D shape classification and retrieval based on Reeb graphs

were proposed in recent years. Biasotti et al. obtain graphs by using different quotient

functions f and suggest that a good choice of f is necessary to achieve good matching

results [30]. Indeed, they conclude that f function must be determined based on the object

type, since the same function produces different matching performance for different kinds

of models. For instance, the authors proved that using the integral geodetic distance as a

quotient function is especially suited for articulated objects.

8A manifold is an abstract mathematical space that is locally Euclidean. This means that around every
point there is a neighborhood that is topologically the same as the open unit ball in Rn, i.e. the neighbor-
hood resembles Euclidean space, but the global structure may be more complicated.

2.2 From Shapes to Descriptors 35

Multiresolution Reeb Graphs

Hilaga et al. introduced the concept of topology matching for 3D object retrieval [65],

describing a matching method best suited for articulated objects. Their method con-

structs Reeb graphs at multiple levels of resolution of a function, the Multiresolution

Reeb Graph (MRG). According to the chosen function, the resulting descriptor has cer-

tain properties for a different kinds of models. To quickly determine similarity between

polyhedral models they compare the graphs using a coarse-to-fine strategy while pre-

serving the consistency of the graph structures, which results in results in establishing a

correspondence between the parts of objects. This graph matching is achieved through

sophisticated heuristics proposed by authors and improved later by Tung et al. [130].

Augmented Reeb Graphs

Tung and Schmitt [129] took further the approach by Hilaga and augmented the Reeb

graph by storing geometric attributes in each node, since the original method only takes

into account topological information, which is often insufficient for effective shape match-

ing. In this approach authors use, as geometrical information, features such as the cord

histograms, local curvature and volume associated with each node. Moreover, they also

provided a new topological coherence condition to improve the graph matching.

Using the proposed Augmented Reeb Graph (ARG), Tung and Schmidt could over-

come some issues raised during matching with Hilaga’s MRG. For instance, graph edges

topologically similar might not really be geometrically similar, thus being wrongly matched,

as depicted in Figure 2.9. This figure illustrates the gain obtained by introducing geomet-

rical information in the nodes. While matching without geometrical information (left) legs

can be matched with arms, since they are topologically equivalent, by adding geometrical

information, arms and legs are well matched.

Scale-space Decomposition

Aware of MRG drawbacks when models become geometrically and topologically de-

tailed, Bespalov et al. studied the application of Hilaga’s method to matching of complex

machined parts [24]. They stated that such solution produces poor results when directly

36 Chapter 2. Background and State-of-the-Art

Figure 2.9: Results of shape matching with MRG versus ARG (Figure taken from [129]
c© 2004 IEEE).

applied to 3D solid models in engineering databases. Since for this kind of models topo-

logical insensitivity is important, they conclude that some improvements should me made

to MRG technique.

Thus, they present in [26] an alternative to Hilaga’s approach. Their method com-

putes the scale-space decomposition of a shape, represented as a rooted tree. Through

spectral decomposition the problem is of matching reduced to that of computing a map-

ping and distance measure between vertex labeled rooted-trees. Indeed, authors claim that

their method represents a computationally efficient approach to matching of 3D models,

enabling highly accurate matching of solid models of 3D mechanical parts.

Size Graphs

Following the previous approaches, Biasotti et al. use the Reeb graph to construct a

centerline skeleton of a 3D model and apply a size function to create a size graph [29].

Their idea is to associate with a 3D object a graph (Gf , φ), where Gf is the centerline

skeleton computed using the quotient function f and φ is a measuring function labeling

each node of the graph with local geometrical properties of the model.

In this approach, authors consider four distinct mapping functions f , namely the dis-

tance from the barycenter, the distance from the center of the bounding sphere, the inte-

gral geodetic distance and the topological distance from curvature extrema [96]. Based

on these functions, a centerline skeleton is extracted from the original model. Then, for

2.2 From Shapes to Descriptors 37

each node of this skeleton, the value of function φ must be calculated to obtain the size

graph. Biasotti et al. suggest measuring a set of features of the corresponding region on

the model, such as the area of the region or the minimum, maximum and average distance

of the barycenter of the region to region vertices. To compare models authors use the

matching between their size functions, as discussed by d’Amico et al. in [46].

Skeletal Graphs

In a slightly different approach, skeletons can be derived from solid objects and rep-

resented as a direct acyclic graph (DAG). These skeletons capture important information

about the object. However, when using shape skeletons in 3D object retrieval, two ma-

jor challenges arise. Suitable skeleton computation algorithms and similarity functions

should be defined. Sundar et al. presented a framework that provides both [121]. They

propose, as shape descriptor for three-dimensional models, a skeletal graph encoding ge-

ometrical and topological information of the object. Then they apply graph matching

techniques to match the skeletons and compare them.

2.2.5 Image-based Descriptors

An approach completely different from the previous ones consider representing a

three dimensional model in a set of two dimensional spaces. The basic idea behind such

approach is that when two 3D models are similar, images captured from the same points

of view are also similar. From this idea several researchers were able to reduce the prob-

lem of comparing 3D shapes to image matching. Thus, taking advantage of the existing

reasonable amount of work in this area capable of producing good retrieval results.

Spin Images

Johnson and Herbert proposed a 3D object recognition system [73] based on matching

surfaces using the spin image representation. To produce spin images authors use oriented

points on the model surface, i.e. points associated with the surface normal at that point.

Each oriented point corresponds to a spin image and defines a local coordinate system

using the tangent plane.

38 Chapter 2. Background and State-of-the-Art

Chapter 2: Spin-Images

20

points; indices to oriented point bases were stored in the hash table in the bins determined by

spin-map coordinates of other points on the object. Point matching proceeded by choosing a

point in the scene, computing bin locations from spin-map coordinates of the other points in

the scene, and voting for model points with indices in the computed bins. The model point with

the highest vote was chosen as the point corresponding to the current scene point. By placing

the indices in discrete bins of a hash table, the effect of the exact position of individual points

on matching was reduced through averaging.

β
α

β
α

β
α

β
α

β
α

β
α

Figure 2-3: Spin-images for three oriented points on the surface of a model of a valve. The 3-D position of
vertices in the mesh are mapped into 2-D using the spin-map for each oriented point basis. By
accumulating 2-D points in discrete bins, spin-images are generated.

2-D points spin-image

2-D points

2-D points

spin-image

spin-image

Figure 2.10: Spin-images for three oriented points on the surface of a model of a valve
(Figure taken from [72]).

To create the spin image, is created a 2D accumulator indexed by two coordinates

defined with respect to the oriented point. This accumulator can be thought of as an image

where dark areas in the image correspond to bins that contain many projected points.

Figure 2.10 shows the projected coordinates and spin images for three oriented points on

a model of a valve. For 3D object matching, spin images can be constructed for every

vertex in the surface mesh, producing a set of two-dimensional histograms representing

the object geometry.

The spin images approach to 3D shape retrieval was later improved by de Alarcón et

al. [47]. Instead of compression method proposed by Johnson and Herbert to solve the

high space complexity of their approach, Alarcón et al. suggest data reduction by cluster-

ing the spin image set using a self organising map algorithm to group similar spin images,

followed by a clustering algorithm. More recently, Assfalg et al. suggested a retrieval

method based on spin images, but using global features [14]. In their approach, spin

images are used to derive a view-independent object description.

2.2 From Shapes to Descriptors 39

Silhouette Descriptor

Vranić presented in [133] a 3D shape descriptor based on 2D silhouettes. In this

approach, a axis aligned 3D-object is projected on the coordinate hyperplanes, in order

to generate three monochrome images as depicted in Figure 2.11. Next, author founds

the outer contour of each image, approximating it by a polygonal line. Then, a com-

monly used technique on 2D shape description, the discrete Fourier transform, is used to

represent the shape features in the spectral domain. The absolute values of the obtained

coefficients are used to form the silhouette-based feature vector.

While perfroming a PCA preprocessing makes the silhouette descriptor pose and

scale invariant, author stresses that it is also invariant to rotation due to properties of

the discrete Fourier transform. However, it is not possible to determine a single unique

contour of the silhouette image for 3D models with holes or disjoint parts, only the longest

contour is processed. Therefore, certain parts of 3D-objects might not be described.

Depth Buffer Descriptor

When silhouette images of 3D-objects are created, all the information about shape

is contained in contour points.Therefore, in order to capture 3D-shape characteristics

Vranić considered other approaches for creating 2D images from 3D-objects [133]. He

proposed another feature vector, which is obtained from six depth-buffer images formed

using the faces of an appropriate cuboid region. After rendering the six images, the three-

dimensional discrete Fourier transform is used to represent the image in the spectral do-

main instead of spatial domain. Figure 2.12 illustrates the extraction of the depth buffer-

based shape descriptor.

Figure 2.11: Silhouette images of an aeroplane model obtained by projecting the model
on the coordinate hyper-planes (Figure taken from [133]).

40 Chapter 2. Background and State-of-the-Art

Elevation Descriptor

Shih et al. proposed [112] a descriptor that shares the basic idea behind the depth

buffer descriptor referred above. To compute the elevation descriptor, six different views

of the 3D object are captured.These views encode elevation maps describing the altitude

information of the model relative to the corresponding view plane and are represented as

gray-scale images. Then, each one of these images is decomposed into a set of concen-

tric circles around the centre point and the elevation descriptor is obtained by taking the

difference between the altitude sums of two successive circles.

Authors are aware that performing a full matching between two models will require

a large number of elevation comparisons. Therefore, to reduce matching time Shih et

al. provide an efficient similarity computation that finds the best match for a given query

model.

Light Field Descriptor

Following the idea that if two 3D models are similar, they also look familiar from all

viewing points, Chen et al. [44] proposed a descriptor based on silhouettes from many

different viewing directions. The light field descriptor encode one hundred orthogonal

projections of an object, excluding symmetry, with both Zernike moments and Fourier

descriptors to produce feature vectors that describe the object.

To improve robustness against invariance a set of ten light field descriptors is applied

Figure 2.12: Extraction of the depth buffer-based shape descriptor: depth-buffer images
in top row and corresponding two-dimensional Fourier transforms in bottom row. (Figure
taken from [133]).

2.2 From Shapes to Descriptors 41

to each 3D model, which lead to the one hundred orthogonal projections. These ten

descriptors are created from different camera system orientations. Thus, the dissimilarity

between two models is the minimum difference between all combinations light fields.

2.2.6 Other Methods

In the previous sections, we described several methods to represent 3D shapes. These

were classified according to the technique behind the descriptor computation, may it be

histograms, transforms, graphs or images. However there are some approaches that does

not fit on these classifications, since the computation of these shape descriptors does not

use any of these techniques or combines different methods to achieve a distinct result. In

this section we will briefly describe a few of such techniques.

3D Zernike Moments

Novotni and Klein [98] advocate the usage of a specific kind of shape moment that has

the advantage of capturing global information about the 3D shape and not requiring closed

boundaries as boundary-based methods. The 3D Zernike descriptors are a projection of

the function defining the object onto a set of orthonormal functions within the unit ball.

They can be considered as the magnitudes of a set of orthogonal complex moments of the

3D shape and the natural extensions of spherical harmonics based descriptors.

Spherical Moments

Based on the concepts underneath moment-based method proposed by Saupe [111],

Wei and Yuanjun introduced spherical moments as a shape comparison method for 3D

model retrieval [137]. This method employs a multi-level spherical moments analysis

approach relying on voxelization and spherical mapping of the 3D models. Authors claim

that, despite the simplicity of this method, it outperforms in retrieval performance many

previously proposed ones.

To compute the shape descriptor of a model, firstly a pose normalization step is done

to align it into a canonical coordinate frame. Afterwards, them model is rasterised into a

cubic voxel grid, then a series of homocentric spheres centered at the center of the voxel

42 Chapter 2. Background and State-of-the-Art

Model Decomposed model Syncopation of model

Spherical images with radius 5, 10 and 15.

Figure 2.13: Computing spherical images from a 3D model (Figures taken from [137]).

grid are used to produce a series of spherical images, by simply checking the intersection

between trigonal pixels on the spheres surface and the object voxels and labeling the pixels

accordingly, as illustrated in Figure 2.13. Finally moments of each sphere are computed

and the moments belong to all spheres constitute the descriptor of the model. To estimate

the similarity between models, Wei and Yuanjun suggest comparing feature vectors using

Euclidean distance.

Reflective Symmetry Descriptor

Kazhdan et al. proposed describing 3D models by measuring its amount of sym-

metry [77]. While such approach in two dimensions is quite simple, since it works by

averaging an image against itself reflected along a line of symmetry, with 3D shapes the

symmetry computation is more complex. Indeed, the reflective symmetry descriptor [79]

of a 3D model is a collection of functions that measure the rotational and reflective sym-

metry with respect to every axis passing through its center of mass. Kazhdan et al. present

an efficient algorithm for computing the reflective symmetry descriptor from a 3D voxel

representation of a model, and show that,in addition, planar symmetries can be used for

alignment of 3D meshes.

Moreover, authors suggest using this approach to improve existing shape descrip-

tors with symmetry information. In particular, they describe the symmetry augmented

2.2 From Shapes to Descriptors 43

descriptor, based on the spherical harmonic representation, described in Section 2.2.3.

According to Kazhdan et al., this augmented descriptor provides a highly discriminating

representation of the shape.

Generalized Shape Distributions

Liu et al. presented last year a combined approach to 3D shape description [88]. The

Generalized Shape Distributions (GSD) takes advantage of both local and global shape

signatures. The start by generating spin images, on meshes, producing a set of local

shape descriptors, which are then clustered in what authors call ”words” in a ”dictionary”

of local shapes. This way, they represent a global 3D shape as the spatial configuration of

a set of specific local shapes by computing the distributions of the Euclidean distance of

pairs of local shape clusters. Then, they store the descriptor in an indexing data structure

to reduce the space complexity of the proposed shape descriptor.

Authors claim that their approach is robust to non-trivial shape occlusions and defor-

mations and is more discriminative than a simple collection of local shape signatures since

the spatial layouts of a global shape are explicitly computed. The robustness to shape oc-

clusions and deformations comes from the fact that there are statistically a large number

of chances that some local shape signatures and their spatial layouts are unchanged and

users can easily identify those unchanged parts. Indeed, their preliminary experiments

show the effectiveness of the proposed technique for shape comparison and analysis.

Salient Visual Features

Sharing the ”word” and ”dictionary” concepts Ryutarou Ohbuchi et al. proposed

a slightly different approach [100] that uses salient visual features for shape-based 3D

model retrieval. These features are computed based on 2D range images captured from

a set of uniformly sampled viewpoints laid down on a pre-defined view sphere. In each

of these range images a set of interest points are identified and then features are extracted

from these interest points. The resulting local features are placed in a bag-of-features,

which is then clustered to estimate a set of ”visual words” which are then used to compute

a histogram of occurrences of each ”visual word” in the model. This histogram is then

used to obtain the feature vector that will represent the model.

44 Chapter 2. Background and State-of-the-Art

2.2.7 Comparative Studies

As we have already shown, there are many different techniques to describe three-

dimensional shapes, each one with its own strengths and drawbacks. Due to differences

between existing approaches to shape description, comparing these is a difficult task.

Nevertheless, to assess the effectiveness of shape description methods several comparative

studies has been carried out recently. In the following paragraphs, we will briefly describe

three of these studies published last year.

Bustos et al. presented in 2006 [38] an experimental effectiveness comparison of

methods for 3D similarity search. In this study, authors surveyed some approaches to

3D shape retrieval and presented an extensive experimental effectiveness and efficiency

evaluation of these techniques, using several 3D collections. Among a total of sixteen

shape descriptors, they studied the rotation invariant spherical harmonics descriptor, shape

distribution descriptor, shape spectrum descriptor, silhouette descriptor and depth-buffer

descriptor.

After comparing the computational complexity of the analyzed descriptors, they dis-

cuss its retrieval performance. Authors concluded that there is a number of descriptors

that have good database-average effectiveness and work well in general, while others

work better with some specific model classes but have poorer results on generic mod-

els. Finally, authors argue that most descriptors can be considered robust, as they can

effectively retrieve similar objects with different level of detail.

In a distinct study, Alberto del Bimbo and Pietro Pala performed a comparative anal-

ysis of a few different solutions for description and retrieval by similarity of 3D mod-

els [33]. For this study, authors selected descriptors that are representative of the principal

classes of approaches. From the class of histogram-based descriptors, authors selected the

curvature histograms and the shape functions, while Spin-image signatures and light field

descriptors were used to represent the image-based approaches. Authors also included on

the comparative study the geometric moments [51] used by Elad et al. to describe 3D

shapes.

Bimbo and Pala focused their experimental analysis on comparing the four methods

referred above according to their robustness to deformations and their ability to capture

the structural complexity of 3D objects, as well as the resolution at which models are con-

2.2 From Shapes to Descriptors 45

sidered. To that end, authors used two different shape databases. The Art-Model database

composed by around three hundred high-resolution models from miscellaneous sources

was used to test the robustness to geometric deformations. To that end, these models were

subjected to special deformations, generating an extra set of deformed versions of each

original model. The other collection used in this comparative study was the well known

Princeton shape database.

From the results obtained in this experiment, authors could achieve an extensive set

of conclusions. Particularly, they concluded that the light fields descriptor and spin im-

age signatures have superior capability to capture the structural peculiarities of the mod-

els, with highest insensitivity noise provided by the light fields representation. Moreover,

Bimbo and Pala claim that geometric moments are not able to capture salient and discrim-

inating features of 3D objects and the histogram-based approaches never provide better

retrieval performance than the other solutions. However, the computational complexity

were not considered in this study, which will eventually uncover additional drawbacks of

the image-based descriptors when compared to the histogram-based approaches.

Together with the ESB Jyanti et al. presented a comparative study between twelve

different shape descriptors evaluating the effectiveness of these representations on the me-

chanical engineering domain [71]. Within the set of tested descriptors are spherical har-

monics, shape distributions, shape histogram and light field descriptors, among others. In

these experiment, authors performed an unusual test. They compared the results retrieved

by using every shape descriptor against the random retrieval method. As expected, all

shape representation methods outperformed the random retrieval.

Additionally, in a paper published in 2007, Bustos et al. present two recently pro-

posed approaches to shape description and discuss methods for benchmarking the 3D

retrieval systems’ qualitative performance [36]. Indeed, they suggest as best options for

shape retrieval evaluation the Princeton Shape Benchmark and the actual version of the

benchmark used in the 3D shape retrieval contest (SHREC).

2.2.8 Discussion on Shape Descriptors

As we have seen above, there are several three dimensional shape descriptors. In a va-

riety of approaches, these algorithms for feature extraction have one thing in common. All

46 Chapter 2. Background and State-of-the-Art

aim at producing a feature vector that provides good discriminating power while keeping

the time and space consumption relatively low while computing the descriptor. Although

some of the techniques we described in this chapter are outdated, the technique proposed

in such approaches remain useful. Indeed, many recent algorithms are basically an evo-

lution of older methods. A summary of all analysed methods for shape description is

available in Table 2.1.

To provide a organized view of this research area, we divided the 3D shape description

algorithms into five distinct categories. The histogram based approaches simply accounts

one or more shape features and constructs histograms with them. These histograms are

then used to estimate the corresponding set of feature vectors. The transform-based ap-

proaches rely on mathematical transformations to switch from the spatial domain to a

more suitable one and compute from there a shape descriptor. For instance by applying

the Fourier transform or the spherical harmonics transform. The graph-based approaches

computes a graph representing the topology of the model and then uses one or a combina-

tion of several histogram-based or transform-based descriptors to code the shape features

for each node of the graph. The image-based approaches rely on multiple 2D representa-

tions of the shape to compute the descriptor. Finally, there are a few algorithms that do

not fit on any of these four categories, which we classify as other.

Depending on the purposes and scope of the retrieval system, some shape descriptors

can perform better than other. As a matter of fact, there are no shape descriptor that is

clearly better than all the others. Instead, some are best suited for some kind of 3D models

or for specific needs of the retrieval system. While, in some cases the major concern is

the effectiveness of the shape descriptor, in others the most important factor could be the

efficiency of shape description techniques.

The effectiveness of a shape descriptor indicates the amount of shape information it

is able to represent. More effective shape descriptors store more information about the

shape. On the other hand, the efficiency of a shape description technique regards on the

time and space necessary to compute and store the resulting feature vector. Larger and

more complex shape descriptors usually led to slower classification and retrieval. In the

current implementation of our approach we use the spherical harmonics descriptor, due to

its good balance between descriptive power and space-complexity.

2.2 From Shapes to Descriptors 47

Descriptor Feature Refs.
H

is
to

gr
am

-b
as

ed

Cord and Angle Histograms Distribution of length and angles of cord rays [103, 104]
Color Distribution Voxel colors computed from shape texture [103]
Curvature Histogram Principal curvatures at each face of the mesh [81, 131]
Shape Distribution Collection of shape functions measuring several

shape features using randomly selected surface
points.

[101]

Modified Shape Distribution Shape functions measuring a pair of features using
a quasi-random point selection.

[99]

Shape Histograms Surface points in cells of decomposed model. [9]
3D Shape Contexts Distribution of sampled points relative to each

other.
[84]

Extended Gaussian Images Variation of surface area with surface orientation. [75]
3D Hough transform Variation of surface area with surface orientation. [143]
Shape Spectrum Area of surface object with respect to shape cur-

vature.
[49, 142]

Density-based Shape Descriptor Variation of surface area with surface orientation. [6, 7, 5]

Tr
an

sf
or

m
-b

as
ed Voxel 3D Fourier Transform Proportion of total surface area inside each cell of

voxelised model.
[135]

Distance and radial cosine transform Binary and continuous voxel-based distance from
a point to the object surface.

[50]

Spherical Harmonics Transform Distance from the object surface to the surface of
enclosing sphere.

[111]

Rotation Invariant Spherical Harmonics Spherical functions of concentric sphere based on
voxelised model.

[78]

Planar-Reflective Symmetry transform Symmetry of a shape with respect to all planes
through its bounding volume.

[105]

G
ra

ph
-b

as
ed Multi-resolution Reeb Graphs Reeb graphs at multiple levels of resolution of a

function over the surface
[65]

Size Graphs A centreline skeleton with nodes labelled with lo-
cal geometric properties.

[29]

Skeletal Graphs A directed acyclic graph associated with a set of
geometric features and a signature vector.

[121]

Im
ag

e-
ba

se
d Spin Images Surface points projected on planes defined by ori-

ented points on model surface
[73, 14]

Silhouette Descriptor Object projections on coordinate hyperplanes. [133]
Depth Buffer Mappping of surface distances into the six faces

of the object bounding cube.
[133]

Lightfield Descriptor Object silhouettes captured by cameras on the ver-
tices of a dodecahedron.

[44]

Elevation Descriptor Decomposition in concentric circles of surface el-
evation with respect to the six faces of bounding
cube.

[112]

O
th

er

3D Zernike Moments Magnitudes of a set of orthogonal complex mo-
ments of the object.

[98]

Spherical Moments Moments of spheres mapping voxelised models. [137]
Reflective Symmetry Descriptor Collection of functions measuring rotational and

reflective symmetry with respect to every axes
passing on barycenter.

[77]

Generalised Shape Distributions Clustering of spin images. [88]
Salient Visual Features Clustering of range images. [100]

Table 2.1: Summary of 3D shape descriptors.

48 Chapter 2. Background and State-of-the-Art

2.3 Query and Matching

As we have already mentioned, 3D shape descriptor computation is crucial on a shape

based retrieval system. This explains the large amount of work developed in this particular

topic, which we surveyed in the previous section. However, effective shape representa-

tion is not the only challenge to overcome when developing 3D model retrieval systems.

Another important part of a 3D shape retrieval solution, as of any content-based retrieval

system, is the query and matching processes. Descriptors extracted from objects are usu-

ally represented as feature vectors on a multidimensional space. This is truth not only for

3D models, but also for other data types, such as images or music. Effective content-based

retrieval of information indexed on multidimensional spaces depends greatly of query and

matching techniques.

2.3.1 Query Types

Regardless of the data stored on the database or used as a query, several authors agree

on a basic set of different types of queries [58, 64, 41] for multidimensional spatial data.

Following the enumeration of query types presented by these authors, we will briefly

describe the four most common categories of queries.

Exact match query This type of query aims on finding all objects that have exactly the

same spatial extent as the spatial query object. Indeed, exact match queries are only of

moderate interest in content-based retrieval , and, when applied on content-based retrieval,

are usually based on metadata, managed by a traditional database management system.

An example of such query is ”find all alloy 17 inches-radius wheels”.

Range search query Content-based retrieval approaches rely mostly on retrieval-by-

similarity queries. One way to accomplish this is by performing a range search query,

i.e. find all objects that are within a given range, usually a hyperrectangle 9. Such query

can be specified as finding objects in the multidimensional space that have at least one

9A hyperrectangle, also called orthotope, is parallelotope whose edges are all mutually perpendicular.
Indeed, a hyperrectangle is a generalization of the rectangle to higher dimensions [138]. For instance, the
cuboid is a 3-orthotope.

2.3 Query and Matching 49

common point with a query volume in that space. For instance, the following sentence is

a range search query: ”find all MRI models showing a tumor of size between x and y”.

k-nearest-neighbor search Another way to perform retrieval-by-similarity is to search

for a given number of objects similar to the query. Measuring this similarity among

objects is an important issue on retrieval that we discuss briefly on Section 2.3.2. Usually

such similarity is seen as a distance between object representations in multidimensional

space. Thus, a k-nearest-neighbor query is specified by finding k objects with the shorter

distance to the given query. An example of such query is given by the sentence: ”Find the

twenty tumors most similar to a specified example”.

Within-distance (or α-cut) This third way to query by content is quite similar to the

previous one. The main difference is that in this type of query instead of a pre-defined

number of results, the search must return all the results within a given distance to the

query. Thus, the objective is to find all objects with a similarity score better than α with

respect to a query. This means to find all objects whose representation in multidimen-

sional space has a distance smaller than a threshold from the query representation in that

space. An α-cut query can be specified, for instance, by the sentence:”Find all the MRI

containing tumours having a given similarity with respect to the example provided”.

2.3.2 Similarity Measuring

To achieve effective matching, resemblance between objects must be measured. Usu-

ally, similarity measuring among objects is done through distance functions that estimate

the distance between the closest points of their representations in the multidimensional

space.

As a matter of fact, an extensive theory lays behind distance functions and there are a

large set of possible approaches to measure the distance between two points in a multidi-

mensional space. However, this issue is not within the main scope of our work. Therefore,

we will only focus on a short list of the most useful distance functions. Basicaly, we will

present some particular cases of the family of Minkowsky distances and the Mahalanobis

distance.

50 Chapter 2. Background and State-of-the-Art

1.0

1.00.5

0.5

-0.5-1.0

-0.5

-1.0

d∞
d2

d1

Figure 2.14: The unit sphere under Manhattan (d1), Euclidean (d2) and Chebychev (d∞)
distances.

Minkowsky distances

The Minkowsky distance of degree p, also called p-distance, between two points in a

n-dimensional space is given by:

dp = (
n∑
i=0

(xi − yi)p)
1
p . (2.1)

Indeed, this general equation is not applied in practice. Instead, the parameter p is

fixed in a few values commonly used. Thus, the Minkowsky distance of degree 1 (p = 1)

is called Manhattan distance, the usual Euclidean distance is the distance of degree 2

(p = 2) and with p = ∞ we obtain the Chebychev distance. The difference among these

three distance functions is shown in Figure 2.14, where we depict the unit sphere in each

one of these metric spaces. The corresponding distance functions are defined as:

• Manhattan distance: d1(x, y) =
∑n

i=0(xi − yi);

• Euclidean distance: d2(x, y) =
√∑n

i=0(xi − yi)2;

• Chebychev distance: d∞(x, y) = maxi=0..n(xi − yi).

These three Minkowsky distances are simple, fast to compute and can be generically

used. However, in some cases the results obtained by this measurements do not fulfil the

needs of retrieval solutions. Thus, to solve problems caused by poorly scaled or highly

correlated coefficients of a vector, is often used the Mahalanobis [91] distance.

2.4 Content-based Retrieval of 3D Models 51

Mahalanobis distance

The Mahalanobis distance is a computationally expensive generalisation of the Eu-

clidean distance widely used in cluster analysis and other classification techniques to

measure the distance between probability distributions. This measurement is based on

correlations between variables by which different patterns can be identified and analysed.

Mahalanobis distance is a useful way of determining similarity of an unknown sample

set to a known one. It differs from Euclidean distance in that it takes into account the

correlations of the data set and is scale-invariant. The Mahalanobis distance is defined in

terms of a covariance matrix C, which measures a tendency to vary between two features,

as given by:

dM(x, y) = det|C|
1
d (x− y)TC−1(x− y). (2.2)

There are some other distance functions that are often used in content based retrieval

solutions, but we prefer not to mention them all here. Instead, we refer our readers to the

comprehensive explanation of similarity measures for retrieval published by Castelli [41]

or to a theoretical description of distance function presented by Hervé Abdi [1].

In our approach we will use the quadratic Euclidean distance to measure the distance

between the shape signatures. Although more expensive in computational terms than the

Manhattan distance, the quadratic Euclidean distance function is faster to compute than

the Euclidean distance and provides the precision necessary for our research purposes.

2.4 Content-based Retrieval of 3D Models

Having introduced in the previous sections some of the existing works regarding de-

scription of three-dimensional shapes, generic query methodologies and commonly used

similarity determination techniques, next we will present the more relevant solutions for

content-based retrieval of 3D models.

52 Chapter 2. Background and State-of-the-Art

2.4.1 Nefertiti

During recent years, several 3D shape search engines have been introduced. One

of the earliest of such systems was proposed by Paquet and Rioux in 1997. Nefer-

titi [103] is the first well documented query by content software for three-dimensional

model databases. It incorporates a set of retrieval algorithms that allows database searches

by scale, shape, color or any combination of these parameters.

2.4.2 Princeton 3D Model Search Engine

Later, in 2001, Thomas Funkhouser and his team released the Princeton 3D model

search engine [56]. This system is now the best known solution for shape retrieval, in-

dexing more that thirty six thousand models. Its authors claim that they have developed

the search engine to be the ”GoogleTM for 3D models” [55]. However, despite its success

within the research community, backed up by a powerfull shape description and query

mechanism, the usability of this search engine failed to fullfill the authors expectations.

2.4.3 Purdue 3D Engineering Shape Search

Unlike the Princeton team, whose search engines aims on generic 3D models, the

PRECISE group at Purdue University developed a search engine for a specific domain [90].

The 3D Engineering Shape Search system integrates a set of existing shape description

techniques to compute the feature vectors of a model. This search engine incorporates a

3D interface that allows users to submit a shape as a query, to select the feature vectors

that will be used for shape representation and to search the database by browsing.

2.4.4 NTU 3D Model Retrieval System

Starting from the idea that if two 3D models are similar they also look similar from

all viewing angles, Chen et al. introduced a retrieval system [44] based on the light field

descriptor. The 3D Model Retrieval System from National Taiwan University is available

on the web and its database contains more than ten thousand publicly available 3D generic

models.

2.4 Content-based Retrieval of 3D Models 53

2.4.5 CCCC

To serve as a proof-of-concept to methods and tools for content-based search for

3D-mesh models proposed during his PhD research [133], Vranić deployed a web-based

retrieval system for 3D models. The Content-based Classification of 3D-models by Cap-

turing spatial Characteristics (CCCC) 3D search engine uses a set of model databases,

including the Princeton Shape Benchmark test and training databases, providing around

three thousand classified objects.

2.4.6 FOX-MIIRE Search Engine

More recently, in 2007, researchers from the FOX-MIIRE group released a on-line

search engine for 3D content [11]. Their search engine implements the adaptive views

clustering technique, a method proposed by the authors to index 3D models based on

two-dimensional views. Besides the good retrieval results offered by the FOX-MIIRE

search engine, it has a unique feature when comparing with previous approaches. This

search engine is the first that accepts 3D-Models retrieval from photos [10] and can be

reached through a mobile device. Figure 2.15 depicts both the standard and the mobile

device interfaces of the FOX-MIIRE search engine. Indeed, the idea of incorporating a

3D model retrieval system in a mobile device was proposed by Suzuki et al. [124]. They

developed an experimental 3D shape retrieval system for cellular phones where users can

search for a model similar to a given example.

(a) (b)

Figure 2.15: MIIRE search engine on PC (a) and PDA (b).

54 Chapter 2. Background and State-of-the-Art

2.5 Retrieval using Partial Queries

Knowing that the list of works on shape retrieval presented above is not exhaustive,

one can state that there is plentiful work on 3D shape retrieval. However, most of the

methods for 3D object comparison discussed in the literature approach the problem of

shape similarity as a global matching problem. These methods estimate the similarity

between two objects by returning as output a real number obtained by analysing the over-

all shape of the two objects instead of considering similar sub-parts shared by the two

objects [37].

In the last decade several approaches to partial matching have been proposed, but

none of them provide a definitive solution to this problem. The methodologies for the

estimation of partial matching can be grouped into two coarse categories: based on local

shape descriptors and based on structural descriptors.

2.5.1 Spin Images

In the first category, one of the most important method that inspired many other ap-

proaches, uses the spin-images to provide a set of local shape descriptors [74]. This

method samples the object surface into a set of oriented points (3D points with surface

normals) and associates to each sampled point a 2D description of the surface around it:

the spin-image. A similarity measure between 2D images is used to evaluate the simi-

larity between two spin-images and thus between two oriented points of the compared

objects. In this way a point-to-point correspondence between the two objects is provided.

In [110] the similarity measure defined among spin-images is used to group oriented

points into patches. This latter approach allows the correspondence between patches in-

stead of points.

2.5.2 Salient Geometric Features

A more recent approach [59] performs partial matching by comparing the salient

features of two objects. In their approach to partial matching, Ran Gal and Daniel Cohen-

Or [59] shown that a relatively small number of salient geometric features can describe

a three-dimensional model with sufficient detail for various applications of content-based

2.5 Retrieval using Partial Queries 55

shape retrieval. Based on this idea they introduced the abstraction of salient geometric

features and presented a method to extract these features from polygonal meshes.

The first step of this method is computing a sparse set of local surface descriptors

across the surface and use these to measure similarity between regions of the model, even

if they have dissimilar polygonal meshes. Then, these descriptors are clustered in order

to locally describe a nontrivial region of the surface. Each one of these clusters form a

compound higher-level descriptor that represent a salient geometric feature characterising

a local partial shape. In this approach trivial regions of the model are considered irrelevant

and discarded.

A major challenge facing the Gal and Cohen-Or was correctly identifying the salient

features. To that end, they start by making a loose definition of salient geometric feature.

In this definition, a salient geometric feature is a region of the object surface with a non-

trivial shape. Based on this definition, they select regions with high curvature relative to

their surroundings and high variance of curvature values as geometrically salient. Indeed,

such option is grounded on previous work by Hoffman and Singh [66]. They have found

that human vision defines boundaries along negative minima of the principal curvatures

on surfaces. From this, Hoffman and Singh suggest that salience of a region depends on

its size relative to the whole object, the degree to which it protrudes, and the strength of

its boundaries.

Authors identify salient regions by growing, for each descriptor from the sparse set,

a cluster of descriptors. Such cluster is constructed by incrementally adding descriptors

from its neighbourhood that maximise the saliency of the cluster until the contribution of

neighbour cluster become insignificant.

After estimating all clusters, authors select from these a set of clusters with higher

values of saliency grade and use them to identify the set of salient geometric features of

the model. This set should include model regions that are salient and interesting compared

with other parts of the model. Figure 2.16 illustrates the result of applying this method to

four different models and selecting as salient the top ten percent clusters ordered accord-

ing to saliency grade.

In this approach each model is represented by a set of descriptor clusters correspond-

ing to the salient geometric features of the object. Ran Gal and Cohen-Or associate each

56 Chapter 2. Background and State-of-the-Art

Figure 2.16: Salient geometric features from four models and corresponding individual
sub-parts (Figure taken from [59] c© 2006 ACM).

one of these features with a vector index (a signature) and insert it in a geometric hash

table10. Authors recognise that elaborate indices, such as normalised moments can be

used to describe the geometric features. However, they simply use the terms employed

for defining the saliency grade to construct the vector index, reinforcing their claims for

the efficiency of salient features in shape retrieval.

2.5.3 Distinctive Regions

Also in [114] important regions of the surface object are used to perform partial

matching. However, researchers at the Princeton 3D shape retrieval group followed a

slightly different path. Instead of identifying the salient regions of an object, Shilane and

Funkhouser [113] suggest selecting the distinctive regions of a 3D surface. The basic idea

behind their approach is to focus the shape matching process on local features of shapes

that are consistent among objects of the same class and distinctive relative to object of

other classes.

Instead of using global descriptors, which represent global features of the model and

10Geometric hashing is an highly efficient technique with low polynomial complexity developed for
matching geometric features against a database of such features [85]. This technique uses a grid-based
hash table to store every feature of every object but only a limited number of features is used to determine
a mapping into the hash. During a query, the remaining features are used when hash collisions exist.
With this technique matching is possible even when the recognisable database objects have undergone
transformations or when only partial information is present [139].

2.5 Retrieval using Partial Queries 57

fail when local properties of an object distinguishes it from others, in their approach au-

thors use local shape descriptors. However, computing and storing local shape descriptors

for the whole shape is time consuming and space expensive. To overcome this, they pro-

posed a method for finding distinctive features of an object that are more relevant for

shape retrieval.

In their method, Shilane and Funkhouser [114] define a distinctive region as a region

with features that are only found on objects of a single class, while a not distinctive region

is a region common to many objects of different classes. Therefore, in this approach to

find the distinctive regions of an object the complete model database should be initially

classified into object types. Otherwise it will not be possible to establish which are the

objects of the same class. And such relationship is necessary to identify common features.

The distinctive region identification process starts by randomly sample each mesh on

the database in order to obtain a set of spherical regions, covering the object at differ-

ent scales. For every region, authors compute the corresponding shape descriptor that

represents the distribution of surface area within that region. Next, by comparing all the

descriptors of the database, they produce a ranked list of matches for each descriptor and

use it to produce measures of region distinctiveness, thus identifying the most distinctive

regions of each model.

Identifying distinctive regions is, therefore, a pipeline of relatively simple steps. Al-

though other sampling methods could be used, authors propose selecting points randomly

with uniform distribution with respect to surface area. Likewise, several shape descriptors

can be used, but authors suggest describing the shape of every spherical region using ro-

tation invariant spherical harmonics11 [78]. Figure 2.17 illustrates the different stages of

the process of partitioning a model into distinctive regions with respect to a set of object

classes in a given database. In the final result, regions in red are the most distinctive while

regions in blue are least distinctive.

To perform partial matching retrieval on large model databases, Funkhouser and Shi-

lane proposed a priority-driven search algorithm [57]. This kind of backtracking search

algorithm considers only partial matches that can possibly lead to the lowest cost match-

ing, as in the widely known shortest path algorithm by Dijkstra [48]. Therefore, authors

11Rotation invariant spherical harmonics were briefly described in Section 2.2.3.

58 Chapter 2. Background and State-of-the-Art

Mesh Random Points Regions

Shape DescriptorsDistinct RegionsVertex Distinction

Figure 2.17: Selecting distinctive regions of an object (Figures taken from [114] c© 2007
ACM).

use a cost function that accounts for both feature dissimilarity and geometric deformation

to order the list of pairwise matches between features of query and of objects in database.

The proposed algorithm produces a list of best target objects sorted by the similarity of a

subset of matching features between the object and the query.

2.5.4 Structural Descriptors

The previous methods describe 3D objects as a set of local shape descriptors, on the

contrary structural descriptors describes 3D objects as a graph-like skeleton represent-

ing the relevant part of the object and their adjacency relationships. While local shape

descriptors drop out the information on the overall shape, the structural descriptor pro-

vide at the same time global and partial information on the shape of the object. Beside

the identification of shared similar sub-parts, between two objects, and their correspon-

dence, the information associated to the structural descriptor makes easier the estimation

of the global similarity based on the overall shape of the objects. The following are some

example of partial matching methods based on structural descriptors.

The methods proposed in [26] represent the shape object as binary tree obtained by

2.5 Retrieval using Partial Queries 59

recursively subdividing the object into two parts. The recursive subdivision of the objects

is obtained by analyzing the geodetic distance among the vertexes of the triangular mesh

representing the object and the angle among triangles. The similarity measure between

two objects is obtained by matching the two trees, Beside the sub-part correspondence is

induced by the node mapping provided by the matching algorithm.

The structural-based framework for 3D shape matching proposed in [45] uses a many-

to-many matching algorithm that works with skeletal representations of 3D volumetric

objects. The matching between two 3D skeletons is obtained by using an extension of the

Earth Mover’s Distance (EMD) where skeleton transformations are considered.

The approach proposed in [31] is based on a flexible matching framework based on

the consolidated Reeb graph theory. Biasotti et al. described an interesting method for

partial shape matching that couples geometry and structure in a single descriptor. Based

on the theory of Reeb graphs, as an alternative to commonly used skeletal graphs, authors

compute the so-called structural descriptor. They suggest [93] encoding the shape and

all its relevant sub-parts in a graph which represents the structure of the object and its

geometry at the same time.

The proposed extended Reeb graph (ERG) [120] generalises the original Reeb graph

definition to a surface on which a finite set of contour levels given by a mapping function f

is defined. In their work, authors compare two distinct mapping functions, since choosing

this function is an important aspect of the proposed method. One option is using the

distance from the centre of mass of the object as a mapping function, which makes f

rotation invariant, but sensitive to pose changes. The other option is estimating f as

suggested by Hilaga et al. in [65], using the integral geodesic distance to the surface

centre, which is also pose invariant. Biasotti et al. conclude that the latter is best suited

for retrieving articulated objects disregarding its pose, while the first option distinguishes

articulated models in different poses.

Using the selected mapping function, the ERG is constructed and represents the topol-

ogy of the model. Then, the corresponding value of f and a geometric descriptor is as-

signed to each node of the graph, which represents a sub-part of the model. To compute

the geometric descriptor assigned to each node, authors use spherical harmonic analysis

of the corresponding sub-part. The rotation invariant spherical descriptor used in this ap-

60 Chapter 2. Background and State-of-the-Art

Shapes Shapes with descriptors

Structural descriptors Partial matching

Figure 2.18: Sub-part correspondence of two mechanical parts (Figures taken from [31]
c© 2006 Elsevier Ltd.).

proach has been defined by Kazhdan et al. in [78] and is briefly described in Section 2.2.3.

Additionally, each sub-part is uniformly scaled separately before computing the descrip-

tor to guarantee that retrieval is scale invariant. Indeed, due to the necessity of finding

similar sub-parts with different sizes, scale invariance is an important feature in retrieval

with partial matching approaches.

Since the structural descriptor is coded as a directed attributed graph, the sub-part

correspondence between models is obtained by matching its descriptors, i.e. matching

its graphs. Using inexact graph matching, the authors adapted the algorithm proposed

by Marini [94] for the computation of the maximum common sub-graph between two

directed, acyclic graphs with attributes. The specialised version of this algorithm produces

a set of all common sub-graphs between two extended Reeb graphs, considering not only

the topological structure but also node attributes such as the geometric descriptor. The

similarity estimation between models is obtained by considering the size of the common

sub-graphs with respect to the size of the corresponding graphs and the similarity distance

between the nodes belonging to the common sub-graphs.

An example of the above described technique is shown in Figure 2.18. To obtain

partial matching between two models the ERG are extracted from each object and the

structural descriptor are computed based on it. Then, a graph matching technique is ap-

plied to compare the structural descriptors, identifying the common sub-graphs. Finally,

the similar subparts are identified in both objects by comparing the common sub-graphs.

2.5 Retrieval using Partial Queries 61

2.5.5 Scale-space Feature Extraction

Focusing on mechanical CAD models, Bespalov et al. [25] proposed a partial match-

ing technique for finding similarities across part models constructed from data acquired in

3D scanners. For that end they propose a feature extraction technique based on recursive

decomposition of polyhedral surfaces into patches which applies the method introduced

by Novatnack et al. for extracting and integrating shape features in the discrete scale-

space 12 of a 3D mesh model [97]. The discrete scale-space of a three dimensional model

is constructed by unwrapping the shape surface onto a planar domain, as a two dimen-

sional image of surface normals. After this initial step, the scale-space operator used in

image processing can be applied to the 3D shape.

However, the parametrization of original mesh to the planar domain that produces the

surface unwrapping is not isometric, introducing distortion in the image. As a result of

this distortion, relative geodesic distances between points on the original 3D model are

not equivalent to relative distances between corresponding points on the 2D normal map.

Therefore, to correct this distortion, authors compute the distortion for each point in the

2D image and then construct a dense distortion map with these values. Then, this map

is used to approximate the geodesic distances between two points in the two dimensional

image representing the unwrapped model surface. Finally, the discrete scale-space of the

original model is constructed from finer to coarse by iteratively convolving the normal

map with a distortion adapted Gaussian kernels, as commonly done when computing the

scale-space of a two dimensional image.

After the discrete scale-space of the model has been constructed, scale-dependent

shape features can be extracted in a similar manner to image feature detection. To that

end, a gradient of the normal map that correctly accounts for the distortion is defined.

This gradient is then used to detect edges and corner of the original shape in the normal

map. Since a 3D corner is a point with geometric changes in more than one direction,

these points can be detected in the normal map by identifying large local changes in the

12Scale-space is widely used by the computer vision and image processing communities for handling
image structures at different scales. With this framework, the fine-scale features are iteratively suppressed
while the level in the scale-space representation increases. The idea behind this theory is that objects are
composed by different structures at different scales. For instance, it is appropriate to represent a dog at
the scale of meters, but not the hair of its fur or the molecules that compose its skin, which should be
represented at much finer scales. Therefore, the scale-space approach consider multiple descriptions for an
object at different scales to be able to capture its complete description.

62 Chapter 2. Background and State-of-the-Art

Figure 2.19: Scale-space decomposition of a mechanical part (Figures taken from [25]
c© 2006 Elsevier Ltd.).

normal directions. On the other hand, an edge in the 3D model corresponds to a line of

points with significant changes in the surface geometry. Therefore, edges are detected by

finding maxima along gradients previously computed. Indeed, to detect corners and edges

authors suggest methodologies analogous to the Harris corner detection algorithm [63]

and the Canny edge detector algorithm [40] respectively.

Once the features have been extracted at individual scales these are combined into a

unified feature set which encodes the scale-dependent geometric structure of the shape,

providing a concise representation of the original model. Authors argue that, with the

appropriate parameters, the method can be tuned to extract local features of engineer-

ing relevance from CAD mechanical models. Thus, they adapted feature extraction in

scale-space proposed by Novatnack [97] discussed above by replacing the geodesic dis-

tance function by a new distance function computed with respect to triangular faces of

the model. This function measures the maximum angle between adjacent faces on the

shortest path between two surface polygons.

In practice, the maximum angle function introduced by Bespalov et al. quantifies the

smoothness of the surface, since smaller angles correspond to smoother surfaces. Using

this function, CAD mechanical models are decomposed and the resulting combined fea-

ture set is used for partial matching of 3D models. Figure 2.19 illustrates a scale-space

decomposition of a CAD model. In this example the presented tree are not full, since it

will be hard to understand the results if the whole tree was depicted.

2.5 Retrieval using Partial Queries 63

2.5.6 Part-in-Whole Matching

Suzuki et al. proposed [125, 123] a solution that follows a different approach. They

aim for part-in-whole matching instead of partial matching. To that end, the 3D model is

initially decomposed into its sub-components and then shape descriptors for these shapes

are computed using a rotation invariant shape descriptors they proposed earlier for their

similarity retrieval system [122].

There are a multiplicity of different ways to decompose a 3D object. Indeed, be-

sides the impractical user-assisted 3D model decomposition, several automatic techniques

have been proposed. These usually rely on object attributes such as color, texture or

shape curvature. Detailed explanations of these techniques can be found in several pa-

pers [43, 42, 145]. In their work, Suzuki et al. apply a simple and automatic decom-

position technique. They decompose 3D models into several parts by comparing angles

created by normal vectors of each polygonal face, and the technique finds sharp angles

and cuts polygonal faces into parts based on a typical clustering approach. To tune the

decomposition granularity is used a threshold for the angle size. A wide angle size pro-

duces a large number of shape parts while a sharp angle size produces a small number of

components.

To compute the shape descriptors for extracted components, Suzuki et al. used a

rotation invariant shape descriptors they proposed earlier for their similarity retrieval sys-

tem [122]. In this method the object part is initially normalised for scale and then for

orientation by using principal component analysis pose normalisation. Next it is vox-

elised and inserted into a cube divided in a three dimensional grid. The number of voxels

contained in each cell are computed and then a clustering technique is applied. Finally,

the descriptor are constructed from a voxel distribution function.

Although their decomposition technique is fully automatic, authors acknowledge that

occasionally the algorithm can not efficiently handle highly complex 3D models. Addi-

tionally, time complexity is also a problem of the proposed method, since the decomposi-

tion process is a time consuming task and shape matching requires a considerable amount

of time due to the high number of shape descriptors for each model.

More recently, Suzuki et al. improved their decomposition method and partial shape

descriptors construction algorithm to attain better similarity retrieval results [126]. One

64 Chapter 2. Background and State-of-the-Art

of the decomposition enhancements was the use of the area proportion to identify irrele-

vant parts that should be merged into other. Other improvement in this approach was the

use of multiple bounding boxes in descriptor computation. Authors use a bounding box

for each decomposed part, instead of only one for the entire object used in their previous

solution. However, despite for most models this approach proved better, the time com-

plexity problems were not solved and when 3D models does not have visually irrelevant

parts the previous technique works better.

In our approach to 3D shape retrieval, described in this dissertation, we propose a

novel methodology that, while also relying on shape decomposition and part-in-whole

matching, overcome the retrieval time complexity. The technique proposed by Suzuki

uses a per object decomposition that looks at surface angles and areas of each model

to determine its decomposition. Our approach decomposes each model in terms of fea-

tures considered distinctive with respect to other models in the collection. Moreover, to

retrieval a model Suzuki approach searches the similar sub-parts in a dataset containing

all detected segments in every model of the collection, which makes it hardly scalable

for large collections. In our approach we use a thesaurus of shapes together with an in-

verted index, which greatly reduces the number of comparisons required in a query, thus

providing scalability.

2.6 Summary

In this chapter we familiarized the reader in the research subjects covered by this dis-

sertation. Namely, we listed the key players in shape analysis, classification and retrieval

in order to provide an overview of those who have been providing the latest advances

in this area. Obviously, such list is far from complete, since it will be hard to produce

an exhaustive list of all research groups involved in a constantly evolving field. We in-

clude in this list only those whose work we consider more relevant regarding our research.

Next we presented some existing 3D model collections and described in detail the best

known shape benchmarks, with special focus on the ESB which we used intensely in our

experiments.

Due to core importance of shape description techniques for our research, we reviewed

with special attention the existing approaches to 3D shape description. From this study

2.6 Summary 65

we identified the technique that best fits our purposes. The rotation invariant spherical

harmonics descriptor [78] was selected, despite the time-complexity of the estimation

algorithm, because of its descriptive power. However, this shape description technique

has another drawback just identified as such during the evaluation of the algorithm. The

Rotation Invariant Spherical Harmonics (SHA) descriptor produces an extremely long

signature, when compared with other approaches. As discussed in Chapter 6, the large

size of the signature, while providing a powerful description of the shape, increases the

time and space complexity of the whole approach, threatening its scalability.

To complement the background required to fully understand the matters discussed in

this dissertation we also presented basic concepts for query types and similarity measure-

ment techniques. Here we described the exact match and range search queries, as well as

the k-NN search and α-cut distance. Indeed, these concepts are fundamental to compre-

hend any retrieval solution. The same applies to the similarity measurement techniques.

Although we used in all our work the quadratic Euclidean distance, we described here

other commonly used approaches to measure distances between two points in space.

Finally, we present existing solutions that allow content-based retrieval of 3D models.

However, most of these systems support only complete matching, i.e. queries by the

entire object. Indeed, the subject of partial matching in 3D shapes is relatively recent and

most relevant work has been published in the last six years. Thus, we finished this chapter

by presenting the relevant work on partial matching, starting by the solution proposed by

Correa et al. [110] through the latest advances in this topic. However, despite the several

approaches to partial matching, no definitive solution for this issue had been proposed.

In our research we devised a novel approach that overcomes some problems faced by

existing approaches, which we will describe in the remaining of this document.

66 Chapter 2. Background and State-of-the-Art

3
Collection-Aware

Segmentation

As we have referred previously, our approach to shape retrieval relies on a correct

and meaningful decomposition of the models in the collection. Since our shape thesaurus

is composed by a set of terms, and these terms are computed from sub-parts of models

in the collection, segmentation plays an important role in our methodology to index and

retrieve three-dimensional shapes with partial queries.

To segment models in the collection, we need a technique that will provide not only

automatic segmentation of all models, but will also produce useful segments for the the-

saurus construction. Several approaches to three-dimensional shape decomposition have

been published in the past, with recognized success in some domain-specific models,

such as articulated characters. However, independently of the methodology used, all ap-

proaches only consider the model to be decomposed, ignoring the context where it lies,

namely the other models in the collection.

Although existing decomposition techniques could be very effective in many cases,

they do not completely fulfill our needs to decompose models in a collection in order

to classify them using a shape thesaurus, because some need per object parameteriza-

tion, do not produce multilevel decomposition, or even require human intervention during

segmentation. Therefore, in the present work we devised a novel approach to shape de-

composition: the Collection-aware Segmentation (CAS). This method takes into account

other objects in the collection while decomposing each model. The CAS decomposition

is fully automatic and produces a multi-level segmentation of all models in the collection.

67

68 Chapter 3. Collection-Aware Segmentation

3.1 Algorithm Overview

The CAS is a decomposition algorithm that performs multilevel shape segmentation

of each model based on the concept of decomposable regions. Decomposable regions

are determined according to their distinctiveness regarding regions of all other models in

the collection. In our algorithm, distinctive regions of models are further decomposed in

our multi-level segmentation, while common regions are not. The key idea behind this

heuristic is that if a feature is shared by many objects it will correspond to a term in the

thesaurus as well as unusual features, and the last should be further decomposed into more

common subparts in order to become itself a set of common regions. Thus, it is important

to clearly comprehend what is a distinctive region in a model.

The concept of distinctive region in 3D meshes was first introduced by Philip Shilane

and Thomas Funkhouser in [114]. In their approach, the distinctive regions of each object

are identified, by comparing objects in a collection and by selecting those regions that

are consistent with objects of the same type and different from regions in objects of other

type. Although they achieve interesting results, their approach requires a pre-classified

collection, where objects are organized into categories.

Therefore, the method proposed by Shilane and Funkhouser to identify distinctive re-

gions is not appropriate for our purposes. We need a technique that works on unclassified

collections, identifying automatically distinctive regions with the intent of segmenting the

model. To that end, we consider distinctive a region, or segment, of a model whose geo-

metric features do not occur frequently in the collection. In our approach, less distinctive

segments are geometrically similar to many others in the collection, while a more distinc-

tive segment share geometrical similarities with few segments in the whole collection.

After introducing our interpretation of distinctive segments, we can present with

some detail our overall approach to model decomposition. A conceptual overview of

this methodology, depicted in Figure 3.1, can be given as follows: each model in the

collection is decomposed into subparts; then, shape descriptors for each subpart are com-

puted and used to determine the subpart distinctiveness; next, based on this information,

the algorithm identifies which subparts of each model should be further decomposed and

the iteration starts over, considering now the recently decomposed subparts.

3.1 Algorithm Overview 69

For each segment in the shape pool

3D
 M

od
el

 C
ol

le
ct

io
n

Sh
ap

e
Po

ol

Decompose into
subparts

Estimate subpart
distinctiveness

(acording to collection)

Decomposable
subpart

identification
Compute subpart

signatures

Figure 3.1: Collection-Aware Segmentation pipeline

From the description, above it should be clear that the proposed approach is supposed

to work with generic collections of 3D models, and also support different shape segmen-

tation and description techniques. However, in the context of this thesis and to validate

our framework, focused on a specific decomposition technique that facilitates the creation

of a thesaurus for 3D shape retrieval and selected a well-defined setup:

• Collection type: CAD models;

• Segmentation algorithm: Hierarchical fitting primitives [16];

• Shape description: Rotation invariant spherical harmonics [78].

For our experiments we decided to restrict the collection type to engineering CAD

models instead of generic 3D models. Naturally, the choice of a benchmark collection

for our studies will reflect this restriction. To that end, we will mainly use the Purdue’s

Engineering Shape Benchmark (ESB) collection, introduced by Jayanti et al. [71] and

described in detail in Section 2.1.3. Additionally we will also use a dataset of LEGO R©
models extracted from the National Design Repository [107, 127, 108] and the collection

of watertight models used in the SHREC 2008 stability track [28].

By selecting CAD models we reduced the problem of shape segmentation to a specific

domain and consequently we make the selection of existing segmentation methods eas-

70 Chapter 3. Collection-Aware Segmentation

ier. Indeed, our collection-aware shape decomposition technique is based on a traditional

segmentation algorithm. We decided to use the Hierarchical Fitting Primitives (HFP) seg-

mentation algorithm for multilevel decomposition of models, since it has proven good

results in decomposition of engineering models and produces results that serve well our

needs.

To create the feature vectors we use the SHA, a widely accepted rotation invariant

shape descriptor published by the Princeton team [78]. This descriptor overcomes several

limitations of many other descriptors at the cost of time complexity. Indeed, the SHA

descriptor computation is very time consuming, but, since the classification process will

be executed in batch and during the retrieval phase only the descriptor for the query will

be computed, this is not an issue in present work.

Nevertheless, we plan to add more shape descriptors in future research, combining

them in order to improve the accuracy of our similarity measurements. Indeed, we had

already implemented and tested the CAS algorithm with the Cord and Angle Histogram

(CAH) [103, 104] both stand-alone and together with SHA. However, from preliminary

experiments we found no improvement in results that could justify the additional pro-

cessing time and memory requirements. So, we decided to postpone the use of CAH

descriptor.

For an easier comprehension of our approach we use, in this document as explanatory

example, a very small set of six models from the ESB collection. The sample collection

Deg = {M1, · · · ,M6} is shown in Figure 3.2, together with a visual representation of

the corresponding SHA signatures. These shape descriptors are constructed from the first

M1 M2 M3 M4 M5 M6

Figure 3.2: Sample collection Deg with six models extracted from Purdue’s Engineering
Shape Benchmark [71] and corresponding SHA signatures.

3.2 Hierarchically Segmented Meshes 71

sixteen harmonic components of thirty-two spherical functions that represent the shape.

Thus, each SHA signature corresponds to a point in a 32 × 16 dimensional space and is

represented in this document as a series of sixteen two-dimensional functions. From a

quick analysis of the depicted signatures, it is possible to perceive the descriptive power

of the adopted shape representation.

3.2 Hierarchically Segmented Meshes

To obtain a multi-dimensional decomposition of 3D models, we developed our collection-

aware algorithm based on the hierarchical fitting primitives method. We named this al-

gorithm Collection-aware Segmentation with Hierarchical Fitting Primitives (CAS/HFP).

The HFP is a traditional mesh segmentation algorithm that produces, for a given model

represented as a triangle mesh, an iteratively generated binary tree of clusters each of

which is fitted by one of the predefined fitting primitives [16]. This completely automatic

algorithm is a variation of the Hierarchical Face Clustering (HFC) method. The HFC,

proposed by Garland et al. [60], represents a polygonal mesh as a hierarchy of surfaces.

This hierarchy is produced by a face clustering algorithm that merges neighboring tri-

angles into representative clusters, which are approximated by fitting planes. Authors

suggested several applications for the HFC algorithm, such as surface simplification or

multi-resolution radiosity, but did not apply it for segmentation.

The HFP algorithm extended the concepts used in the HFC with the purpose of per-

forming mesh segmentation. In this approach, instead of using fitting planes, a finite set

of primitives are used to compute the face clusters. As its predecessor, the HFP repre-

sents the mesh as a hierarchy of face clusters, more precisely, as a binary tree in which

each node corresponds to a face cluster. This tree, called Hierarchically Segmented Mesh

(HSM) contains the whole multilevel decomposition of the segmented mesh. This struc-

ture, plays an important role in our approach for model segmentation, as is computed for

all models in the collection using the HFP algorithm in the initial stage of our method.

On a brief description, the HFP algorithm works as follows: initially each triangle

of the mesh represents a single cluster; at each iteration, all pairs of adjacent clusters are

considered; and the pair that can be better approximated with one of the fitting primitives

forms a new single cluster, which represents a parent node at the above level in the tree.

72 Chapter 3. Collection-Aware Segmentation

Figure 3.3: Five upper levels of the HSM tree for a 3D model.

This iteration repeats until there is only one cluster remaining, representing the whole

model, and which will become the tree root. The resulting HSM tree provides a multilevel

decomposition suitable for our segmentation purposes.

An excerpt of a HSM tree for a three-dimensional model is show in Figure 3.3. The

interpretation of an HSM tree happens in reverse order regarding its construction by the

HFP algorithm, i.e. it starts by the root node - the last cluster computed by the algorithm.

Thus, in the given example are depicted only the four upper levels of the HSM tree,

since including all levels of the tree will be impractical. Nevertheless, it is possible to

perceive from this partial tree that segment complexity is not similar among all nodes in

the same level, which makes automatic identification of relevant mesh segments an hard

task. In our research we solve this issue by combining the HFP algorithm with the CAS

decomposition method.

In order to provide automatic decomposition of models in the collection, the proposed

CAS/HFP algorithm takes advantage of the fact that HSM trees contain the whole mul-

tilevel segmentation of the object to speed up decomposition. Indeed, our algorithm is

divided in two phases: the initialization and the iteration. The first phase initialize the

data structures used in the algorithm while the second performs the segmentation based

on the information stored in these structures.

3.3 Shape Pool 73

For each step

INITIALIZATION

For each model in the collection

Compute Signature
(SHA)

Load Model

Add Segment to Pool

HSM Set

Compute HSM
(using HFP)

Identify
Decomposable

Segments

Decompose into
Subsegments

Compute
Subsegments

Signatures

Add Subsegments
to Shape Pool

ITERATION

Model
Collection

Shape
Pool

Figure 3.4: Block diagram of CAS/HFP alorithm.

During the initialization phase all models in the collection are processed and results

are stored for later use in the next phase. This way, each model just need to be segmented

once using the HFP algorithm, and the resulting segmentation trees are then used to iter-

atively decompose all models in the collection. Indeed, as illustrated in Figure 3.4, the

estimation of HSM trees, i.e. running the HFP algorithm, happens only once for each

model at the initialization stage. These segmentation trees are then stored in the HSM set,

one of the data structures constructed during the initialization phase, that is used to create

the shape pool.

3.3 Shape Pool

In the initialization stage, besides the HSM trees, also shape signatures are computed

for all models in the collection. These signatures are stored in a structure, which we

called shape pool, together with the corresponding segments - at this stage, the whole

models. Moreover, during the iteration stage, data stored in the shape pool are used

to identify decomposable segments. Then, segments resulting from such decomposition

and corresponding signatures are also added to the shape pool. Therefore, the shape

pool is a dynamic structure that will store the most important information produced by

the algorithm: the pairs segment-signature that will be later used to construct the shape

thesaurus.

74 Chapter 3. Collection-Aware Segmentation

S

S

Figure 3.5: 3D model S and corresponding signature FVS .

Indeed, the shape pool is a vary important part of our approach, not only because it

keeps the final result of the segmentation algorithm but mainly because the efficiency of

the CAS/HFP algorithm depends greatly on it. This happens because the determination

of the segments to decompose is a key step, executed at every iteration for each segment

in the shape pool.

Basically, the shape pool contains a set of pairs segment-signature, as the one depicted

in Figure 3.5. In practice, the segment in the pool is not really a mesh or a shape. Instead,

it is just a reference to a node in the HSM tree stored in the HSM set. On the other hand, the

signature is the feature vector produced by the SHA descriptor. Conceptually, the shape

pool can be seen as a multidimensional dataset, where each point in space corresponds to

a segment. In truth, this structure was implemented as a n-dimensional space, where n is

the signature length and depends only of the shape descriptor used. In our case, and since

we are using SHA descriptors, we have n = 544 dimensions.

In a formal definition, a collection D of m models is specified as

D = {M1,M2, ...,Mm}

and the segments resulting from the model decomposition are referred as Si,node, where i

indicates the model to which the segment belongs and node indicates the corresponding

HSM tree node.

3.4 Identification of Decomposable Segments 75

Considering that a three-dimensional shape S is represented by a single n-dimensional

signature as described in Section 2.2, the corresponding feature vector FV is specified as

FVS = {fS1 , fS2 , ..., fS3},

where each fSi
is a floating point value that corresponds to a shape feature. Thus, the

shape pool is a set SP of pairs

SPi,node = 〈Si,node, FVSi,node
〉

where i and node maps to the corresponding segment, i.e. a node in the model HSM

tree. At the end of the initialization phase, SP contains the pairs correspondent to the

segments that represent the whole models, i.e. the HSM tree roots, and corresponding

signatures. Then, during the iteration phase the CAS algorithm append and search this

multidimensional space in order to determine the model decomposition.

3.4 Identification of Decomposable Segments

At the end of the initialization phase, the shape pool contains segment-signature pairs

that correspond to the whole model of every object in the collection. To decompose these

objects we apply an iterative process over the segments in the shape pool. In each step of

the iteration phase, the information at the shape pool is updated according to the decom-

position heuristics. Conceptually, what happens in this process is the construction of the

CAS decomposition trees of models in the collection. These are created based on the cor-

responding HSM trees. Figure 3.6 depicts the decomposition of a single model using our

approach. In the first iteration, a CAS decomposition tree is created with the whole model

as the tree root. In each iteration the nodes are identified as ”decomposable”, ”decom-

posed” or ”not decomposable” depending to its distinctiveness regarding all other models

in the collection. Then, nodes are expanded according to its classification, proceeding

to the next iteration. The decomposition finishes when no more nodes are identified as

decomposable. In the following paragraphs we detail this process.

At the beginning of each iteration step, the decomposable segments in the shape pool

must be identified in order to be further decomposed if necessary. This is indeed the major

challenge of our algorithm. It is not trivial to automatically identify which segments

76 Chapter 3. Collection-Aware Segmentation

Decomposable

Decomposed

Not decomposable

Figure 3.6: Evolution of model decomposition during the iteration phase.

should be further decomposed, it is necessary to determine the distinctiveness of each

segment, which depends on the number of segments similar to it in the shape pool.

To determine the decomposability of segments, we suggest use segment signatures,

measure the distance between them, and then, for every segment, count the number of

segments whose distance is within a given range. We called this value similarity threshold,

σ, and it determines how much geometrically similar two objects has to be in order to be

considered similar.

If the count of similar segments is above a given value, which we called similar count

threshold, τ , the segment should be further decomposed, since there are enough similar

shapes in the pool to flag it as a recurrent shape part in the given collection. Indeed, due

their importance, these two values are the main parameters of the CAS algorithm. While

the similarity threshold, σ, represents a distance in the signature space, the similar count

threshold, τ , corresponds to a percentage of the shape pool size.

In an extreme situation, with an extremely low similarity threshold (σ ≈ 0.0) and

unreasonable high similar count threshold (τ ≈ 1.0), the only sub-part similar in models

is the triangle, the basic element of segments mesh, and all objects will share this common

shape. However, the idea behind this approach is to decompose models into a meaningful

and not trivial set of shapes. Decomposing a model to the triangle level is quite useless

3.4 Identification of Decomposable Segments 77

for our approach. Thus, using such values produces weak decomposition results. Indeed,

determination of σ and τ values that provide an effective decomposition was an issue

tackled during our research.

3.4.1 Nearest Neighbor Search

Considering the shape pool as a multidimensional dataset SP , we do not need to

measure the distance between all segments to flag a segment as decomposable, which

would be a time consuming task. This can be done by using a k-nearest neighbor (k-NN)

search algorithm, setting the k value to the given similar segment count threshold. Thus,

to determine the decomposability of segment in the shape pool, we just need to apply

the k-NN algorithm to each not already decomposed segment Si,node, obtaining a list of

similar segments ordered by signature distance. This neighbors list is given by

NFVi,node
= kNN(SP , FVi,node, k),

where kNN(SP , FVi,node, k) performs a k-NN search in the dataset SP that returns

the k nearest neighbors of point FVi,node. To determine the correct k for the every step of

the CAS iteration step, it is necessary to compute the value correspondent to the percent-

age of the size of the shape pool,

k = Size(SP)× τ. (3.1)

After estimating k for the present iteration, we check if all items in the neighborhood

NFVi,node
are within the similarity threshold. In practice, it is sufficient to check if the

distance between FVi,node and the farthest element of NFVi,node
is smaller than σ. Since

this list is ordered, this comparison can be done in constant time with respect to the

neighborhood size. Formally, considering d(α, β) the distance between two points in

space and setting k = τ , the decomposability of a segment is given by

Decomposable(SPi,node) =

{
1, if d(FVi,node, Last(NFVi,node

)) < σ,

0, otherwise

where Last(ψ) returns the last element of list ψ, in this particular case it corresponds to

the signature of the segment less similar to Si,node, according to SHA shape descriptor. To

78 Chapter 3. Collection-Aware Segmentation

improve time efficiency, the quadratic Euclidean distance is used to compute d(α, β). In

Section 2.3.2 we described with some detail this and other similarity measurements.

An alternative way to achieve the same goal is using within-distance (or α-cut) search

algorithm instead of the k-NN search technique. This algorithm will identify all segments

within a given distance. In this case the cut-off value should be set to the similarity

threshold value, i.e. α = σ, and to determine if a segment is decomposable we check if the

number of returned segments is above the similar segments threshold. After preliminary

experiments we conclude that no relevant improvements over k-NN search are achieved

by using this method. Therefore, focused on the k-NN search technique.

The simplest approach to k-NN determination is the linear search, also referred as

the naive approach, which is similar to our initial suggestion since it basically measures

all distances and keep the closest segments. This method has a linear running time, but

different approaches were suggested for the k-NN search problem with better time com-

plexities, such as the ones based on spatial-partitioning methods. A quite simple and

commonly used example is the kd-tree [20], which allows k-NN searches in sub-linear

time with respect to dataset size. However, this and other sub-linear approaches behave

badly in a very high dimensional spaces, such as our signature space.

Therefore, despite of its poor time-complexity, linear regarding shape pool size, we

are using a naive approach since other methods require additional complex data struc-

tures. Besides increasing the CAS/HFP algorithm memory requirements, these structures

hinder the effectiveness of sub-linear algorithms. Moreover, in our research we are mainly

concerned in validate the proposed approach with benchmark collections. In the future,

more efficient k-NN search methods can be used.

3.4.2 Within Range Search

Nevertheless, to improve the behavior of our linear search and considering that we

do not really need to know the nearest neighbors but only if there are enough similar seg-

ments, we slightly changed the algorithm. Instead of searching for the k nearest neighbors

or determine the number of segments within a given range, our version just tries to find

out if there are k segments within a given threshold. We call it the k-within range (k-WR)

estimation.

3.4 Identification of Decomposable Segments 79

The proposed algorithm to determine if exist at least k points within a range r of

query Q in dataset ξ is detailed below in KWR. It sweeps over all elements in the dataset,

measuring the distance between each of them and the query and checking if this distance

is within the given range. When enough points in the vicinity are found the iteration stops

and the algorithm produces a positive result. If not enough points within range are found,

a negative response is given.

K-WITHIN-RANGE(ξ,Q, k, r)
1 n← 0
2 for each P in ξ
3 do
4 if d(P,Q) < r
5 then n← n+ 1
6 if n = k
7 then return 1
8 return 0

Although theoretically K-WITHIN-RANGE still runs in linear time with respect to

the dataset size, in practice it is much faster than a linear k-NN search since it measures

much less distances. Moreover, we are aware that with some changes the execution time

can be further improved without using any additional complex structures or, using such

structures, achieve a sub-linear time complexity.

The improvement obtained by using k-WR technique instead of linear k-NN search

when determining the decomposability of a segment is illustrated in Figure 3.7, where

a over-simplified two-dimensional signature space is considered. The difference is that,

while the k-NN search must compare all the points in the dataset, i.e. measure the similar-

ities between the query segment and all other segments in the shape pool, the k-WR just

compares points until k similar points are found. In the depicted example, considering the

range δ and k = 3, the k-WR search will just visit P1 to P5, the first five elements of the

dataset, represented by darker points in the figure. Since P2, P3 and P5 are within range,

the answer to the k-within range search can be given positively as soon as P5 is compared

with Q, dismissing further comparisons.

The proposed CAS algorithm works with any of the search techniques referred above

or others that provides the necessary answer regarding similar segments count. However,

80 Chapter 3. Collection-Aware Segmentation

P8

P2

P3

P6

P5

P1P4

P7

Q

δ

P8

P2

P3

P6

P5

P1P4

P7

Q

δ

k-NN k-WR

Figure 3.7: Visited points during the decomposability determination for segment repre-
sented by signature Q, using the k-NN search (left) or the k-WR technique (right). While
the k-NN search algorithm visits all points in the dataset, the k-WR search algorithm just
visits the darker points.

due to its simplicity and efficiency, when compared with linear k-NN search, we suggest

the use of the k-WR algorithm to determine segment decomposability. Moreover, by

using the k-WR technique instead of a k-NN search, the decomposability determination

of a segment is immediately obtained, without additional measurements and comparisons.

Summarizing, to determine if a segment is decomposable we apply a k-WR search

algorithm in the signature space, using as parameters two values: the similarity thresh-

old (σ), which sets when two shapes are considered similar, and the similar count thresh-

old (τ), which defines how many segments should be similar in order to be considered not

distinctive. These are the two parameters used to tune our decomposition algorithm. An

additional parameter is the maximum depth (λ), also referred as iteration cut-off, which

preset a maximum iteration count for the second stage of the CAS/HFP, the iteration

phase.

3.5 Sub-segments

In each iteration of the CAS algorithm, after identifying the segments that should

be decomposed we must determine their decomposition. To that end, we use the HSM

trees created during the initialization phase and stored in the HSM set. Since these trees

contain the whole multilevel segmentation of the model, it is fast and simple to determine

3.5 Sub-segments 81

Figure 3.8: Decomposition trees produced by CAS/HFP for models in collection Deg.

the decomposition of a segment. This is done simply by looking at the corresponding

node in the tree and using the child nodes as sub-segments. Moreover, since every pair

segment-signature SPi,node in the shape pool keeps a reference to the corresponding node,

this task is accomplished in constant time.

For every newly created sub-segment, its signature is computed using the SHA shape

descriptor. This signature, FVi,node, is then attached to the sub-segment Si,node, as well

as the reference to the corresponding node in the HSM tree, thus creating a new pair

segment-signature SPi,node. Then, all this information is added to the shape pool. When

all segments identified as decomposable have been decomposed and the originated sub-

segments added to the shape pool, the iteration starts over by identifying again the de-

composable segments. This cycle continues unless one of the stop conditions has been

verified. Basically, there are two conditions that may stop the cycle: when a pre-defined

iteration count is achieved or if there are no more decomposable segments.

The iteration phase of CAS algorithm is not complex. Indeed, each iteration step of

this phase relies on two different cycles, as detailed in CAS-HFP-ITERATION-PHASE.

The first cycle identifies the decomposable segments in the shape pool, using DETERMINE-

K to compute the k value as described in Equation 3.1. The second cycle iterates over the

decomposable segments identified previously. For each of these segments it is necessary

to identify the left and right nodes in the respective HSM tree, which is accomplished

82 Chapter 3. Collection-Aware Segmentation

through GET-SUBSEGMENTS and to compute their signatures, create the corresponding

shape-segment pairs and add them to the shape pool.

CAS-HFP-ITERATION-PHASE(SP ,HSM, σ, τ, λ)
1 c← 0
2 repeat
3 ξ = empty set of decomposable segments
4 c← c+ 1
5 k ← DETERMINE-K(SP , τ)
6 for each Si,node in SP
7 do
8 if Si,node not already decomposed
9 then

10 if K-WITHIN-RANGE(SP , Si,node, k, σ)
11 then
12 Add Si,node to ξ
13
14 for each Si,node in ξ
15 do
16 {Si,childleft

, Si,childright
} ← GET-SUBSEGMENTS(HSM, i, node)

17 FVi,childleft
← COMPUTE-SHAPE-DESCRIPTOR(Si,childleft

)
18 FVi,childright

← COMPUTE-SHAPE-DESCRIPTOR(Si,childright
)

19 Add 〈Si,childleft
, FVi,childleft

〉 to SP
20 Add 〈Si,childright

, FVi,childright
〉 to SP

21 until IS-EMPTY(ξ) ∨ ¬(c < λ)
22 return SP

During the process described above, CAS decomposition trees for each model are

conceptually built. Indeed, such trees does not exist explicitly in the data structures but

the approach behind the algorithm is based on them. In Figure 3.8 we depict the set of

decomposition trees produced by the CAS/HFP algorithm for the models in the example

collection Deg. Despite being an extremely small sample, it is possible to observe that the

trees are unbalanced but the shapes on the tree leafs have similar complexity.

Concluding, at the end of the CAS/HFP algorithm our approach has produced a shape

pool containing all the segments from every model in the collection, as depicted in Fig-

ure 3.9. This shape pool is later used to create the shape thesaurus. However, to achieve

useful results for the shape thesaurus creation, we must identify a good value for an im-

portant parameter of the CAS/HFP algorithm, the similarity threshold.

3.6 Similarity Threshold Determination 83

Figure 3.9: Shape pool SPeg resulting from the decomposition of collection Deg.

3.6 Similarity Threshold Determination

As referred above, the similarity threshold (σ) plays an important role in the CAS

algorithm. Is based on this threshold that the algorithm determines if two shapes should

be considered similar and uses this information to decide if a give shape should be further

decomposed. Formally, we consider two shapes S1 and S2, represented by the feature

vectors FV1 and FV2, respectively, as similar when

d(FV1, FV2) < σ.

The determination of a reasonable σ value, or at least a reasonable range for it, was

an issue studied during our research and the reader can find a detailed description of this

study in Annex A. Still, we briefly describe it in the next paragraphs while presenting the

conclusions we deduced from this study.

Considering that the SHA descriptor is used by CAS/HFP to compute the signature

of our shape, we analyze the behavior of the resulting feature vectors with different sets

of models from the ESB collection. More precisely, we measured the distance between

feature vectors of specific 3D shapes, examining the similarity between these shapes. This

84 Chapter 3. Collection-Aware Segmentation

S 1 0,000

S 2 0,136 0,000

S 3 0,136 0,009 0,000

S 4 0,176 0,252 0,251 0,000

S 5 0,186 0,232 0,232 0,229 0,000S 5 0,186 0,232 0,232 0,229 0,000

S 6 0,233 0,209 0,210 0,231 0,283 0,000

S 7 0,214 0,249 0,248 0,129 0,207 0,218 0,000

S 8 0,207 0,234 0,233 0,134 0,211 0,186 0,056 0,000

S S S S S S S SS 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8

Figure 3.10: Similarity values between geometrically similar shapes in a set ξsim1 .

similarity, si,j , is given by

si,j = d2(FVi, FVj),

where FVi and FVj are the SHA signatures of shapes Si and Sj respectively. Following

a widely used methodology for similarity measurement, si,j is a real number in the range

0.0 < si,j < 1.0,

where si,j = 0.0 if shapes Si and Sj are equal. Further details on similarity measuring

were provided in Section 2.3.2.

The first studied set (ξrand) contained randomly chosen shapes and, after computing

the SHA descriptors for these shapes we measured their similarity. As expected from a

random sample, the similarities between the shapes are distributed by the whole range of

possible values, but most of them fall around the mid-point. Indeed, the average for the

similarity among our sample of random shapes was sξrand
= 0.54.

However, the information above is not sufficient to define a valid range for σ. Thus,

we studied sets composed of similar shapes. These shapes were selected based on the

similar parts provided by the ESB search engine [90]. As for the random shapes set, we

computed the SHA descriptors and measured similarities. The results obtained with one

of the studied sets of similar shapes are shown in Figure 3.10. In this example we used

3.6 Similarity Threshold Determination 85

a set containing eight shapes, ξsim1 = {S1, ..., S8}, and measured the similarity between

these shapes. A quick analysis of the depicted distance chart allows the reader to check

the behavior of si,j with similar shapes.

From the analysis of given ξsim1 signature distances is possible to observe that, abid-

ing by the definition of similarity measurement, when a shape is compared with itself the

distance si,i = 0.0 and when two very similar shapes are compared this value is very

low, as in s2,3 = 0.009. Indeed, although it might not be asserted from the depicted

views, shapes S2 and S3 are quite similar except for the position of a curved carving in

the shapes. In contrast, when two less similar shapes are compared this value is higher, as

with shapes S2 and S7. But even in this case the measured similarity, s2,7 = 0.25, is far

below the average similarity of the sample set containing random models.

The behavior described in the previous paragraph for the set ξsim1 depicted in Fig-

ure 3.10 is observed in other sets ξsimi
containing shapes considered similar by the ESB

search mechanism. In our study all these sets contained eight objects similar to a given

query according to ESB and were manually inspected, to guarantee the geometrical simili-

tude of the shapes. In every studied set ξsimi
, the maximum distance we observed between

shapes was less than 0.3, as illustrated in Figure 3.11. This chart presents the distance val-

ues measured between SHA feature vectors of shapes extracted from ESB organized into

two distinct samples: a sample containing a set of randomly selected shapes (ξrand) and a

sample containing six distinct sets ξsimi
of similar models.

From the analysis of samples ξrand and ξsimi
it is clear that distances between feature

vectors of similar models are generally smaller than between random models, as expected.

In this aspect no relevant information was obtained except confirmation of the obvious.

However, based on the gathered measurements we estimated that the average for the fea-

ture vector Euclidean distance among similar shapes was sξsim
= 0.191. Based on this

value and extrapolating this behavior for other sets of geometrically similar models in the

collection, we suggest that a good value for the similarity threshold should be

σ ≈ 0.2.

Indeed, the extrapolation referred above must be done because it is not feasible to

determine the set containing geometrically similar shape for every model in a collection

containing more than eight hundred models, since this operation requires manual valida-

86 Chapter 3. Collection-Aware Segmentation

0,6

0,7

0,8

0,9

1

ri
ty

A

0

0,1

0,2

0,3

0,4

0,5

Si
m
ila
r

Random Similar

Avg

Avg

Figure 3.11: Similarity values between shapes from ESB organised into two distinct
samples: randomly selected shapes and sets of similar shapes.

tion due to false positives given by the ESB query system that should be removed. Thus,

to investigate further the behavior of the SHA descriptor we adopted a distinct approach.

We estimated the feature vector for every model in the ESB collection and determined for

each one the five nearest neighbors in the signature space.

To identify the nearest neighbors we executed linear k-NN searches using the feature

vector of each model from the ESB collection as a query. From the results produced

by the k-NN algorithm we constructed, for each query, a set containing the five nearest

feature vectors. Each of these sets corresponds to the five more similar shapes to the query

model, according to SHA descriptor. The distances between the queries and the respective

nearest neighbors are depicted in Figure 3.12, where each point in the chart corresponds

to a distance between a query and one neighbor. In this chart it is possible to observe that

although some distances are above 0.3, a vast majority is beneath this value.

Notice that in this measurements no geometrical similarity can be guaranteed. Indeed,

even if a shape is unique and no similar shape exists in the collection, the five nearest

neighbors of its feature vector will be found, probably representing dissimilar models.

This fact justifies the existence of larger distances than the observed when measuring sets

of geometrically similar shapes that were manually verified. Nevertheless, the overall

behavior does not differ greatly between the two cases. As presented in Table 3.1, more

than ninety percent of the measured distances are d ≤ 3.0, which validates our previous

3.6 Similarity Threshold Determination 87

#1
#2

0,4

0,3

0,2

0,1

#3
#4
#5

0,0

Figure 3.12: Feature vector distances for the five nearest neighbors of every model in the
ESB collection.

affirmation regarding the maximum distance between feature vectors of similar shapes,

considering that the remaining percentage correspond to geometrically dissimilar models.

The analysis of the feature vector distances also confirm the mean value we observed

in the measurement with geometrically similar shapes. Considering the fifth element

returned by the k-NN search, the average distance between this feature vector and the

corresponding query is d = 0.194. Such observation corroborates the approximate value

we suggested previously for the similarity threshold, σ ≈ 0.2.

#1 #2 #3 #4 #5

0.0 ≤ d < 0.1 541 308 210 148 102
0.1 ≤ d < 0.2 185 301 339 345 328
0.2 ≤ d < 0.3 120 225 273 308 352
0.3 ≤ d < 0.4 7 19 31 48 67

d ≥ 0.4 0 0 0 4 4

d 0.087 0.147 0.179 0.181 0.194
var(d) 0.00841 0.00834 0.00742 0.00717 0.00703

d ≤ 0.3 99.2% 97.8% 96.4% 93.9% 91.7%
0.15 ≤ d ≤ 0.25 22.5% 36.2% 44.4% 45.7% 46.0%

Table 3.1: Statistics of feature vector distance, d, for the five nearest neighbours consid-
ering all models in the collection.

88 Chapter 3. Collection-Aware Segmentation

350

400

450

250

300

Sum

150

200 #1
#2
#3

50

100 #3
#4
#5

0
0 0,1 0,2 0,3 0,4

Figure 3.13: Histograms of the feature vector distances for the five nearest neighbors of
every model in the ESB collection.

Additionally, we used the data gathered when comparing the nearest neighbor feature

vectors to define a reasonable range for the similarity threshold. To that end, we analyze

the distances distribution for the five nearest neighbors of each query. Figure 3.13 depicts

the histograms of these distances. These histograms depicts the number of distances found

within a range 0.0 < d < 0.4. As expected, peaks are evident near the lower bound of the

range, which corresponds to distances among shapes extremely similar that exist in the

collection. But these peaks does not provide worthful information for our purposes.

On the other hand, when looking at the distance count in the interval d ∈ [0.1; 0.3] it is

possible to observe that in the neighborhood of 0.2 other peaks exist, especially if we sum

the count of all five neighbors. Since we do not want do have only very similar shapes

neither vaguely similar shapes to be considered similar, we analyzed the sum histogram

and, using also the information presented in Table 3.1, we identified a reasonable range

for the similarity threshold:

0.15 < σ < 0.25.

This interval provided a basis for experiments with CAS/HFP algorithm. Indeed, as

presented in Chapter 5, to obtain good decomposition results the values of σ will always

be within this interval, otherwise the segmentation will be visibly ineffective.

3.7 Comparing CAS/HFP with HFP 89

3.7 Comparing CAS/HFP with HFP

Although the CAS/HFP algorithm can be used to simply decompose 3D objects, its

main objective is the creation of a shape pool containing the sub-parts of all models in the

collection, to be used in the thesaurus construction. Thus, it might seem inappropriate to

compare results of the proposed CAS/HFP algorithm with the HFP technique. However,

since the CAS/HFP can produce, at the end of its execution, not only the shape pool but

also decomposed models, we analyzed the behavior of the two approaches.

To that end we compare the segmentation obtained with the collection-aware decom-

position based on hierarchical fitting primitives with the segmentation obtained using the

original hierarchical fitting primitives algorithm. To compute the segmentation with the

HFP algorithm we used the EfpiSoft tool [15] developed by Marco Attene.

To segment an object, the EfpiSoft tool starts by computing its HSM tree. Recall that

the HSM tree of an object contains a complete hierarchical decomposition of the corre-

sponding mesh, which means that the leaf of such trees refer to the atomic elements of the

mesh, the triangles. Thus, to properly segment the object it is important to determine a

method to prune the tree. Thus, to obtain the object segmentation a single parameter must

be specified: the number of desired segments, Nseg. This value indicates the number of

tree nodes to be considered for the segmentation, cutting the tree in order to obtain that

number of leafs.

HFP CAS/HFP

Figure 3.14: Decomposition trees produced by the HFP (left) and the CAS/HFP (right)
algorithms.

90 Chapter 3. Collection-Aware Segmentation

HFP CAS/HFP

Figure 3.15: Segmentation of a 3D model using the HFP (left) and the CAS/HFP (right)
algorithms.

Despite the fact that the segmentation using HFP relies on the desired number of

segments, to allow easier comparison of results with our algorithm we preferred to use a

pre-determined tree depth. In practice, this issue was solved by estimating the number of

segments according to that tree level. This is simple, since the hierarchical segmentation

produces a binary tree. In practice, we just had to compute the number of leafs in a

balanced binary tree for the given tree level.

We experimentally compared the behavior of both algorithms with a set of models

randomly selected from the ESB collection. In this experiment we defined the simi-

larity threshold as σ = 0.2 and the maximum tree depth λ = 4, which means that

Nseg = 2λ = 16. We observed that the same object is decomposed differently, even

if sometimes is just a slightly difference. One example of such difference is depicted in

Figure 3.14, where we show decomposition trees of the same model with both methods.

In this example, although the two segmented models, illustrated in Figure 3.15, seem ap-

parently similar, but a closer analysis reveals significant difference. Furthermore, when

analyzing the decomposition trees produced by the application of each algorithm the dif-

ference between the results produced by each algorithm is quite clear.

Comparing the two trees, it is easy to conclude that the segmentation produced by

CAS/HFP algorithm is more concise than the one produced by using only HFP. But more

important than this is the fact that, in our approach, all leaf segments have similar gran-

ularity. On the other hand, in the HFP tree some leaf segments are just planar patches

3.8 Summary 91

while others are still complex parts. This leads to the unbalanced models decomposition

that occurs when trying to stop HFP segmentation based on a pre-defined value instead of

setting it manually during decomposition, as allowed by EfpiSoft. Based on these results

we concluded that, for automatic decomposition of models, our method produces bet-

ter results than the hierarchical fitting primitives algorithm alone, but needs much larger

computation times per model. Still, we underline that our aim is constructing a thesaurus

for shapes, a task that is supposed to run in batch mode, without user intervention. So, it

is acceptable that our CAS/HFP algorithm takes some time to process a collection.

3.8 Summary

In this chapter we introduced a novel approach to decompose three-dimensional mod-

els in a collection. The Collection-aware Segmentation (CAS) performs the decomposi-

tion of each model taking into account all the other models in the collection. To that end,

it relies on the concept of distinctive region to identify which segments of a model should

be further decomposed while performing an iterative decomposition of the model. The

distinctive segments are iteratively subdivided into subparts while common segments are

left unchanged. As a result the CAS algorithm produces not only the segmented models,

but, more important, a set of shapes that will be used to construct the thesaurus.

After presenting a conceptual overview of the proposed methodology, we define some

conditions to validate our approach. Theoretically, the CAS algorithm works with generic

collections of three-dimensional models, using different techniques to perform the basic

shape segmentation and any shape descriptor to measure the similarity between shapes.

However, to devise a practical solution we restricted the collection type to 3D CAD mod-

els, we computed the shape feature vectors through rotation invariant spherical harmon-

ics [78] and used the hierarchical fitting primitives [16] as a basic segmentation tecnhique.

Therefore, we called our decomposition algorithm collection-aware segmentation based

on hierarchical fitting primitives (CAS/HFP).

The CAS/HFP algorithm is divided in two distinct stages. The initialization stage and

the iteration stage. In the initialization stage we compute the hierarchically segmented

meshes (HSM) for every model in the collection. The HSM is the outcome produced

by the hierarchical fitting primitives segmentation (HFP) algorithm. Basically, it is a

92 Chapter 3. Collection-Aware Segmentation

binary tree of face clusters that contains the whole multilevel decomposition of the model

from the complete model to every face on the mesh. Besides the HSM trees, during the

initialization stage it is also created the shape pool.

The shape pool is a data structure that contains a set of segment-signature pairs. Thus,

in the initialization stage each model is considered a single segment, its signature is com-

puted and the corresponding pair is stored in the shape pool. This signature is the feature

vector that represents the rotation invariant spherical harmonics (SHA) descriptor for that

segment. In practice, the shape pool is represented as a multidimensional dataset in the

feature vector space, where each point maps to the corresponding segment. This structure

plays an important role in the decomposition algorithm.

Indeed, the second stage of CAS/HFP algorithm - the iteration stage - consists on iter-

atively grow the shape pool while processing the HSM trees produced in the initialization

stage. To that end, in each step of the iteration the segments in the shape pool are in-

spected in order to identify those which must be docomposed further. This identification

is accomplished through a search algorithm we developed specifically for this purpose.

The within range search (k-WR) algorithm determines in a simple and quick manner if at

least a given number of points are within a given range. By applying this search algorithm

to every point in the shape pool we immediately identify the decomposable segments.

Having identified all decomposable segments, the second step of the iteration takes

advantage of the multilevel decomposition represented in the HSM trees to compute the

two sub-segments of each identified segment. Since our data structures were designed

for this objective, such computation is obtained directly in constant execution time. In-

deed, the segment in the shape pool refers to a node in the corresponding HSM tree and

the sub-segments are immediately available by simply following that reference. These

newly found segments are added to the shape pool, making it grow and then, after all

decomposable segments have been processed, the iteration starts over again.

This iterative loop stops in two conditions: when no more decomposable segments

are found or if a given maximum iteration is reached. In theory this second stop condition

is not necessary, since in a worst case the triangles that constitute the leafs of the HSM

trees will not be decomposable and the iterative loop will stop when only these segments

remain. By the definition of HSM tree, these segments exist are within a finite depth in

3.8 Summary 93

the tree. Thus the loop will certainly stop in finite time, but this might be unnecessarily

long. To avoid this we suggest the use of a maximum iteration limit.

Besides the maximum iteration limit, a more important parameter should be provided

to the algorithm, the similarity threshold. This value defines the degree of similarity

between two shapes to be considered as similar, when determining if a segment is decom-

posable. To identify a reasonable range for this parameter, we studied the behavior of the

SHA shape descriptor within the engineering shape benchmark collection and presented

it in this chapter.

Finally, we presented a comparison between our decomposition methodology and

the original HFP approach. Indeed, the main goal of CAS/HFP is the creation of a set

of shapes upon which the thesaurus will be built, rather simply decompose the models.

Nevertheless, our approach produces the decomposition of the models and we compared

it with the results obtained when decomposing the models through basic HFP. From this

comparison we concluded that our approach produces better results if the decomposition

is accomplished without human intervention but it takes more time to compute. However,

since our goal is to have an automatic decomposition technique to be executed in batch

mode, the CAS/HFP method fulfills better our needs.

94 Chapter 3. Collection-Aware Segmentation

4
Thesaurus-based 3D Shape

Retrieval

One innovative contribution of the present research work is the introduction of a to-

tally different approach to three dimensional model retrieval. Most existing solutions

retrieve a shape by comparing complete models, applying time-expensive partial match-

ing algorithms to all objects in a collection or considering only small portions of each

model discarding the remaining information. However, these approaches are inappropri-

ate to perform partial queries on large collections, unless a large amount of geometric

features are ignored. In our approach, we use all geometric information of all models in

the collection to retrieve a 3D object. To overcome the time complexity inherent to such

approach we transposed the thesaurus concept used in text information retrieval to 3D

objects, introducing the shape thesaurus.

Conceptually, the shape thesaurus consists on a set of terms that represent sub-parts

of models in the collection. Each of these terms correspond to several segments that share

geometrical features. Therefore, the construction of a effective shape thesaurus relies on

a multilevel decomposition of the models in the collection and on a correct clustering of

the resulting sub-parts. We use an hybrid clustering algorithm to compute a partition for

the shape pool produced by the Context-aware Segmentation (CAS) method, described

in previous chapter. From this partition we determine the terms of the thesaurus and

construct the indexing structures.

In this chapter we will start by presenting a framework for 3D shape retrieval with

partial queries. Then, we introduce in detail the shape thesaurus and the concepts behind

it. Finally, we will describe the construction of such structure and how it can be used to

efficiently retrieve 3D objects using part-in-whole matching.

95

96 Chapter 4. Thesaurus-based 3D Shape Retrieval

4.1 Overview of the Framework for 3D Shape Retrieval

During our research on 3D shape retrieval with partial matching we aimed at solving

both scalability, complexity and matching problems faced by existing works. To that end

we developed a framework that differs from those commonly used by 3D object retrieval

approaches, since we are using an indexing technique from text retrieval, but transposing

the concepts to 3D shapes. In our opinion, the use of a thesaurus together with an inverted

index, similarly to what happens in text information retrieval, provides a good solution

for the scalability and complexity problems. In truth, thesaurus-based approaches are

employed with recognized success in text collections, but not in the 3D shapes context.

Our approach to information retrieval shares the same basic principle of most infor-

mation retrieval solutions. The framework, depicted in Figure 4.1, is divided into two

distinct parts: the classification component and the retrieval component. While the first

indexes the collection, the second performs queries in the indexed collection. Indeed, this

is valid for almost any information retrieval system. However, since in our solution the

indexing mechanism is based on a thesaurus of three-dimensional shapes, both classifica-

tion and retrieval components are very specific for this approach.

Decomposer Segment Clustering

Thesaurus Builder

Model
Collection

Indexed Collection
(Thesaurus & Inverted Index)

Shape Retriever

Query
Results

C
lassification

R
et
rie
va
l

Partition

Shape
Pool

Figure 4.1: Overview of thesaurus-based 3D shape retrieval framework.

4.1 Overview of the Framework for 3D Shape Retrieval 97

Collection Decomposed Collection

Shape Pool

CAS/HFP
Decomposer

Figure 4.2: Decomposition of collection Deg using the CAS/HFP algorithm.

4.1.1 Classification

The classification part is composed by three individual components: decomposer;

segment clustering; and thesaurus builder. The Decomposer processes the models collec-

tion, performing a multilevel decomposition using the CAS algorithm and storing the re-

sulting sub-parts in the shape pool. In Figure 4.2 we illustrate the application of CAS/HFP

algorithm to the collectionDeg introduced in previous chapter. As shown, two outputs are

produced: a set of decomposed models and the shape pool. For the rest of the classifi-

cation part only the shape pool is necessary, the decomposed models itself are ignored,

since we are only interested in their sub-parts.

In the second stage of the classification part, the segments in the shape pool are ana-

lyzed by the Segment Clustering component in order to compute a partition for the shape

pool. This partition contains the shapes in the pool grouped according to its geometrical

similarity. Section 4.3 describes the method we applied to create this partition.

Finally, the resulting partition is used by the Thesaurus Builder to create the shape

thesaurus and corresponding inverted index. Since these structures mimic the homonym

concepts in text retrieval, their construction follows closely the principles widely used in

this field, as described in Section 4.4.

98 Chapter 4. Thesaurus-based 3D Shape Retrieval

4.1.2 Retrieval

On the other hand, the retrieval part of our 3D shape retrieval system consists on a

single component, the Shape Retriever. This component receives as input the 3D shape to

be used as an example-query and retrieves from the indexed collection the corresponding

query results, which is a list of models that are fully or partially similar to the query.

Succinctly, the proposed retrieval pipeline starts by computing the descriptor of the

query shape and then finds in the thesaurus the similar terms. Next, the inverted index

is accessed in order to identify, for each of these terms what are the models that contain

them. Finally, a list containing the identified models properly ordered is constructed and

returned as a query result. In Section 4.5 we explain in detail our retrieval technique which

allows a fast model retrieval with part-in-whole matching. Meanwhile, in the following

sections we will describe the structures and methods which support this technique.

4.2 Shape Thesaurus

Currently, existing 3D shape retrieval systems that supports partial queries search the

contents of object collections by performing sequential searches. Indeed, whether they in-

spect the complete shapes or only few of their parts, these approaches generally perform

a serial scanning of the indexed contents. Eventually they use mechanisms and data struc-

tures that provide efficient ways to search in a multidimensional space constructed with

the shape signatures. But, even in these cases, the signature space contains the signatures

of all elements in the collection, or of all considered parts. Thus, although these ap-

proaches can be somehow practical with small collections, when the collection get larger,

the signature dataset grows accordingly, making the search on this space too expensive in

terms of computation time.

To overcome this problem we devised a novel approach to three-dimensional shape

retrieval. We transposed the lexicon concept widely used in textual information retrieval,

by introducing the concept of shape thesaurus. While in text information retrieval the

lexicon contains the vocabulary used in the collection, i.e. the words used in the doc-

uments, the shape thesaurus will contain the shapes used to construct the models in the

collection. In some very specific domains the identification of the ”3D words” is easy,

4.2 Shape Thesaurus 99

S1 S2 S3 S4 S5

S6 S7 S8 S9 S10

Figure 4.3: Collection Dp of models represented using primitive instancing.

e.g. in collections composed by solid 3D objects modeled using Constructive Solid Ge-

ometry (CSG) where the construction primitives are explicit in the model. However, for

general 3D objects the isolation of the ”3D words” is hard.

An example of a collectionDp constituted exclusively by solid objects modeled using

primitive instancing [53] with a small set of primitives (box, sphere, cylinder and cone) is

presented in Figure 4.3. Since the models in this collection rely on a primitive instancing

representation, the shapes used to construct them are explicitly available. Thus, the con-

struction of the shape thesaurus is straightforward, as described concisely in the following

paragraphs and detailed in Annex B.

When a collection contains models represented by primitive instancing, the thesaurus

for that collection will be composed by the set of primitives used by the objects in the

collection. Since the terms of the thesaurus (3D shapes) are explicit in the collection,

the same way words are explicit in text collections, building a shape thesaurus for such

collection happens similarly as building a text thesaurus.

Therefore, for the collection Dp , the thesaurus will contain the four primitives used

to represent the models, while the inverted file will store the instances of each primitive in

every model, as depicted in Figure 4.4. For each term, the inverted file has an occurrences

list indicating in which models the term is used, i.e. the occurrences of each term. In these

cases, both thesaurus and inverted file are trivial to construct.

100 Chapter 4. Thesaurus-based 3D Shape Retrieval

Thesaurus

Num. Term

1:

2:

3:

4:

Inverted File

Num. Inverted List

<5; S1,S2, S4, S6, S7>1:

<2; S4, S9>2:

<6; S2, S4, S6, S7, S8, S10>3:

<5; S6, S7, S8, S9, S10>4:

Figure 4.4: Shape thesaurus and inverted file for collection Dp.

However, in our approach we want to retrieve objects in collections of CAD models

independently of the modeling technique used to create and to represent them. Thus, we

consider that these models use a boundary representation. Indeed, most 3D collections

contain models represented as triangular meshes of the object surface, such as ESB [71]

or Princeton Shape Benchmark (PSB) [115] collections. In this context, the determination

of the shapes used to construct 3D models is not possible, at least in an automatic manner.

Therefore, instead of primitives shape the shape thesaurus will contain segments of

the models in the collection. Nevertheless, while words in a text document, construction

blocks in a CSG model, or primitive shapes in models represented by primitive instancing,

are explicit, these segments are not explicitly identified within models. Thus, unlike in

the example presented above, the construction of the shape thesaurus for a collection

using boundary representation is not trivial, mainly because the terms should be properly

identified without human intervention. In the previous chapter we described a method to

automatically identify the parts that compose the models in a collection, creating a pool

of such shapes. Indeed, we build our thesaurus using this shape pool.

4.3 Shape Pool Clustering

In text information retrieval the thesaurus contains terms that symbolize the words

that comprise the vocabulary of the collection. Each of these terms usually correspond

4.3 Shape Pool Clustering 101

not to a single word but instead to different forms of the same word. Even though, the

number of words in a lexicon of a web search engine is measured in millions [35]. While

dealing with such a large number of terms in a text retrieval system is possible, handling

a thesaurus of shapes of the same magnitude is hardly feasible. In the next subsections

we explain how we overcome this problem.

4.3.1 Shape signature as term of the thesaurus

In our solution, each term in the thesaurus is represented by a shape signature, which

corresponds to a feature vector produced by a shape descriptor. These feature vectors are

points in multidimensional space, usually with very high dimensionality. For instance, in

the CAS/HFP algorithm we used the SHA shape descriptor, which produces a feature vec-

tor with dimension d = 544. Considering such dimensionality, it is clear that a thesaurus

of shapes could not grow as their textual counterparts.

Therefore, in our approach the thesaurus could not have more than a few thousand

terms, or otherwise the search will take too much time. Moreover, if a large amount

of features from every model in the collection is indexed directly in the thesaurus, the

major benefit underlying our technique will be lost, since a search in the thesaurus will

almost correspond to a search in the complete collection. The idea behind our approach

is exactly to avoid that by creating a thesaurus with much entries than the sum of all

segments extracted from the models in the collection.

As referred above, the construction of the thesaurus is based on the segments in the

pool produced by the CAS algorithm. This shape pool is essentially a dataset in the

multidimensional feature vector space containing the segment signatures. For instance,

in Figure 4.5 we illustrate the shape pool SPeg for the collection Deg introduced in the

previous chapter, giving the proper relevance to the shape signatures. The thesaurus for

the collection Deg is computed from SPeg, which is a dataset of shape signatures. The

first step to determine the terms of the thesaurus is the computation of a partition for such

dataset. This partition should contain the signatures clustered together according to the

geometry of the corresponding segments. Thus, the next challenge is to devise an efficient

way to cluster the shape signatures.

102 Chapter 4. Thesaurus-based 3D Shape Retrieval

Figure 4.5: Shape pool SPeg produced by CAS/HFP after processing collection Deg.
In practice, it consists on a multidimensional dataset containing the signatures of the
segments, where each point corresponds to a segment in the shape pool.

4.3.2 Clustering High-Dimensional Data

Due to its utility in a wide variety of fields, a large number of clustering algorithms are

available, based on several distinct approaches. Nevertheless, the fundamental goal of any

of these algorithms is to partition unlabeled data into groups in an unsupervised manner 1.

Depending on the approach, these groups, also called clusters, can be found according to

a predefined number of expected groups or according to a given data similarity threshold

within each group, among other less common approaches.

1Usually, when referring to supervised partition of data the more generic ”classification” term is used.
Indeed, data classification can be defined as the process of grouping these data into a set of groups or
categories, independent of the method applied for that purpose. Note that under this definition, data can be
classified even manually by humans [8]. While in supervised classification data labels and corresponding
mapping functions are used, in unsupervised classification - clustering - no labeled data are available.

4.3 Shape Pool Clustering 103

In any case, dataset clustering is a NP-complete problem and optimal solutions can

only be found in exponential time. Thus, existing practical clustering solutions rely on

sub-optimal algorithms, such as the iterative methods to determine a partition for a dataset.

Among the iterative methods the k-means clustering is by far the most popular partition-

ing methodology [82], with a vast family of algorithms.

The basics of the k-means algorithm are as follows. Given a set ξ containingm points

in Rn, the goal of the algorithm is to determine a partition

Π =
k⋃
i=1

πi

for ξ, where each πi represents a cluster of points in ξ, such that the centroids of these

clusters minimize the mean squared distance from each point in πi to the corresponding

centroid c(πi) ∈ Rn.

This type of clustering is closely related to the Euclidean k-medians [12] which aims

on minimizing the sum of distances to the nearest center. Thus, formally the centroid for

each cluster is defined as

c(πi) = arg min{
∑
a∈πi

d(x, a), x ∈ Rn},

and the goal of the algorithm is to find a partition

Πmin =
k⋃
i=1

πmini

that minimizes the value of a quality function Q(Π) given by

Q(Π) =
k∑
i=1

Q(πi),

where

Q (πi) =
∑
a∈πi

d (c (πi) , a).

As stated above, there are no efficient solutions known for this minimization problem.

Although Matousek [95] introduced an asymptotically efficient approximation for the k-

means clustering problem, it is inappropriate for the present application, since our dataset

contains a large number of high-dimensional points, not well handled by this approach.

Thus we looked at alternative methods to perform clustering.

104 Chapter 4. Thesaurus-based 3D Shape Retrieval

4.3.3 Lloyd’s Algorithm

There are several algorithms that use heuristics to solve the k-means minimization

problem, relying on a simple iterative approach that finds a locally minimal solution. One

of the most popular is the algorithm proposed by Lloyd [89], initially for scalar data2 and

later generalized for datasets in multidimensional real numbers space.

Considering an initial set of centers C = {c1, · · · , ck}, the Lloyd’s algorithm starts

by computing the neighborhood, V (ci), for each one of these points. This neighborhood

consists on the points in the dataset ξ for which ci is the nearest neighbor in C. In each

iteration of the Lloyd’s algorithm, every center point ci is moved to the centroid of V (ci),

producing a new set C ′ of centers. Then it starts again by recomputing the neighborhod

for each new center. These iterations continues until a predefined criteria is fulfilled and

a ”good” partition is found.

Notice that, since the Lloyd’s algorithm does not specify the initial distribution of

centers, a set C of centers should be provided as input. Moreover, due to the nearest

neighbor computation costs, a direct application of the Lloyd’s algorithm for clustering

large and high-dimensional data can be quite inefficient. Nevertheless, it is commonly

used in this context as a postprocessing stage to improve the final results of other cluster-

ing algorithms.

4.3.4 Clustering Shape Signatures

In order to provide a tight control on the size of the thesaurus that will be created from

the Shape Pool partition we choose to adopt a partitioning approach based on a predefined

number of expected clusters. Therefore, in our approach we used a k-means clustering

algorithm based on a combination of local search and Lloyd’s algorithm [89] proposed by

Kanungo et al. [76].

Indeed, despite its popularity, the Lloyd’s algorithm can converge to a local minimum

that is far from the optimal solution. One example is depicted in Figure 4.6, where a

2The algorithm originally proposed by Lloyd was devised for signal processing, namely for quantization
in pulse-code modulation. Since it is basically a method to distribute evenly samples or objects in a given
space, it was generalized for other applications. Namely, for the estimation of Voronoi diagrams and for
high-dimensional dataset clustering.

4.3 Shape Pool Clustering 105

P1 P2 P3 P4

y z x

c1 c2 c3

ξ

Cinit

c1 c2 c3
Cfinal

Copt

Figure 4.6: Example of a far from optimal partition produced by Lloyd’s algorithm for a
very simple dataset.

small dataset ξ in R is partitioned for k = 3 using a given initial centroids set Cinit.

The resulting center produced by the original heuristic, Cfinal is far from the optimal

centroids center set, Copt. This happens because in the first iteration the nearest centers

for each point Pi ∈ ξ are determined. Since x < y < z the nearest neighbors will be

estimated as pointed in the figure. Then, the centroids are recomputed accordingly. At

the second iteration no changes are detected in nearest neighbors, causing the algorithm

to stop, producing a far from optimal solution.

To overcome this drawback, Kanungo et al. [76] followed the approach used in ap-

proximation algorithms [12, 83] for a minimization problem. Based on the heuristic for

k-medians proposed by Arya et al. [13] they devised a practical solution that produces a

sub-optimal partition in a feasible time, even in high dimensions. This method is based

on local search and uses a simple swapping process where the centers are swapped in and

out of the set C. These swaps are random and are accepted if it provides better quality

Q(Π) to the partition Π, otherwise they are ignored. This simple technique provides a

better solution than the original Lloyd’s algorithm.

In our approach to cluster signatures in the shape pool we use an hybrid version of

the k-means clustering algorithm proposed by Kanungo that combines the Lloyd’s algo-

rithm with center swapping. The technique performs some number of swaps followed by

some number of iterations of Lloyd’s algorithm. Additionally, it also includes a technique

106 Chapter 4. Thesaurus-based 3D Shape Retrieval

P i t
c2

c3

c6

Points
Centers

c4c1

c5

c7

Figure 4.7: Partition of a 2D signature space corresponding to the shape pool SPeg pro-
duced by CAS/HFP after processing collection Deg.

similar to simulated annealing 3 in order to avoid getting trapped in local minima.

To illustrate the method used we will only depict the signature as a two dimensional

feature vector4. In Figure 4.7 we represent, as points in R2, the simplified signatures for

the example shape pool SPeg presented in previous chapter, and depict the corresponding

space partition.

This partition was computed by applying the hybrid clustering algorithm to the two-

dimensional dataset comprised by the reduced signatures of the segments in the shape

pool. For this example we set k = 7 and obtained the seven cluster centers

Ceg = {c1, · · · , c7},

which correspond to the partition presented in Figure 4.8, given by

Πeg = {π1, · · · , π7}.

3Simulated annealing is a generic probabilistic meta-algorithm for the global optimization problem,
namely locating a good approximation to the global minimum of a given function in a large search
space [80].

4In this particular example we constructed the feature vector using only the 105th and 387th dimensions
of the complete SHA signature. These were carefully selected, considering the collection Deg , in order
to produce clustering results compatible to the partition of corresponding shape pool using the complete
signatures.

4.4 Thesaurus Construction 107

π1

π2

π3

π4

π5

π6

π7

Figure 4.8: Seven clusters partition Πeg produced from the shape pool SPeg created by
CAS/HFP after processing example collection Deg.

4.4 Thesaurus Construction

After having the segments from the shape pool grouped according to its geometrical

similarity we are able to create our indexing structures, by identifying the ”3D words” (or

terms) that compose the thesaurus.

According to Baeza-Yates and Ribeiro Neto [17] a thesaurus is a data structure com-

posed of a pre-compiled list of important words in a given domain of knowledge and, for

each word in this list, a list of related (synonym) words. In our approach, a 3D shape

thesaurus is a list of terms that represent groups of similar shapes extracted from models

in a given collection and, for each group in this list, a list of models that contains it. In

the next subsections we explain the creation of the shape thesaurus and corresponding

inverted file.

4.4.1 Creating the shape thesaurus

Starting from the partition computed from the Shape Pool with the hybrid segment

clustering algorithm, we create the 3D shape thesaurus by considering the center of each

108 Chapter 4. Thesaurus-based 3D Shape Retrieval

cluster πi as a basis for a term, Ti, constructing a list of segments that comprises the cluster

and attributing a signature to each term. Conceptually, the term should correspond to a

prototype for the grouped segments. In our approach we use as a prototype for a group

of signatures the point in the center of that cluster. This way we can directly obtain the

term signature from the partition without further processing. Thus, the term signature is

the center ci, of the corresponding cluster.

Formally, we define the shape thesaurus as the set

T =
k⋃
i=1

ti,

where k is the size of the thesaurus, which should be equal to the number of clusters in

the shape pool partition, and ti is a term entry of the thesaurus. This term entry is given

by the pair

ti = 〈ci, πi〉.

To create a thesaurus from the results produced by the shape pool clustering, namely

the centers set C and partition Π, we devised the algorithm BUILD-THESAURUS. This

simple algorithm sweeps over the k clusters πi in the partition Π, identifying for each one

of these clusters the corresponding center and adding in each iteration the corresponding

pair composed by the partition and the respective center. At the end it will return the

shape thesaurus, which is basically a set containing these pairs.

The algorithm BUILD-THESAURUS runs in linear time with respect to the number of

cluster in the partition, asymptotically, it executes in O(k). Since the number of clus-

ters, which corresponds to the desired size of the thesaurus, is controlled by the user

when indexing the collection and it should not be a very high number in order to allow

fast queries, this algorithm suits perfectly in the requirements of the classification process.

BUILD-THESAURUS(C,Π)
1 T ← ∅
2 for each πi in Π
3 do
4 ci ← cj ∈ C : i = j
5 Add 〈ci, πi〉 to T
6
7 return T

4.4 Thesaurus Construction 109

π1t1

t2

t3

t4

t5

t6

t7

c1

c2

c3

c4

c5

c6

c7

π2

π3

π4

π5

π6

π7

Figure 4.9: Shape thesaurus Teg created from the partition Πeg produced for the collec-
tion Deg.

The shape thesaurus Teg produced for the collection Deg introduced in the previous

chapter using the algorithm BUILD-THESAURUS, is depicted in Figure 4.9. In this exam-

ple a thesaurus with seven terms was constructed from the partition Πeg.

To each term ti is assigned a list containing the segments in the corresponding cluster.

This list consists in the elements of the cluster, which means that it is essentially πi.

Additionally, to each term is attributed a multidimensional signature based on the SHA

descriptors of the shapes in the cluster. As referred above, this signature corresponds to

the center of the cluster that originated the respective term.

In a more formal manner, the shape thesaurus is specified as a set of terms, corre-

sponding each term to a pair center-cluster. Thus, the thesaurus for the collection Deg is

given by

Teg = {〈c1, π1〉, · · · , 〈c7, π7〉},

where c1 to c7 correspond to the centers of clusters π1 to π7, respectively. These clusters

are defined in partition Πeq computed previously.

110 Chapter 4. Thesaurus-based 3D Shape Retrieval

4.4.2 Building the inverted index

After creating the shape thesaurus, and following the concepts used in text informa-

tion retrieval, we produced the inverted file that will support the retrieval process. The

inverted file is an index composed of a vocabulary of terms and a list of occurrences of

each particular term in models from the indexed collection. In practice, the inverted index

necessary for 3D shape retrieval does not differ from its counterpart in text retrieval. The

3D shape inverted file contains a list of the terms from the thesaurus and, for each one, a

list of models that contain segments belonging to the corresponding shape pool partition

Π cluster πi.

The formal definition of the inverted index is given as follows:

I =
k⋃
i=1

〈ti,Oi〉,

where Oi is the occurrences list given by

Oi = {M ∈ D : ∃S∈πi
S ⊆M},

where D is the collection that originated the partition Π and the operator ⊆ indicates if a

shape is contained in another shape. More formally, considering two 3D shapes SA and

SB the operator ⊆ is defined by

SA ⊆ SB ⇔ SA is a subpart of SB,

where we use a relaxed definition for subpart. In our work we consider that a shape SA is

a subpart of SB if SA = SB or if SA belongs to the decomposition of SB.

The algorithm devised to build the inverted index I for the collection D, BUILD-

INVERTED-INDEX, consists on a cycle over the terms ti in the thesaurus T and, for each

of these terms, it sweeps the segments in the corresponding cluster πi, determining the

models to which these segments belong. This algorithm receives as input the collection

D and the corresponding shape thesaurus T , and produces a structure I containing the

inverted index.

4.4 Thesaurus Construction 111

BUILD-INVERTED-INDEX(D, T)
1 I ← ∅
2 for each t = 〈c, π〉 in T
3 do
4 O ← ∅
5 for each Si,node in π
6 do
7 Mi is model to which Si,node belongs
8 Add Unique Mi to O
9 Add 〈t,O〉 to I

10 return I

Despite its two nested cycles, the BUILD-INVERTED-INDEX algorithm runs in linear

time regarding the size of the shape pool. Indeed, while the outer cycle sweeps over the

clusters, the inner one iterates over the segments in those clusters. Since each segment

just exist in a single cluster, basically the algorithm visits all the segments in the shape

pool to compute the inverted index. Therefore, asymptotically it runs in O(Size(SP)),

which might eventually led to high computation times if the shape pool grows too much.

Indeed, uncontrollable growth of the shape pool is an issue tackled during our re-

search. This topic is properly addressed in Chapter 5, where we show that the shape pool

does not grow behind a reasonable limit.

The inverted index Ieg relative to the collection Deg, constructed based on the the-

saurus Teg consists on a set of pairs, where each one contains a term of the thesaurus and

the corresponding list of occurrences. This inverted index can be specified as follows:

Ieg = {〈t1,O1〉, · · · , 〈t7,O7〉},

where

O1 = {M2,M3,M4,M5},

O2 = {M2,M3},

O3 = {M1,M2,M3},

O4 = {M2},

O5 = {M2,M3,M5},

O6 = {M1,M5}, and

O7 = {M2,M6}.

112 Chapter 4. Thesaurus-based 3D Shape Retrieval

t1 t2 t3 t4 t5 t6 t7

1 2 3 4 5 6 7

Figure 4.10: Inverted index Ieg created for the collection Deg based on the corresponding
thesaurus Teg.

This inverted index,illustrated in Figure 4.10, was constructed from the terms in the the-

saurus, which are indexed according to the decomposition of the models in the collec-

tion Deg and corresponding partition Πeg produced by the shape clustering algorithm. To

that end, for each term ti in the thesaurus, we swept the corresponding segment list πeg,

identified the models to which every segment belongs and created with them a list of

occurrences Oeg assigned to the respective term ti in the inverted index.

The creation of the shape thesaurus and corresponding inverted index, represent the

conclusion of the collection classification process. Indeed, the construction of such struc-

tures are one of the main goals of the our research. From these structures it will be possible

to perform partial queries with part-in-whole matching.

4.5 Shape Retrieval

With the collection properly indexed it is now possible to execute partial queries. The

retrieval process consists on a three-stage pipeline that receives as query a 3D shape and

produces a list of models that satisfy the given query, as depicted in Figure 4.11. This is

as modular process since each stage works independently of the other. Thus, it is easy to

substitute the methods used in these stages by others, ensuring they receive a given input

and produce an expected output.

4.5 Shape Retrieval 113

Query

FEATURE EXTRACTION

Signature Computation
(SHA)

Indexed Collection
(Thesaurus & Inverted Index)

Similar Term Searching
(KNN on thesaurus)

RETRIEVAL

Model Identification
(Through Inverted Index)

Retrieved Models

Figure 4.11: Shape retrieval pipeline.

Basically, the first stage produces a feature vector that describes the query, the second

uses that feature vector to produce a list of terms similar to the query, and the third uses

that list to determine the models that satisfy the query with part-in-whole matching.

More specifically, in our current approach we forged these stages in order to comply

with the options we made and corresponding set-up specified in previous chapter. Namely,

regarding the shape description technique and multi-dimensional space search algorithm.

In next subsections we describe in detail each of these stages.

4.5.1 Signature Computation

The first step of the retrieval process consists of extracting the geometric features of

the query shape by computing its signature. To that end we use the same shape descriptor

used to calculate segment signatures during the thesaurus construction, the rotation invari-

ant spherical harmonics (SHA). As a result of feature extraction, we obtain the signature

FVQ of the query shape Q, as given by

FVQ = SHA(Q),

where SHA(Q) estimates a signature for shape Q using the rotation invariant spheri-

cal harmonics, proposed by Kazhdan et al. [78]. An example of such feature vector is

depicted in Figure 4.12, along with the corresponding query shape.

114 Chapter 4. Thesaurus-based 3D Shape Retrieval

Q

Q

Figure 4.12: Query Q and corresponding shape signature FVQ.

4.5.2 Similar Term Searching

In order to retrieve models partially similar to the query, the nearest neighbors of this

feature vector in the signature space of the shape thesaurus must be found. To that end,

the second stage consists on a k-NN search performed on the shape thesaurus. In the

current implementation of our solution a linear search algorithm is used, but to improve

the retrieval efficiency a faster sub-linear approach 5 can be used. Nevertheless, since

the number of terms in the thesarus is controlled and within a reasonable size, the search

in this dataset will be fast, even when using high dimensionality signatures, as the SHA

feature vector.

Independently of the algorithm efficiency and shape descriptor used, any k-NN search

will return a set ξ containing the k terms more similar to the query shape, as given by

ξ = kNN(T ,FVQ, k),

where k is the number of neighbors to retrieve, a pre-defined setting of the retrieval sys-

tem, and kNN(α, β, κ) consists on a k-NN search in the dataset α that returns the κ

nearest neighbors of point β, as described in Section 3.4.1.

5Indeed, in our research work we choose to use a linear approach not only due to its simplicity but also
because more efficient search approaches rely on usually complex datastructures, such as the kd-tree [20],
which demand additional memory requirements when using a high dimensionality dataset. Since we intend
to make a proof-of-concept implementation of our approach and the behaviour of linear k-NN satisfies our
purposes, we prefer to avoid additional complexity in exchange for some efficiency.

4.5 Shape Retrieval 115

4.5.3 Matching Models Identification

From the list ξ of terms produced by the k-NN algorithm is quite straightforward

to find the models that partially satisfy the query. Using the inverted index, the models

assigned to the resulting terms are gathered and ordered, thus producing a list of partially

similar models. In the present implementation this process executes in linear time since

it consists on a single swap through the inverted index terms. Nevertheless, this process

can be executed on constant time if structures that map directly the terms in the thesaurus

with the entries in the inverted index were used. This option was not followed because our

main concern was to guarantee independence among all components in order to facilitate

changes on the algorithms.

Therefore, our current solution for retrieval of models in a collection indexed using

the shape thesaurus is described by the algorithm RETRIEVE-MODEL. It receives as in-

put a query shape Q, a thesaurus T and the corresponding inverted index I. As a result it

produces a listR of models that are partially similar with the given query.

RETRIEVE-MODEL(Q, T , I)
1 R ← empty set of search results
2 FVQ ←= COMPUTE-SHAPE-DESCRIPTOR(Q)
3 ξ ← kNN(T ,FVQ, k)
4 for each t in ξ
5 do
6 O ← GET-OCCURRENCES-LIST(t, I)
7 for each M in O
8 do
9 Add Unique M to R

10
11 returnR

Similarly to its homonym in the CAS/HFP algorithm, the method COMPUTE-SHAPE-

DESCRIPTOR computes a feature vector for the given shape. In the present approach,

both use the rotation invariant spherical harmonics, as stated above. Furthermore, the

method GET-OCCURRENCES-LIST returns the list of occurrences of a given term in a

given inverted index.

Considering that the signature computation depends only of the complexity of the

submitted query, the similar term search in the thesaurus runs on linear (or eventually

116 Chapter 4. Thesaurus-based 3D Shape Retrieval

sub-linear) time, O(N), where N is the thesaurus size, and identifying models using the

inverted index can be accomplished in linear (or constant) time, O(K) or O(1), it should

be clear to the reader that the retrieval time efficiency does not depend directly on the size

of the collection, but rather on the size of the thesaurus and query complexity.

4.6 Summary

Our approach to retrieval of three-dimensional models using part-in-whole queries

follows a path distinct from those proposed in other 3D shape retrieval solutions. We

transposed to the 3D context the basic concepts of text information retrieval. Namely

the concept of a thesaurus of terms: a lexicon in text collections, now a shape thesaurus

in collections of three-dimensional models. This chapter introduces not only the shape

thesaurus and related data structures but also a framework to support the collection clas-

sification and shape retrieval using our methods.

The framework for thesaurus-based 3D shape retrieval with partial queries is divided

in two main components. The classification component processes and indexes the models

in the collection using a shape thesaurus and corresponding inverted index. The retrieval

component accesses the indexed collection to find a set of models partially similar to a

given query.

To classify the collection, three distinct steps are necessary. The first and more impor-

tant step consists on decomposing the objects in the collection, identifying the segments

that comprises them. From this decomposition is produced a structure called shape pool

that contains all segments of all models in the collection. The algorithm we devised to

carry out this decomposition was called Context-aware Segmentation (CAS), and is the

kernel of our research (see the previous chapter).

The shape pool produced by the CAS algorithm plays an important role in the clas-

sification process, since it is the source upon which the shape thesaurus is built. To that

end, in the second step of the classification process, the segments in the pool are clustered

together according to their feature vectors. The partition of the shape pool is obtained us-

ing a k-means clustering algorithm which combines local search techniques with Lloyd’s

clustering algorithm.

4.6 Summary 117

Since each cluster of the shape pool partition corresponds to a term in the shape the-

saurus, the construction of the thesaurus is straightforward. Indeed, to build the thesaurus

it is only necessary to create a set of terms, which correspond to the cluster centers, and

assign to each term the segments that constitute the respective cluster. This task is per-

formed by the third step of the classification component, along with the creation of the

corresponding inverted index.

The inverted index contains, for each term in the thesaurus, the list of models that

contain shape segments associated with that term. Since the segments in the shape pool

contain information indicating from which model they belong, it is not complicated to

build the inverted index. Indeed, it can be done in linear time regarding the shape pool

size, by sweeping through the terms in the thesaurus and for each term construct a list of

occurrences, i.e. a list containing the models in which the segments associated to that

term occurs.

Having the shape thesaurus and corresponding inverted index properly built, it is

possible to perform part-in-whole queries on the collection. In the devised framework,

the retrieval component is a three-staged pipeline that receives a 3D shape as a query and

returns a list of partially similar objects.

In the first stage of the retrieval component a feature vector is extracted from the query

shape. In the second stage this feature vector is used as a query to a k-NN search in the

dataset composed by the signatures of the terms in the thesaurus. The resulting nearest

neighbors correspond to terms in the thesaurus that are similar to the query. Finally, the

query results are constructed simply by consulting the inverted index occurrences lists for

the terms returned by the k-NN search.

With our solution, a query is executed in approximately linear time regarding the

thesaurus size. Indeed, this corresponds to the k-NN in the thesaurus signature space,

whose execution consumes the larger slice of the query time. On the other hand, the

classification is a time consuming task. However, this is not an issue since classification

is supposed to be done sparsely and in batch mode.

118 Chapter 4. Thesaurus-based 3D Shape Retrieval

5
Experimental Results

During our research we performed a wide set of experiments aiming a multitude of

objectives. Besides those whose goal was to validate our ideas, we also did some experi-

ments to help defining the research path based on well-grounded decisions.

After identifying the type of 3D collections to work with and selecting representa-

tive benchmarks for that type, we studied these benchmarks regarding model complexity.

Results from this study allowed us to adapt our classification strategy to suit the desired

purposes. In a different perspective, but with the same goal, we simulated the behavior of

our decomposition algorithm, in the worst case scenarios.

To evaluate and validate our approach we performed several experiments. These ex-

periments focused both on the classification mechanism as a whole, and on in its compo-

nents separately. To that end, we developed a set of prototypes, described in Annex C and,

using a selected set of benchmark collections, we tested our approach to thesaurus-based

3D shape retrieval with partial queries.

The experiments directly related to our research objectives include the study of the

behavior of the Collection-Aware Segmentation (CAS) algorithm, the segment clustering

method and the thesaurus building technique. Ultimately, we tested the retrieval process

by performing partial and complete queries with a set of 3D object collections.

In the remainder of this chapter we describe the most relevant experiments performed

during our research, presenting and discussing the observed results. All experiments were

performed on a Hewlett-Packard workstation, model xw4200, equipped with a 3 GHz

Intel R© Pentium 4 processor, 1 GB of memory, and a Windows XP operating system.

119

120 Chapter 5. Experimental Results

5.1 Mesh Complexity in ESB and PSB

While planning our approach to 3D shape retrieval we needed some information about

the complexity of models that compose 3D collections. However, if we consider this

complexity as the perceivable visual complexity of a 3D shape, such measurement is

notoriously difficult [61]. One approach to obtain an approximate quantification of 3D

objects complexity is to rely on the complexity of the representation used to describe the

object. In the context of our research, the models are represented by polygonal meshes.

Therefore, although the number of faces in a polygonal mesh might not be propor-

tional to model complexity, we considered for our purposes that this measure quantifies

the complexity of the shape. To that end we assumed that meshes for more complex ob-

jects contain more polygons, while meshes with fewer triangles represent simpler models.

Indeed, a simpler object might contain more faces than a more complex one, depending

on the tessellation. However, this is not common in the collections we tested and the face

count is easy and fast to estimate.

M219 M817 M880

M1171 M1488 M1775

Figure 5.1: Six models sampled from the PSB collection.

5.1 Mesh Complexity in ESB and PSB 121

5.1.1 Experiment Description

As referred in the previous chapters, we focused our work on collections of engi-

neering models and used for research purposes the engineering shape benchmark (ESB)

collection [71]. However, in order to have additional information regarding generic mod-

els rather than only CAD models from ESB, we also analyzed the complexity of models

in the Princeton shape benchmark (PSB) collection [56].

Six models randomly sampled from this collection are depicted in Figure 5.1, to-

gether with the respective model names. This sample allow us to minimally illustrate the

diversity of models that can be found in this collection, which led us to include it in this

experiment.

The model complexity analysis is quite straightforward since it consists on counting

the number of mesh polygons of each model in both collections and then analyze the

gathered values. To perform this count we developed a small prototype, described in

Annex C that sweeps over the collections and recollects this information.

From the gathered information, we obtained some interesting results, namely consid-

ering the distribution of complexity within these collections. To that end, we grouped the

models according to its polygon count, p, within five intervals with logarithmic width,

where the limits li of these intervals are given by li = 10i, with i = 1, · · · , 5. Then, we

counted the number m of models that contain the quantity of polygons expressed in each

intervals for both collections and obtained the results depicted in Table 5.1.

ESB PSB
m m

p < 10 (0.00%) 0 (0.00%) 0
10 ≤ p < 102 (5.86%) 50 (3.80%) 69
102 ≤ p < 103 (32.24%) 275 (32.64%) 592
103 ≤ p < 104 (56.62%) 483 (43.05%) 781
104 ≤ p < 105 (5.28%) 45 (19.79%) 359

p ≥ 105 (0.00%) 0 (0.72%) 13

Table 5.1: Distribution of mesh complexity in ESB and PSB collections. For each interval
is shown the number m of models whose polygon count falls into that interval.

122 Chapter 5. Experimental Results

5.1.2 Analysis and Results

The analysis of the model complexity allow us to conclude that, in both collections, a

vast majority of models has more than one thousand faces and, within these objects, most

of them have less than ten thousand faces. Besides a noticeable number of simple mod-

els, i.e. with less than one thousand models, we also found a relevant number of models

with more than ten thousand polygons, especially in PSB, since in ESB just around five

percent of models fall into that classification. These conclusions are easily intelligible in

the charts illustrated on Figure 5.2, which depict the distribution of the model complexity

in each collection.

Additionally, we computed the complexity histograms for both collections, depicted

in Figure 5.3. These histograms reinforce the conclusions taken based on complexity

analysis. By simply looking at the histograms it is clear that most models contain be-

tween one and six thousand faces, with a peak around the one thousand polygons count.

Peculiarly, both histograms have their peaks on the same intervals. This data allow us to

say that, regarding time and space complexity analysis of our algorithm, we can safely

consider that models to be processed contain a few thousand polygons each. From this

conclusion we procceed to test the behaviour of the CAS/HFP decomposition algorithm.

less than 100

from 100 to 1K

from 1K to 10K

from 10K to 100K

less than 100

from 100 to 1K

from 1K to 10K

from 10K to 100K

more than 100K

less than 100

from 100 to 1K

from 1K to 10K

from 10K to 100K

more than 100K

ESB PSB

Figure 5.2: Distribution of mesh complexity in both benchmark collections, according to
polygon count per model.

5.2 Worst Case Simulation 123

400

500

els PSB ESB

100

200

300

Mo
de

0
0 3 6 9 12 15 18 21

Faces (thousands)

Figure 5.3: Mesh complexity histogram for both benchmark collections.

5.2 Worst Case Simulation

After testing our approach with a small collection and obtaining positive feedback,

we simulated the CAS/HFP decomposition algorithm behaviour in a worst case situation.

Therefore, we consider that all elements of the collection have more than two thousand

polygons and there are no similarities between the first three hundred segments extracted

from each model during segmentation by HFP algorithm.

Although the first assumption is perfectly acceptable, as shown in previous section,

the whole scenario is highly improbable in a model collections unless is used an extremely

low value for the similarity threshold (σ), i.e. to be considered similar two segments

should be basically equal, or an illogically high value for the similar count threshold (τ),

i.e. to be considered not decomposable a segment should be similar to all the other

segments in the collection. Nevertheless, we simulated such unreal condition.

5.2.1 Experiment Description

Since in our approach we are using the ESB, we set up our simulation according to

this collection cardinality. Thus we simulated two scenarios, one with the approximate

size of the smaller cluster 1 of the ESB and other with the approximate size of the whole

ESB collection.

The worst case simulation experiment focused on the major issues faced by our de-

composition algorithm, execution time and memory space requirements in a worst case

1The ESB collection is divided into three clusters (or categories), described in Section 5.3.

124 Chapter 5. Experimental Results

150

200

250

 (T
ho

us
an

ds
)

100 models

0

50

100

Init. #1 #2 #3 #4 #5 #6 #7

Se
gm

en
ts

Iteration

100 models

800 models

Figure 5.4: Shape Pool growth in worst case simulations.

situation. However, the existing benchmark collections does not comply with the worst

case scenario we intended to study. Therefore, we considered two hypothetical collections

with one hundred and eight hundred 3D models respectively and simulated the algorithm

behavior with σ ≈ 0.0 and τ ≈ 1.0. During the simulations we measured the memory

used and time spent to process each collection.

5.2.2 Shape Pool Growth

The results obtained in these simulations were not surprising. As expected, the num-

ber of segments in the shape pool grew exponentially, as illustrated in Figure 5.4. Such

growth is easily justified by two facts:

1. in each interaction of the CAS/HFP algorithm every decomposable segment in the

shape pool originates two more segments;

2. with the σ and τ values used in the simulations, practically all segments are decom-

posable.

Indeed, the observed behavior of the shape pool reflects exactly that. After the initial-

ization, it contains exactly the same number of segments as models in the collection, but

at each iteration the number of new segments doubles. Therefore, from this we can state

that the size of the shape pool for such simulation is given by:

Size(SP) = Size(D)× (2i+1 − 1),

5.2 Worst Case Simulation 125

700

800

900

500

600
ry
 (M

B)

100 d l

200

300

400

M
em

or 100 models

800 models

0

100

200

Init. #1 #2 #3 #4 #5 #6 #7

Iteration

Figure 5.5: Memory required to store the shape pool in worst case simulations.

where i corresponds to the iteration count, considering that i = 0 refers to the initialization

phase.

Naturally, the memory required to store segment information grows similarly to the

shape pool. Computing the rotation invariant spherical harmonics (SHA) descriptor ac-

cording to authors suggestion, its signature is represented by a feature vector with di-

mension d = 544. This means that each signature requires slightly more than 2KB of

memory. As explained previously, besides the signature there are other information to be

stored, such as the reference to the originating model and reference to the corresponding

node in the HSM tree.

In practice each pair segment-signature uses approximately 4KB of memory. From

our simulation we observed that, at seventh iteration, more than eight hundred megabytes

of memory are necessary just to store segment information, as depicted in Figure 5.5.

While such values does not seem unreasonably high, its growth can compromise the scal-

ability of our decomposition algorithm.

5.2.3 Decomposability Determination Time

Another topic studied during this simulation is the time required to identify if a seg-

ment should be further decomposed. Indeed, the decomposability determination is based

on a neighbor search and sub-linear algorithms for this purpose are widely-known. How-

ever, as described in Section 3.4, in present implementation of the CAS/HFP algorithm

we used an adapted version of the k-NN linear search, called k-within range (k-WR).

126 Chapter 5. Experimental Results

0

20

40

60

80

100

120

140

160

180

200

Init. #1 #2 #3 #4 #5 #6 #7

Ti
m
e
(t
ho

us
an

d
se
cs
)

Iteration

204.000 segments

50.400 segments

Figure 5.6: Decomposability determination for a single segment in eight hundred models
collection.

This version outperforms k-NN, allowing decomposability identification of a segment in

reasonable time, but runs also in linear time with respect to dataset size. Thus, if the size

of the shape pool grows exponentially we will face unacceptable computation times.

For instance, at the seventh iteration of CAS/HFP at the worst case simulation the

shape pool has more than two hundred thousand segments. Determining at this point

the decomposability of a single segment takes less than one second, but considering that

this operation should be repeated for all segments, it might take more than fifty hours

to determine which of these are decomposable, as illustrated in Figure 5.6. Even if this

processing time might eventually seem acceptable for batch processing, it will take too

much time to analyze an exponentially larger shape pool.

We are aware that the time complexity issue identified above should be addressed in a

near future in order to make our approach scalable to very large collections of 3D models.

Indeed, we are already investigating some techniques to avoid the exponential growth of

the shape pool, along with more efficient algorithms for decomposability determination.

However, even for the worst case simulations, the results we obtained are acceptable for

testing the proposed approach with the shape pool size below fifty thousand segments.

Therefore, we still use the k-WR algorithm in the remaining of our tests of the CAS/HFP

algorithm.

5.3 Decomposing a Benchmark Collection 127

5.3 Decomposing a Benchmark Collection

As expected, when applying the CAS/HFP algorithm with reasonable σ and τ pa-

rameters to a benchmark collection, the results are quite different from the suggested by

the worst case simulation. For this experiment we used as test collection the ESB [71],

described in Section 2.1.3. This collection is divided into three clusters, as presented in

Table 5.2.

Name Models
FTC Flat-Thin Components 105
RCP Rectangular Cubic Prism 273
SoR Solid of Revolution 475

Table 5.2: Clusters of ESB collection

5.3.1 Experiment Description

In this experiment we processed the clusters from ESB with the CAS/HFP decom-

position algorithm, first separately and then together, i.e. the whole collection. The

decomposition set up used for all tests is described in Table 5.3, where the values for

the algorithm parameters are shown. These values were determined based on the study

presented in Section 3.6 and from the analysis of results obtained by several tests made

throughout our research.

During the ESB collection decomposition experiment we focused our attention on

time and memory required to decompose the collections, since this was a major issue

identified during the development of our approach. To that end, we measured the time

spent in each step of the algorithm but also the shape pool size, which is directly propor-

tional to the required memory.

Setting Value
Similarity threshold σ 0.2

Similar count threshold τ 0.01
Iteration cut-off λ 10

Table 5.3: CAS/HFP settings for benchmark collection decomposition experiment.

128 Chapter 5. Experimental Results

400 FTC

300

gm
en

ts

Shape Pool size

100

200Se
g Shape Pool size

Decomposable segments

0

100

Init #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

1200 RCP

800

00

m
en

ts

Shape Pool size

RCP

400

800

Se
gm Decomposable segments

0

00

0
Init #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

3000 SoR

2250

gm
en

ts

Shape Pool size

750

1500Se
g Shape Pool size

Decomposable segments

0

750

0
Init #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

8000 Complete

6000

gm
en

ts

Shape Pool size

2000

4000Se
g Shape Pool size

Decomposable segments

0

2000

Init #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Figure 5.7: Shape pool growth

5.3.2 Shape Pool Growth

The observed behavior was very encouraging, since in all cases the shape pool growth

was far below the measured in the worst case simulations. More important, the growth

rate of the shape pool starts decreasing soon after the initialization, which means that the

shape pool does not increase to impractical size.

The shape pool growths measured in these tests are depicted in Figure ??. Here

is possible to observe that the number of segments in the shape pool stabilize around

the sixth iteration and that the shape pool growth rate starts decreasing after the second

iteration.

Exceptionally, the above referred observation is not exact when processing the FTC

cluster. This happens mainly due to its small size. However, although the shape pool size

took longer to stabilize in this case, the overall behavior is the same.

Hence, for the remaining clusters (RCP and SoR), as well as for the whole collection,

the shape pool size never grows above a very clear ceiling. This ceiling is not defined or

forced by the algorithm. Instead it is a natural consequence of the fact that, for a given

similarity threshold, there are a certain number of segments above which no more new

dissimilar shapes are found, thus no more segments are identified as decomposable.

5.3 Decomposing a Benchmark Collection 129

Indeed, we observed similar shape pool growth behavior in all other tests performed

until now with this and other collections, which is by itself a very positive outcome. Con-

sidering this behavior and the results obtained in the worst case simulations, we reasoned

that the proposed algorithm will be able to produce valid results in suitable time and

consuming a reasonable amount of memory.

5.3.3 Used Memory

From the measurements made during this experiment we verified that the memory

required to process the collection is within reasonable values in all cases. As formulated

in Section 3.3, in our approach a single signature is assigned to each segment in the shape

pool. Thus, the shape pool basically consists on a dataset in the signature space, with

the same dimensionality, containing the signatures of all segments. Thus it is trivial to

conclude that the memory required to store the signature space is directly proportional to

the size of the shape pool and to the dimension of the signature.

As explained in Section 3, the CAS/HFP algorithm relies on the rotation invariant

spherical harmonics (SHA) introduced by Michael Kazhdan et al. [78] to numerically

describe three-dimensional shapes. This entails that the segments stored in the shape pool

are represented by the SHA descriptor. The corresponding feature vector needs slightly

more than 2KB of memory and is used as a signature for the segment. Since additional

35

40

20

25

30

y
(M

B)

10

15

20

M
em

or
y

0

5

10

FCT RCP SoR Complete

Figure 5.8: Memory used by the shape pool produced by the CAS/HFP algorithm after
processing each ESB cluster and the complete ESB collection.

130 Chapter 5. Experimental Results

information is necessary for a segment, besides its signature, in practice each item in the

shape pool requires 4KB.

Thus, in this experiment the memory used for the shape pool was always naturally

low, as illustrated in Figure 5.8. This chart depicts the memory used by the shape pool

produced at the end of the CAS/HFP algorithm when processing the ESB clusters as well

as the complete collection. For instance, considering the decomposition of the complete

ESB collection, in previous section we showed that the corresponding shape pool sta-

bilized with around nine thousand segments, which explain the use of around 35MB of

memory to store it.

Indeed, while processing benchmark collections, the memory requirements were al-

ways quite acceptable. Eventually, when processing a very large collection containing

tens of thousand models, this might be an issue. However, the main challenge we faced

during our research regards the execution time of the CAS/HFP algorithm.

5.3.4 Execution Time

The CAS/HFP algorithm is divided into two stages. The initialization stage, where

the HSM trees for all models in the collection are computed and corresponding root seg-

ments are added to the shape pool, and the iteration stage, where the decomposability of

segments in the shape pool is determined and those that are identified as decomposable

are decomposed, while the shape pool is updated accordingly.

We studied the time spent both in the initialization stage and in every iteration of

the iteration stage. For that matter is is now relevant to introduce the system were the

experiment took place. The tests referred in this section were executed in a Intel R©
Pentium R© 4 CPU at 3.6GHz with 1GB of memory. The chart depicted in Figure 5.9

illustrates the measured execution times when processing the complete ESB collection.

The observed execution times mimic the behavior of the shape pool growth. After the

third iteration the iteration time starts decreasing and achieves a very low value after a

few iterations.

Indeed, a similar behavior is also observed in other collections. However, the time

necessary to process the collection is proportional to the collection size. This means that

a larger collection will have larger computation times. In Figure 5.10 we present the

5.3 Decomposing a Benchmark Collection 131

2000

2500

3000
ec

s)

0

500

1000

1500

Init. #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Ti
m

e (
se

Iteration

Figure 5.9: Detailed execution time of CAS/HFP algorithm when processing the complete
ESB collection.

12

16

20

d
se

co
nd

s) Processing time Decomposition time

0

4

8

0 100 200 300 400 500 600 700 800 900 1000

Ti
m

e (
th

ou
sa

nd

Collection size

Figure 5.10: Execution time of CAS/HFP algorithm when processing collections with
different size.

execution time for collections with different sizes. The smaller collections were the FTC,

RCP and the SoR clusters of the ESB collection and then the complete ESB followed by

a larger collection with almost one thousand models, comprising all ESB models joined

with the one hundred LEGOTM parts available at the National Design Repository [108].

We underline that each collection were fully processed, no data re-utilization was made

from one to another, which would reduce drastically the measured execution times.

Considering that the execution time for a collection with around one thousand models

will fall around the four hours, we concluded that the CAS/HFP algorithm will be able

to produce valid results in suitable time, regarding that this algorithm is supposed to be

batch processed, we think that such computation times are perfectly acceptable for this

type of collection. However, to handle larger collections it might be necessary to reduce

the time requirements of our approach.

132 Chapter 5. Experimental Results

5.3.5 Time Distribution

To identify which parts of the decomposition process are consuming more time, we

measured the time spent by each task separately. Regardless of the stage in the CAS/HFP

algorithm, we identify three main tasks executed during decomposition. The HSM esti-

mation task consists on computing the HSM tree for a model. The signature computation

task comprises the determination of the feature vector to represent a shape. Finally, the

similarity estimation task consists on determining how many segments are similar to a

given segment.

From the measured times we observed that, as depicted in Figure 5.11, most of the

processing time is spent computing the shape signatures. Indeed, in preliminary tests we

noticed that, even for simple shapes, the estimation of the SHA signature took between

one and two seconds. Thus it was expectable that when the shape pool grows, computing

all the signatures turns into a time consuming task. However, the SHA shape descriptor

offers great descriptive power and we prefer to take advantage of it at the cost of execution

time.

Nevertheless, to process larger collections another descriptor should be considered.

We suggest a simpler descriptor, with a smaller signature and with shorter computation

time. Such shape descriptor will most certainly provide less descriptive power that the

SHA descriptor. On the other hand, using it will entail less memory for shape pool storage

and shorter execution times.

SoR

ESB

HSM Estimation Signature Computation Similarity Estimation

0 2 4 6 8 10 12 14 16

FCT

RCP

Time (thousand seconds)

Figure 5.11: Time spent by each stage of CAS/HFP algorithm.

5.4 Updating a Decomposition 133

5.4 Updating a Decomposition

As shown in previous section, decomposing a collection of three-dimensional models

using the CAS/HFP algorithm is a time-consuming task. However, having the collection

processed, updating the decomposition after adding models to the collection is faster. To

verify the algorithm behavior stated in last sentence, we performed a set of tests described

in this section.

5.4.1 Experiment Description

The goal of this experiment was to study the behavior of the CAS/HFP algorithm

when updating the decomposition after adding new models to the collection. To that

end we considered the decomposition of the whole ESB collection described in previous

section as the basis for these tests.

As source for models to be added to the ESB collection we used the unclassified

LEGO R© dataset from the National Design Repository at Drexel University [108] and

the Watertight Models collection (WTM) introduced at the 2007 Shape Retrieval Con-

test [62].

LEGO2730 LEGO3033 LEGO3708

LEGO4032 LEGO32002 LEGO32064

Figure 5.12: Six models sampled from the LEGO dataset.

134 Chapter 5. Experimental Results

LEGO700 LEGO2705

LEGO32002 LEGO32064

LEGO3062b

LEGO4032

LEGO3647

LEGO3666 LEGO3706 LEGO3749

LEGO3009

LEGO4202 LEGO4445 LEGO6112

LEGO6212

LEGO3024

LEGO32018

LEGO3708

LEGO3033

LEGO2730

Figure 5.13: Twenty models sampled from the LEGO dataset.

5.4 Updating a Decomposition 135

The experiment was divided into four different tests, in the first two tests we ran-

domly selected six and twenty objects from the LEGO dataset, creating a set of models

for each test. The contents of these sampled sets are depicted, together with the corre-

sponding object name, in Figures 5.12 and 5.13. In both cases we started the test with the

already decomposed ESB collection and, after adding the corresponding sample set to the

collection, we updated the decomposition.

In the third test, instead of a sampled set, we added the complete LEGO dataset to

the whole ESB collection and then updated the decomposition. The LEGO dataset we

wtilized contains one hundred models of LEGO R© parts, available at the National Design

Repository.

Finally, the fourth tests consisted on adding the LEGO dataset together with the com-

plete WTM collection. The WTM collection contains four hundred high resolution mod-

els of diverse objects collected from a variety of sources. Thus, in this test five hundred

models were added to an already decomposed ESB collection and the decomposition was

updated.

During this experiment we analyzed not only the time required to update the de-

composition after adding new models to the collection, but also the differences on the

decomposed models. In the following sections we present and comment the observed

results.

5.4.2 Execution Time

While the time consuption of the decomposition proccess might seem a drawback of

our approach to shape retrieval, we argue that this is just an issue while decomposing the

collection for the first time. Indeed, assuming that small sets of new models are sparsely

added the collection, updating the decomposition will be a relatively fast task. Thus,

Execution time
Decompose ESB collection 853 models 14.872 secs.
Update collection +6 models 614 secs.
Update collection +20 models 817 secs.

Table 5.4: Time necessary to decompose the ESB collection and to update the resulting
decomposition after adding six and twenty models to the collection.

136 Chapter 5. Experimental Results

we considered a scenario of six to twenty new models added per day to the collection

and a daily decomposition update and measured the time such update will take. The

results obtained are presented in Table 5.4, where is possible to observe that updating the

decomposition is much faster than compute it for the first time.

The shorter update execution time is justified by a simple reason. While updating

the decomposition after adding a few models to the collection the most time consuming

steps of the process are drastically reduced. Indeed, for the models already decomposed,

the HSM tree is already computed, as well as the SHA signatures for the decomposed

segments. Thus, is just necessary to compute the HSM for the new models and the sig-

natures for the corresponding segments. Additionally, it might be necessary to compute a

few more signatures, corresponding to possible new segments for models already decom-

posed and whose decomposition will change.

Therefore, as depicted in Figure 5.14, during decomposition update the HSM estima-

tion time falls to unnoticeable values and the signature computation tooks just a fraction

of the time spent in the initial collection decomposition. As expected, the similarity es-

timation, necessary to determine the decomposable segments, consumes practically the

same time in both cases.

From the analysis of execution times measured during this experimente we concluded

that updating the decomposition does not require excessive execution time, unless a large

number of models have been added. Indeed, updating the decomposition after adding hun-

ESB

HSM Estimation Signature Computation Similarity Estimation

0 2 4 6 8 10 12 14 16

+6

+20

Time (Thousand seconds)

Figure 5.14: Execution times measured while decomposing the whole ESB collection and
when six and twenty models are added to the collection and the decomposition is updated.

5.4 Updating a Decomposition 137

dreds of new models will require the computation of HSM trees for all those new models

and the calculation of corresponing segment signatures, which is a time-consuming task.

In such context the decomposition update can take a few hours. However, when adding

around ten or twenty models, the decomposition will be updated in a matter of minutes.

5.4.3 Decomposition Stability

Besides the execution time, we studied the stability of the decomposition after adding

new models to the collection. To that end, we measured the differences in the model

segmentation after updating the decomposition with respect to the initial collection. To

assess these differences we compared the segments that comprise each model before and

after updating the decomposition. Then, we examined the comparison results and count

the number of models that suffered no changes, those that were further decomposed (had

more segments) and those whose decomposition was simplified (had less segments).

The observed values shown that, as depicted in Figure 5.15, while the number of new

models in the collection remains low, none or few changes happen in the segmentation of

already decomposed models. As the number of new models grows, increasing changes in

decomposition are detected. In practice, after adding six models (0.7% of the collection)

and updating the collection, no changes exist in the initial decomposition. On the other

hand, when adding five hundred modes, which correspond to 58% of the initial collection

size, the decomposition is different for more than four hundred models, i.e. around half

More Segments

58.6%

11.7%

2.3%

0.7%

Added models wrt. collection size

Less Segments
Unchanged Models+6

+20

+100

+500 Number of added models

Figure 5.15: Stability of the decomposition when six, twenty, one and five hundred models
are added to the collection.

138 Chapter 5. Experimental Results

Models
diff < 0.5% 719 (84.3%)

0.5% ≤ diff < 1.0% 67 (7.9%)
1.0% ≤ diff < 2.0% 46 (5.4%)

2.0% ≤ diff 21 (2.5%)

Table 5.5: Segmentation difference distribution while adding five hundred models to the
collection. Most of model segmentation suffered none or just a slight change after updat-
ing the decomposition.

of the models in the initial collection have different segmentation after adding the new

models to the collection.

Even in the case when five hundred models are added to the collection, the changes

found in each model segmentation is minimal. Indeed, only two models in the ESB collec-

tion have more than 4% difference between the initial segmentation and the one obtained

after updating the decomposition. The segmentation of all other models suffered even

slighter changes. Concretizing, as depicted in Table 5.5, the decomposition of approxi-

mately around eighty five percent of models in the collection did not change or suffered

changes below 0.5%, while just 2.5% of he models present a segmentation difference

greater than two percent.

From the analysis of the results presented above we conclude that the CAS/HFP al-

gorithm offers a stable decomposition and, most important, that adding new models to an

already decomposed collection and updating the decomposition practicaly does not alter

the segmentation of initial models. Indeed, although we were not able to prove it with the

collections currently available, we believe that when the decomposed collection is suffi-

ciently large, adding new models and updating the decomposition will cause no changes

in the decomposed models.

5.5 Building a Shape Thesaurus

Although we focused part of our research on the hierarchical decomposition of mod-

els in collections, this was just the groundwork for the construction of shape thesaurus.

Indeed, this thesaurus is the basilar structure of our approach to 3D model retrieval. This

thesaurus will be used to index the collection, thus supporting an efficient methodology to

perform partial queries. In this section we present the results of our experiments on creat-

5.5 Building a Shape Thesaurus 139

ing the shape thesaurus and corresponding inverted index for a collection of 3D models.

5.5.1 Experiment Description

Considering that the decomposition of models in the collection is the first stage of

the thesaurus building process, as described in Section 4.1, the creation of a shape the-

saurus from the resulting shape pool requires two additional stages. The second stage

corresponds to the determination of a partition for the shape pool, while the third stage

consists on the construction of the shape thesaurus from that partition.

The herein presented experiment was aimed to assess the behavior of our approach to

index a collection, i.e. computing the shape thesaurus and the corresponding inverted in-

dex. This experiment comprised two distinct tests. While in the second test we processed

the whole ESB collection and measured the execution time separately for each stage of

the thesaurus building process, in the first test we studied the behavior of the segment

clustering algorithm alone, since it is the most time-consuming task after the collection

decomposition.

5.5.2 Segment Clustering Time

To cluster the segments in the shape pool we used, as explained in Section 4.3, a

generic k-means clustering algorithm based on a combination of local search and Lloyd’s

algorithm. In our approach, the dataset to be clustered contains the signatures of segments

in the shape pool. Basically, it consists on a set of points in a high-dimensional space.

More precisely, due to the shape descriptor we applied, this space has 544 dimensions.

Indeed, is the large dimensionality of the dataset to cluster that makes the whole clustering

process more complex.

During this experiment we studied the behavior of the clustering algorithm with col-

lections of different sizes, while modifying the number of clusters in the produced par-

tition. The number of clusters directly related with the size of the thesaurus, since each

cluster correspond to a term in the thesaurus.

The larger dataset tested contained less than twenty thousand points, and can be stored

in less than fifty megabytes of memory. Since the memory required to compute the parti-

140 Chapter 5. Experimental Results

Description Models
FTC Flat-Thin Components cluster from ESB 105
RCP Rectangular Cubic Prism cluster from ESB 273
SoR Solid of Revolution cluster from ESB 475
ESB Whole ESB collection 853

ESB+LEGO ESB collection plus LEGO models 953
ESB+LEGO+WTM Above collection together with WTM 1353

Table 5.6: Collections used in the segment clustering experiment.

tion of a dataset is just slightly higher that the memory used by the dataset and the centers

of the clusters, the memory consumption of the clustering algorithm is not an issue in our

approach. Thus, in this experiment we focused our attention on the execution time of the

segment clustering algorithm.

The clustering algorithm is expected to perform with linear time-complexity with re-

spect to the number of cluster and the number of points in the dataset. To assert this,

we measured the execution time for a set of collections of different sizes, described in

Table 5.6. Namely, the FTC, RCP and SoR clusters of ESB collection presented in Sec-

tion 5.3, the whole ESB collection, a collection containing the ESB models plus the LEGO

models introduced above in this section, and a collection containing the ESB models, the

LEGO object and the WTM dataset.

The observed execution times confirmed the linear time-complexity of the clustering

algorithm. As depicted in Figure 5.16, the execution time grows proportionally to shape

pool size and cluster count. Thus, when fixing the number of clusters to produce and

processing the different collections, we check that the execution time grows linearly. For

instance, to build a thesaurus with eight hundred terms, which corresponds to a partition

with the same number of clusters, the segment clustering algorithm took around six thou-

sand seconds to process the shape pool resulting from the decomposition of the whole

ESB collection. In our tests, this such pool contains 9131 segments. To build a thesaurus

with the same size for a larger collection, the ESB+LEGO+WTM, to which corresponds a

shape pool with almost twenty thousand segments, the segment clustering algorithm took

less than thirteen thousand seconds.

The same behavior is observed when fixing the collection and varying the desired

thesaurus size. In this case, the execution time of the algorithm grows linearly with the

5.5 Building a Shape Thesaurus 141

10

12

14

16

18
us

an
d

se
cs

.)

1000

800

600

Cluster Count

0

2

4

6

8

Ti
m

e (
th

ou

400

200

100

Shape Pool Size (Collection)

10

12

14

16

18

ec
s.
) 19788 (ESB+LEGO+WTM)

Shape pool size (Collection)

0

2

4

6

8

10

0 200 400 600 800 1000

Ti
m
e
(t
ho

us
an

d
se

Cluster Count

10168 (ESB+LEGO)

9131 (ESB)

3260 (SoR)

1392 (RCP)

429 (FTC)

100

Figure 5.16: Execution time of segment clustering for partitions with different cluster
count while changing shape pool size (top), and for different collections, while varying
the number of clusters to be created (bottom).

number of clusters in the partition. For example, considering the whole ESB collection,

while determining a partition with one hundred clusters took around six hundred seconds,

computing a partition with eight hundred clusters took around six thousand seconds. This

observation strengthens the importance of a reasonable size for the shape thesaurus. In-

deed, a larger thesaurus will correspond to a heavier segment clustering process but led

to a more efficient retrieval, while a smaller thesaurus will produce larger inverted lists in

the inverted index, which will reduce the efficiency of the retrieval process.

From the statements above one can wrongly conclude that the thesaurus should con-

tain as many terms as possible. However, this is not absolutely true: an excessively large

142 Chapter 5. Experimental Results

thesaurus can easily become ineffective. In an extreme situation, a thesaurus will have

the same number of entries than the segments in the pool, i.e. each term corresponds to

a single segment. In this case. there is no point in using the thesaurus. It will be simi-

lar to search directly in the shape pool, which is exactly what we intend to avoid. Later

we will discuss this topic and present some suggestions regarding the determination of a

”good” thesaurus size. For now, we will consider that the shape thesaurus to index the

ESB collection will have eight hundred terms.

5.5.3 Execution time

To appraise the behavior of our approach to index a collection of 3D objects, we

studied the process of creating a shape thesaurus and corresponding inverted index from a

set of models represented as triangle meshes. To that end, and in accordance with previous

experiments performed within our research, we used the collection of engineering models

set up by Karthik Ramani team, the Engineering Shape Benchmark. As explained earlier

in this document, this collection contains 853 CAD models stored as separate STL files.

Each file contains an unstructured triangulated surface of the model. Indeed, the format

itself is not relevant for the present purposes, but it is important to underline that, in

the current implementation of the algorithm we deal with surfaces, a common way to

represent CAD models.

In practice, the presented classification technique creates an indexing structure for a

collection of three-dimensional surfaces. This indexing structure is composed by a shape

thesaurus which contains a set of terms, and an inverted index, which maps the terms in

the thesaurus with the models in the collection. Basically, each term corresponds to a

prototype of surface patches, or segments, and is mapped to the models to which these

segments belong. In the test described in this section we studied the computation of this

indexing structure. Namely by measuring the execution time and analyzing the produced

structures.

As described in previous chapter, the computation of the indexing structure for a

collection of models is divided in three distinct stages: the collection decomposition; the

segment clustering; and the thesaurus building. Although some of these stages can be

further divided into significant steps, we will avoid that level of detail, since it has been

5.5 Building a Shape Thesaurus 143

14872 secs.8 secs.

Collection DecompositionCollection Decomposition
Segment Clustering
Thesaurus Building

6058 secs.

Figure 5.17: Time spent to index the ESB collection, i.e. to build the shape thesaurus and
corresponding inverted index from the set of 853 models that compose the collection.

discussed separately earlier. Instead, we will provide a view of the behavior of the whole

classification process.

In this test we measured the execution time of each step when processing the ESB

collection. The results of these measurements are depicted in Figure 5.17. In this chart is

easily comprehensible that the time required by the third stage is negligible and that the

major time-consuming tasks are the decomposition and clustering stage. Indeed, while

decomposing the collection took around fifteen thousand seconds and clustering the seg-

ments took six thousand seconds, building the thesaurus and creating the corresponding

inverted index took only eight seconds. Hence, the whole classification process took

twenty thousand seconds, i.e. around five and a half hours.

Considering that the classification process is performed just once and in batch, we

claim that five and a half hours is a perfectly acceptable time. Moreover, when adding

more items to the collection, updating the indexing structures is a much faster process.

Regarding the decomposition stage,in Section 5.4 we shown that adding models to the

collection and updating the collection decomposition is a relatively fast process and that

the shape pool just suffer minor changes. Thus, knowing that if the clustering process

starts with an existing partition, computing an updated partition for the same dataset with

some changed points is not a time-consuming task, we can assert that our approach to

index a collection suits the proposed purposes.

144 Chapter 5. Experimental Results

5.5.4 Thesaurus and Inverted Index

In our research work, we introduced a novel approach to three-dimensional shape

retrieval. This new approach is based on concepts transposed from the text-information

retrieval field. Namely, efficient indexing techniques widely used with text documents,

more precisely the use of thesaurus and inverted indexes. Thus, we introduced the concept

of a shape thesaurus and adapted the inverted index to fulfill our needs. Indeed, above

we have already discussed the time-complexity of constructing such structures without

looking at the resulting structures itself.

As described in Section 4.2, the shape thesaurus stores the signatures of the terms,

i.e. the cluster centers, and to each term is assigned an unique identifier. In practice, the

shape thesaurus is as a dataset in the signature space where each multi-dimensional point

corresponds to a term. These points are associated to the term identifiers that are used in

the inverted index to map terms with the models to which the segments associated with

that term belong. To guarantee an efficient retrieval, these structures should be stored

in memory, since the first step of the retrieval process is a k-NN search in the thesaurus

signature space and the second step is to browse the inverted index.

Indeed, the space necessary to store the shape thesaurus is not a real issue, assuming

that it has a reasonable size. Considering that each SHA signature requires around two

kilobytes of memory, a thesaurus with one million terms will consume about two gigabites

of memory. However, such a large thesaurus will fail to attain the purpose of our approach,

since searching in such large dataset will be unacceptably slow. Moreover, the idea behind

the thesurus is to group the segments that compose the models io the collection in a set

of terms that represents them, which implies that the number of terms should be much

smaller than the number of segments.

On the other hand, the size of the inverted index depends on the number of segments

in the shape pool and on the size of the shape thesaurus. Basically, to each entry in the

thesaurus will correspond a list of models in the inverted index. This list of models is no

more than a list of model identifiers. The inverted index structure is relativey small (in the

present experiment it requires less than fourty kilobytes) and its growth when handling

really large collections can be minimized through data compression techniques, as occurs

with its counterpart in text information retrieval.

5.6 Retrieval of 3D models 145

Besides these two basic structures, a third support structure exists. This structure,

despite its importance on the classification process, plays a secondary role in the retrieval

phase. However, having in mind the information it contains, this structure is useful to

improve the quality of the results returned by the retrieval mechanism. We are referring to

the shape pool, which contains the signatures of all segments extracted from the models

in the collection. For now, in the shape retrieval process the information stored in the

shape pool is used only to order the retrieved results according to the distance of the

corresponding segment signatures to the query signature. We believe that future research

will identify further advantages for the retrieval process that can be obtained from the data

stored in the shape pool.

For the example studied in this experiment, the ESB collection, all structures de-

scribed above are relatively small when compared with the collection size. Indeed, the

thesaurus containing the eight hundred signatures and corresponding identifiers occupies

less than two megabytes, while the inverted index needs around forty kilobytes. The struc-

ture that stores the shape pool, a dataset containing more than nine thousand signatures

uses about eighteen megabytes of memory. Summing, the memory required to store the

whole indexing structure for the ESB collection will be within the tens of megabytes.

5.6 Retrieval of 3D models

The main goal of our research is to devise a scalable solution to 3D shape retrieval

that supports partial queries. To that, end we developed a set of methods, structures and

techniques to classify collections of 3D models and retrieve objects partially similar to a

given query. The suitability of these techniques for indexing purposes was shown by the

experiments described above in this chapter. In this section we focused on the retrieval

process itself.

Indeed, despite the importance of the classification component in our approach to

shape retrieval, the success of our solution depends on the results produced by the retrieval

process. When a query is submitted, a successful retrieval system should provide an

accurate answer in short time. To verify if our solution satisfies this premise, we tested

our approach as described below.

146 Chapter 5. Experimental Results

5.6.1 Experiment Description

To evaluate the retrieval efficiency and accuracy of the thesaurus-based 3D shape

retrieval introduced on this research work, we used the ESB collection. This collection

was decomposed and indexed as described previously in the current chapter. To test the

behavior of our solution we submitted five distinct queries to the system. From these

queries, three (shapes Q3 to Q5) were subparts of existing models in collection, while

two (shapes Q1 and Q2) were complete models from the ESB collection. These segments

and models are depicted in Figure 5.18 and were randomly selected from the shape pool

and collection, respectively.

Since time is a major concern of retrieval solutions, we measured not only the time to

execute the query, but also the time to load the indexing structures into memory. In prac-

tice, the structure loading is done only once during retrieval system startup. After loaded,

these structures remain in memory for as long as necessary, allowing the submission of

innumerous queries without the necessity of reloading. This just must occur after changes

in the collection with corresponding thesaurus update.

Q1 Q2

Q3 Q4 Q5

Figure 5.18: Query shapes submitted to the retrieval system.

5.6 Retrieval of 3D models 147

5.6.2 Search Time

The retrieval prototype that implements our approach starts by loading into memory

the indexing structures. Reading these structures from the non-volatile storage device is a

relatively fast process. However, besides simply loading the information we also perform

a set of validation and data coherency checks. In this experiment, the time we measured

as loading time refers to all this process, not only reading from disk into memory.

In our approach, when a query shape is submitted the first step consists on estimating

its SHA signature. Due to its inherent complexity, the computation of this signature is a

time consuming process. Moreover, in the current implementation of our prototype we use

an external application for this task. Using this external application involves additional

execution time, but allows greater independence regarding the shape descriptor technique,

when compared to a solution that incorporates the signature computation. Nevertheless,

in a definitive solution, the signature computation time can be drastically reduced.

Having computed the signature of the query shape, the next step of the retrieval pro-

cess consists on finding the more similar terms in the thesaurus. This is performed trough

a linear k-NN search in the terms signature space. Despite its high dimensionality, this

space has a controlled cardinality, which assures that the search for similar terms is re-

ally fast. Based on the search results and using the inverted index, the models containing

segments similar to the query shape are identified.

In this experiment we measured the descriptor computation time separately from the

time spent searching for similar terms in the thesaurus and finding the associated models,

as presented in Table 5.7. We emphasize that the first depends exclusively on the query

shape and shape descriptor, while the second is affected by several factors, such as the

number of terms in the thesaurus, signature dimensionality or shape pool size.

Queries
Q1 Q2 Q3 Q4 Q5

Loading 121.64
SHA computation (a) 1.182 1.187 1.085 1.163 1.120
Search (b) 0.162 0.172 0.181 0.165 0.161
Query (a + b) 1.344 1.359 1.266 1.328 1.281

Table 5.7: Measured time (in seconds) while loading the indexing structures into memory
and performing the queries using a given shape.

148 Chapter 5. Experimental Results

The observed results show what we were already expecting, the computation of the

query shape signature consumes most of the time spent while querying the collection. In-

deed, while estimating the query signature took more than one second, in average, search-

ing for models that satisfy the query took less than two tenths of a second. Moreover, none

of these values depend directly on the collection size, which means that larger collections

will only slightly affect the query time.

5.6.3 Memory Usage

We have shown above the efficiency, in terms of time complexity, of the retrieval pro-

cess. In the present experiment, the indexing structures require around twenty megabytes

of memory, including the signatures of all segments in the shape pool. Thus, the space

complexity is not an issue. When the collection grows, the structures that will grow are

the inverted index, which is always relatively small (around thirty kilobytes in this exper-

iment), and the shape pool, which can be left on disk since no searches are made in this

structure, just a few direct access to given signatures in each query.

Nevertheless, with a shape pool with less than ten thousand segments, the corre-

sponding signature space occupies eighteen megabytes. Even if the shape pool contains

one million terms, it might be loaded into memory, since it will require less than two

gigabytes, which is available in today’s middle-range desktop computers. In both cases,

it can be entirely loaded into physical memory, thus improving the access time over the

”stored on disk” approach.

Therefore, the retrieval prototype loads the indexing structures, as well as the shape

pool, into memory, using around twenty megabytes. The shape pool is used only to obtain

the segment signatures when ordering the retrieved models through direct access to the

signatures. Indeed, after identifying the segments associated with each term similar to the

query, our approach sorts the models according to the similarity between the matching

sub-part and the query. The signature of the matching sub-part is obtained by following a

pointer stored in the inverted index to the signature in the shape pool. This ordering task

is remarkably fast, due to its simplicity and to the small number of models to sort, and

greatly improves the results produced by the retrieval solution.

5.6 Retrieval of 3D models 149

5.6.4 Retrieval Results

Since describing here exhaustively the results produced by the system for all queries

will be long and repetitive, we selected only two queries to illustrate the retrieval capa-

bilities of our approach. The first query, Q1, corresponds to a complete object from the

ESB collection, while the second, Q5, corresponds to a sub-part of a model. These two

queries cover the most valuable features of our solution. The ability to retrieve objects

completely similar to the query and retrieve models partially similar to the query.

The output produced by our shape retrieval mechanism when query Q1 is submitted

is depicted in Figure 5.19. As expected, since the query shape corresponds to a model

in the collection, the first returned result, R1,1, is exactly that model. Obviously, it is the

more similar to the query shape, since it is the same object. The following model returned

by query, R1,2, satisfies a part-in-whole matching with the query, i.e. a sub-part of R1,2 is

very similar to Q1.

The remaining returned models are less similar to the query shape. Indeed, whileR1,3

and R1,5 are, to some extent, globally similar to the query shape, only a sub-part of R1,4

has some similarity with the query. As often occurs, the matching sub-part is not easily

Q1

R1,1 R1,2 R1,3 R1,4 R1,5

Figure 5.19: Query results for Q1.

150 Chapter 5. Experimental Results

Q5

R5,1 R5,2 R5,3 R5,4 R5,5

Figure 5.20: Query results for Q5.

recognizable in the returned model. To assist the reader in the recognition of the similar

sub-part, we highlighted it. We recall that this sub-part was automatically detected by

the CAS algorithm during the classification phase as a distinctive segment of the original

model.

In the second example, the shape Q5 is itself a sub-part of a model. The outcome

produced by our retrieval solution when Q5 is submitted as a query is illustrated in Fig-

ure 5.20. As expected, the first retrieved model is the one to which this sub-part was

extracted, the model R5,1. The other retrieved models, R5,2 to R5,5, contain sub-parts

similar to the query. Thus, in this example, all retrieved models satisfy a part-in-whole

match with the query.

The ability to quickly retrieve models that are globally similar to a query or just

partially similar, shown in the two examples described above, is one of the major achieve-

ments of our approach. Considering that through the use of a thesaurus and inverted

index the scalability of this approach is unquestionable, we believe that we showed a pos-

sible path for a functional 3D retrieval system. While the classification component of our

approach require further improvements to effectively support very large collections, the

retrieval component is already able to provide quick and accurate answers to 3D queries.

5.7 Summary 151

5.7 Summary

In this chapter we presented the most relevant experiments performed during our

research. Besides the experiments that aimed directly on validating and evaluating our

approach we described here some of the supplemental tests that supported our research.

In the first of these experiments we studied the mesh complexity of models that com-

prise two widely used benchmark collections. From this study we concluded that a vast

majority objects in these collections are defined by meshes with less than six thousand

polygons. Based on this conclusion we assumed that a polygon reduction algorithm is not

necessary in our approach, since our algorithms behave well with such mesh complexity.

The second experiment focused on simulating worst case conditions. In practice such

conditions should never occur, but the tests performed within this experiment were useful

to identify the limitations of our approach.

The other experiments described in this chapter focused on the algorithms devised

during our research. Using a set of research prototypes that implement the algorithms

presented in this dissertation, we studied the behavior of our approach when classifying

benchmark collections and its effectiveness to retrieve models using partial queries.

As a result from these experiments we concluded that, while the space complexity is

not a real problem in any of the proposed algorithms, the same is not true regarding time

complexity. Indeed, the CAS/HFP decomposition algorithm and the segment clustering

algorithm might take too long to compute very large collections. One reason for this fact

is the high dimensionality of the SHA signature. However, for collections with a less than

a thousand models, the execution time can be considered acceptable.

Regarding the retrieval process, the experiment presented in this chapter demonstrated

the viability of our approach to 3D shape retrieval with partial matching. Not only the

queries were executed in short time but also the quality of the returned results are quite

good. Indeed, we found the retrieval results encouraging to further develop our approach,

namely by improving the time-efficiency of the classification process. Nevertheless, based

on the observed results we consider that they prove the validity of our approach.

152 Chapter 5. Experimental Results

6
Conclusions and

Perspectives

The thesis work described in this dissertation focused on 3D object retrieval. More

precisely, we aimed for a solution that supports partial queries, with part-in-whole match-

ing. To that end, we devised a novel approach based on a thesaurus of shapes, a successful

concept transposed from the textual information retrieval. In this chapter we summarize

the main contributions of our work, stressing the more important results, and suggesting

perspectives for future research.

6.1 Dissertation Overview

The core of the present dissertation can be divided into three distinct parts. In the

first part we provide a research context in 3D shape analysis, classification and retrieval,

together with some theoretical background required to better understand our work. The

second part consists on a detailed description of our approach to 3D shape retrieval using a

shape thesaurus. Finally, in the third part of this dissertation we present the experimental

results.

6.1.1 Research Background

To familiarize the reader with the context of our research we started Chapter 2 by

presenting a short list of the more relevant players in this field. This list is far from

complete, since it contains only those researchers whose work we consider more relevant

for our research. Moreover, in such a constantly evolving field it is impossible to compile

a complete and fair list.

153

154 Chapter 6. Conclusions and Perspectives

Additionally we listed the best-known 3D model collections, describing succinctly

their contents. We also presented with some detail the more relevant benchmark collec-

tions, important to evaluate and validate our work. Furthermore, to provide the reader with

a couple of important concepts on information retrieval, we included a quick overview of

most common query strategies and similarity measurement techniques.

Due to the importance of shape descriptors in our field of research we included on

the second chapter an extensive review of existing shape description techniques. In this

review we began by presenting a taxonomy to classify 3D shape descriptors and then we

described the distinct techniques, grouping them according to that taxonomy.

We concluded the research background part of this dissertation by presenting the

most relevant 3D object retrieval solutions and the state-of-the-art concerning techniques

to support shape retrieval with partial queries, which is indeed the focus of our work.

6.1.2 Approach Description

Our approach to 3D shape retrieval with partial queries can be divided into two main

subjects. The first is the decomposition of models in a collection. The second is the

construction of a thesaurus from a collection and the corresponding retrieval mechanism.

We used the shape thesaurus as a fundamental structure for our approach to shape

retrieval. Such thesaurus should be composed by terms, which correspond to segments of

the models. Therefore, the identification of that terms is a crucial part of our methodology.

However, these terms are not explicit in the objects. Thus, the decomposition of objects in

a collection is a primordial problem in our approach. In Chapter 3 we described in detail

the solution we devised for this problem, the CAS algorithm.

After introducing our technique to identify the segments that compose the models

in a collection, we presented, in Chapter 4 our approach to classify, index and retrieve

such objects. In this chapter we described in detail the concept of shape thesaurus and

explain how it is constructed from the pool of shapes produced by the CAS algorithm. We

also presented the concept of inverted index and described the method devised to create

such structure. Finally, we presented the methodology to retrieve 3D objects using partial

queries, which relies on the shape thesaurus and corresponding inverted index to provide

a fast and accurate retrieval.

6.2 Conclusions and Discussion 155

6.1.3 Experimental Results

To assist us in decisions regarding our approach, we start performing experiments at

the early stages of our work. In Chapter 5 we described the most relevant of these ex-

periments, together with the tests made to evaluate and validate our approach. We began

by presenting a study regarding model complexity in two widely used benchmark collec-

tions. Next we described a simulation of the behavior of our decomposition algorithm in

the worst case scenarios, to identify its limitations and check its scalability.

Results of preliminary experiments provided valuable information that allowed the

definition of a stable and robust set of techniques and algorithms. To evaluate and validate

these, we developed several prototypes and used them to perform practical experiments.

Detailed descriptions of these experiments and corresponding results are the core of the

experimental results chapter.

6.2 Conclusions and Discussion

The experimental results provided us a valuable feedback regarding the validity of

our approach. From these results we were able, not only to confirm the worth of our

contributions, but also identify the limitations of our approach. In this section we will

present and discuss both.

6.2.1 Contributions

While the majority of the research work in the 3D shape retrieval field focuses on

shape description or matching techniques, we tackled a wider topic. Our research focused

on a complete solution for 3D shape retrieval supporting partial queries. To achieve such

solution we attacked distinct flanks, from shape decomposition to collection indexing.

Although we obtained positive results in all of them, we highlight the collection-aware

segmentation algorithm and the shape thesaurus as the most important contributions of

our work.

Nevertheless, we consider that our approach has a whole is the major outcome of our

research. Using the prototypes developed, and backed up by the experimental results we

156 Chapter 6. Conclusions and Perspectives

can state confidently that our idea - use of a thesaurus of shapes to index collections of 3D

models in order to allow retrieval with partial queries - is not only valid but also capable

of bear a fully functional search engine of three-dimensional shapes.

We believe that a thesaurus of shapes and corresponding inverted index are the most

appropriate indexing solution for a shape retrieval system that aims on providing real

scalability, partial query support, and retrieval efficiency. Indeed, successful textual infor-

mation retrieval systems rely on a similar solution, which we consider as a good indicator

for the potential of our approach.

6.2.2 Benefits

Several approaches to shape description have been proposed in the last decade, as

shown in Chapter 2. The same is valid for shape matching techniques. Either complete

matching, partial matching or part-in-whole matching techniques were published. How-

ever, to the best of authors knowledge, no integrated solution for retrieval of 3D models

with partial queries that overcomes the scalability problem was published.

In our approach we propose a scalable approach for shape retrieval with partial match-

ing. This approach relies on a thesaurus of shapes as an indexing structure to guarantee

the scalability of our solution. Indeed, the retrieval time will not be directly influenced

by the size or complexity of the collection of models, contrary to what happens in other

approaches.

To construct such thesaurus it is necessary to identify the terms that comprise it. In

a rough explanation, these terms correspond to segments that compose models in the

collection, the same way words in a document correspond to terms in a lexicon. This is

not a trivial task, since such segments are not explicit, as in text documents.

We devised an efficient algorithm that decomposes automatically, i.e. without hu-

man intervention, all the models in a collection. This algorithm constitutes a innovate

approach to 3D shape segmentation and can be seen as a positive benefit to that field.

Using the CAS algorithm it is simple to compute the segments that will be applied in the

thesaurus construction.

Depending on the size and complexity of the collection the CAS algorithm can be

6.2 Conclusions and Discussion 157

relatively time-consuming. The same observation applies to the segment clustering, nec-

essary to determine the terms in the thesaurus. However, since the whole classification

process just have to be executed sparsely and can run in batch, time is not a major issue.

Therefore, the major benefit of our approach lies on the fact that the time consum-

ing tasks are performed only during classification, while the retrieval process is fast and

independent of the collection size.

6.2.3 Limitations

The current implementation of our approach has some limitations, such as supporting

only non-manifold models, that can be easily overcome without major effort. However,

some choices that we made during the development of our approach are indeed open

issues to be tackled by future research.

The most noticeable of these limitations is related with the adopted shape descriptor.

Although powerful in terms of descriptive capacity, the rotation invariant spherical har-

monics descriptor has two major drawbacks. One is the time required for its computation.

The other is the size of the computed signature. These facts undermine its use with a very

large number of shapes, in terms of both time and space required to store them.

As we shown, in our approach the number of segments resulting from the multilevel

decomposition tends to stabilize when the number of level grows. Indeed, in our exper-

iments we observed that this stabilization happens around the sixth iteration of the CAS

algorithm, that is when models were decomposed into seven or less levels. However, re-

gardless of its growth, the total number of segments depends directly of the collection

size, since the initial shape pool contain one segment for each model in the collection.

Therefore, the size of the shape pool is directly proportional to the number of models in

the collection.

To construct the shape thesaurus, we must compute a partition for the shape pool.

This means clustering the signatures of the segments detected by the multilevel decompo-

sition. Due to the high-dimensionality of the shape signatures, we used an hybrid k-means

clustering technique that combines local search with the LLoyd’s algorithm [89]. The ex-

ecution time of such partition computation grows linearly with the size of the dataset, in

the present case the number of segments in the shape pool.

158 Chapter 6. Conclusions and Perspectives

From the two limitations referred above is easy to conclude that our approach has a

linear classification time regarding the collection size. When aiming for a real scalability

this might not seem the best of the conclusions. However, this can be solved by gaining

more control on the shape pool growth.

6.3 Perspectives

The current limitations of our approach might threaten the attainability of our ulti-

mate goal - to devise a scalable, robust, effective and fast solution to shape retrieval with

partial queries. Although it is not within the scope of the present PhD research to find

such solution, we believe that our approach can evolve in that direction and already iden-

tify research paths to be followed. In the next paragraphs we summarize some of these

perspectives for future work.

Low-Dimensional Signatures To overcome the computation time and storage space

required by the SHA signature, we suggest, as a path for future research, the investigation

of shorter, yet powerful and fast to compute shape descriptors. Indeed, existing shape

description techniques either are feeble descriptive or complex to compute. Nevertheless,

aiming at immediate results, our approach can easily be adapted to use other shape de-

scriptor, eventually not so powerful as the SHA descriptor but simpler to compute and

with a low-dimensional signature.

Early Clustering The relation between the size of the collection and the number of

segments in the shape pool can be reduced if similar segments are clustered immediately

as they are detected during the CAS algorithm execution. This idea, we called early clus-

tering1, will drastically reduce the number of segments in the shape pool, thus reducing

the space required to store the corresponding signatures and the number of comparisons

required to determine the decomposability of a segment. In an extreme evolution, the

segment clustering step executed after CAS decomposition can even be discarded.

1The original idea for early clustering was raised in a exchange of views with Francesco Robbiano and
Marco Attene from the CNR IMATI-Ge.

6.3 Perspectives 159

Sub-linear Clustering Due to complexity of data structures used by sub-linear clus-

tering algorithms, the current high dimensionality of the SHA signature makes its use

pointless. However, if a shape descriptor with a shorter signature is adopted, more time-

efficient clustering algorithms might be used. This fact strengthens the importance of

investing on more space-efficient shape descriptor techniques, while looking into better

data clustering algorithms.

Approach Optimization In this dissertation we shown that basic concepts from tex-

tual information retrieval can be successfully transposed to 3D shape retrieval. However,

we believe that more advanced concepts and techniques can also be adapted from tex-

tual information retrieval field to improve the accuracy and efficiency of our approach.

For instance, term frequency-inverse document frequency (tf-idf) weight can be used to

quantify the relevance of segments to shapes in a collection, or combine a local Bernoulli

compression method with Golomb coding to compress the indices [17].

Fully Partial Queries Our approach focused on part-in-whole matching. This means

that, when a shape is submitted as a query, the retrieval system will return the models in

the collection that has a segment similar to that query. This type of partial query considers

that the submitted shape should be treated as a whole. We suggest that, for fully partial

queries, the retrieval system should return not only the models that contain segments

similar to the query object, but also those which contain segments similar to parts of the

query object.

In practice, adapt our approach to support fully partial queries is simple. However,

the goodness of such methodology should be carefully studied, namely regarding user

needs. In an analogy with the textual information retrieval, a fully partial query is the

same as using the word ”airplane” as query and the system returns documents with the

words ”air” and ”plane”. While in text documents such might seem questionable, we

make no assumption regarding the 3D model context. We leave this as an open question

for future research.

160 Chapter 6. Conclusions and Perspectives

6.4 Final Remarks

The ultimate goal of our research field is to devise fully-fledged content-based 3D

model retrieval system. Such system should be able to retrieve models from very large

collections. These models can be globally or only partially similar to the submitted query.

Basically, we aim for a search engine for 3D shapes similar to existing solutions for text

documents. Currently, this goal was not reach by anybody, and is beyond the scope of

the this thesis work. In this dissertation we introduced a novel approach that provides the

groundwork of a future 3D search engine.

Our approach uses a thesaurus for classification, indexing and retrieval. This the-

saurus will contain the shapes that compose the models of the indexed collection, simi-

larly to a lexicon in text retrieval, which contains the terms that compose the vocabulary

used in documents. Combined with an inverted index, this thesaurus provides an efficient

retrieval solution. Performing a query with our approach comprises a short pipeline of

simple and fast steps. First, the signature of the query object is computed. Then, the

terms in the thesaurus with the nearest signatures are found. Finally, the models associ-

ated to each term are properly ordered according to query-segment similarity. As we have

shown in Chapter 5, this retrieval process is both fast and accurate.

While the simplicity of the retrieval process relies on the shape thesaurus, the con-

struction of such structure is not a trivial task. Indeed, unlike text documents, where terms

are explicit and lexicons can be easily built from them, the terms of the shape thesaurus

are not explicit in the models. To determine the terms that constitute the thesaurus we

group sub-parts of models in the collection according to their geometric similarity. Thus,

each term in the thesaurus correspond to a point in the signature space and is associated,

through the inverted index, to models that contain sub-parts resembling that shape. The

major challenge in the thesaurus building process is the identification of that sub-parts.

Sub-part identification in 3D object is a complex task, due not only to its compu-

tational complexity but also to the ambiguity of such decomposition. Moreover, in our

approach we need to decompose all models in the collection automatically, without human

intervention. To achieve such goal we devised a novel approach to shape decomposition

that performs multilevel shape segmentation. Instead of decomposing each model inde-

pendently, the Collection-aware Segmentation algorithm, described in Chapter 3, extracts

6.4 Final Remarks 161

sub-parts of a model taking into account the segments of all other models. This algo-

rithm performs a multi-level decomposition of models in the collection, producing a set

of sub-parts. The shape thesaurus is build from these sub-parts.

A set of research prototypes implemented the different components of our approach,

from sub-part identification to shape retrieval. These prototypes, presented in Annex C,

served to evaluate our work through a set of experiments. Indeed, in these experiments

we identified the drawbacks of our approach, which will be tackled by future research.

But, above all, these experiments shown the validity of our approach, thus fulfilling the

research hypothesis defended in this dissertation.

Concluding, while prototypes and experiments developed within our research focused

on validating the proposed ideas, a functional retrieval solution can be easily implemented

from them. Such system will be yet far from the ultimate goal. However, having shown

the validity of our ideas and pointed paths for future research, we believe that concepts

and techniques presented in this document have the potential to evolve into a fully-fledged

3D shape retrieval solution.

162 Chapter 6. Conclusions and Perspectives

A
Shape Similarity Study

In this annex we present in detail the study we performed in order to understand the

behaviour of the spherical harmonics (SHA) descriptor while measuring the similarity be-

tween models from the Engineering Shape Benchmark (ESB) collection [71]. To that end,

we compute the multidimensional feature vector corresponding to SHA representation of

every studied model and measured the Euclidean distance between these feature vectors.

The study was divided in three distinct parts. The first part focused on studying the

behaviour of the SHA descriptor in a set of random models. In the second part we ex-

amined sets of geometrically similar models and studied the behaviour of feature vectors

produced by SHA in these cases. Finally, in the third part all models in the ESB collection

were considered as a query to the collection in the SHA feature vector signature space.

In the following sections we report in detail these three parts of our study, describing the

tests and the results obtained in each one of these.

A.1 Random shapes

In the first part of the study we investigate the similarity between models randomly

extracted from the ESB collection. We arbitrarily select twenty three-dimensional objects

to create a set ξrand of models. Since this set contains more than two percent of the whole

collection, we assumed that it holds a representative sample.

The models that comprise the set ξrand are depicted in Figure A.1, indicating the

name assigned to each one in the ESB collection, and in Figure A.2 are presented the

corresponding SHA signatures. These models are also listed in Table A.1, which contains

the description of each model according to the classification scheme presented bin [71].

163

164 Appendix A. Shape Similarity Study

1305433 5MM PHILLIPS aries129a aries155

ASSEMBLY1B backdoor bearing post 56 back button 22

carrier nose COLLECTOR 40932 fender gearbox ganter gn559 1

gear 30 gerwah peter dxk801 groschopp igk65-40-2pole hex nut

misumi bracket3 schmersal az-17-1 spinner TISCREW12

Figure A.1: Models randomly selected from the ESB collection.

After computing the SHA descriptor for every model in ξrand, we measure the dis-

tance, di,j , between the corresponding feature vectors. To that end we used the applica-

tions getsig and cmpsig developed by Michael Kazhdan [78] to compute the SHA signa-

tures of the models and to compare these signatures, respectively. This way we obtained

the distances that represent the model similarity for the whole sample. These distances

will allow us to better understand the behaviour of the SHA descriptor with CAD models.

A.1 Random shapes 165

Figure A.2: SHA signatures of models in ξrand.

166 Appendix A. Shape Similarity Study

Model Name ESB Cluster ESB Class
1 1305433 Solid Of Revolution Intersecting Pipes
2 5MM PHILLIPS Solid Of Revolution Long Pins
3 aries129a Rectangular-Cubic Prism Miscellaneous
4 aries155 Rectangular-Cubic Prism Miscellaneous
5 ASSEMBLY1B Solid Of Revolution Posts
6 backdoor Flat-Thin Wall components Back Doors
7 BEARING POST 56 BACK Solid Of Revolution Posts
8 button 22 Rectangular-Cubic Prism Thick Plates
9 carrier nose Flat-Thin Wall components Miscellaneous

10 COLLECTOR 40932 Solid Of Revolution Container Like Parts
11 fender gearbox Flat-Thin Wall components Curved Housings
12 ganter gn559 1 Rectangular-Cubic Prism U shaped parts
13 gear 30 Solid Of Revolution Spoked Wheels
14 gerwah peter dxk801 Flat-Thin Wall components Clips
15 groschopp IGK65-40-2pole Rectangular-Cubic Prism Motor Bodies
16 HEX NUT Solid Of Revolution Nuts
17 misumi bracket3 Flat-Thin Wall components Bracket like Parts
18 schmersal AZ-17-1 Flat-Thin Wall components Contact Switches
19 SPINNER Rectangular-Cubic Prism Machined Blocks
20 TISCREW12 Solid Of Revolution Bolt Like Parts

Table A.1: Description of models in ξrand.

The distances d(FVi, FVj) measured between all pairs of models Si and Sj in the

set ξrand are presented in Figure A.3. These values represent the similarity si,j between

shapes, where a smaller value means that the shapes are more similar while larger values

means that the shapes are less similar.

0,000

0,663 0,000

0,342 0,673 0,000

0,327 0,672 0,409 0,000

0,440 0,682 0,513 0,440 0,000

0,481 0,593 0,502 0,612 0,612 0,000

0,582 0,699 0,528 0,450 0,557 0,705 0,0000,582 0,699 0,528 0,450 0,557 0,705 0,000

0,319 0,636 0,473 0,523 0,495 0,419 0,706 0,000

0,356 0,668 0,390 0,246 0,409 0,553 0,448 0,508 0,000

0,439 0,635 0,552 0,491 0,629 0,648 0,757 0,550 0,535 0,000

0,398 0,694 0,441 0,553 0,535 0,363 0,732 0,302 0,517 0,606 0,000

0,583 0,405 0,562 0,650 0,674 0,460 0,733 0,579 0,623 0,567 0,593 0,000

0,480 0,765 0,600 0,662 0,587 0,540 0,833 0,295 0,643 0,658 0,330 0,724 0,000

0,630 0,912 0,634 0,782 0,722 0,635 0,922 0,600 0,747 0,699 0,488 0,804 0,544 0,000

0,338 0,569 0,474 0,387 0,553 0,515 0,666 0,481 0,440 0,316 0,521 0,474 0,624 0,739 0,000

0,531 0,879 0,591 0,682 0,643 0,682 0,858 0,459 0,685 0,640 0,440 0,814 0,407 0,424 0,685 0,000

0,596 0,650 0,505 0,559 0,682 0,581 0,666 0,709 0,567 0,605 0,694 0,486 0,867 0,817 0,518 0,864 0,000

0 415 0 642 0 377 0 487 0 518 0 326 0 590 0 437 0 459 0 639 0 352 0 505 0 577 0 624 0 502 0 638 0 500 0 0000,415 0,642 0,377 0,487 0,518 0,326 0,590 0,437 0,459 0,639 0,352 0,505 0,577 0,624 0,502 0,638 0,500 0,000

0,360 0,573 0,492 0,388 0,552 0,613 0,677 0,486 0,465 0,267 0,570 0,514 0,623 0,757 0,235 0,662 0,573 0,568 0,000

0,493 0,757 0,508 0,350 0,512 0,743 0,389 0,677 0,446 0,645 0,709 0,766 0,797 0,874 0,561 0,769 0,663 0,602 0,570 0,000

Figure A.3: Similarity values between random models.

A.1 Random shapes 167

0,7

0,8

0,9

1

0

0,1

0,2

0,3

0,4

0,5

0,6

Avg

Figure A.4: Chart representing similarity values between random models.

As expected, the obtained similarity values range from almost complete dissimilarity

(d14,7 = 0.92) to relative similarity (d15,19 = 0, 24). Indeed, in such a randomly obtained

small sample it is not expected to have really similar shapes, which justifies the absence

of smaller values. From the measured distances we estimated that dξrand
= 0.542, with

var(dξrand
) = 0.034, as depicted in the scatter chart presented in Figure A.4, which con-

tains all measured distances between pairs of feature vectors.

The analysis of the obtained results shown that, in average, the distance between

feature vectors will fall around the middle point of the possible range. Indeed, the simi-

larities are distributed by a wide range of possible values but most of the distances are in

the vicinity of dmid = 0.5, as depicted in Figure A.5.

50

60

30

40

20

30

0

10

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Figure A.5: Distribution of similarity values between random models.

168 Appendix A. Shape Similarity Study

12

14
16

18

20

Th
ou

sa
nd

s

0
2

4

6

8
10

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Figure A.6: Distribution of similarity values between all models in the collection.

A.1.1 Similarities among all models

To check the validity of the conclusions above we performed an additional test. In-

stead of using a sample set and compare the distance between the shapes, we used a set

ξall containing all models of the ESB collection. Then, we computed the signatures for all

objects in ξall and measured all similarities between them. Such test involved estimating

the feature vectors for the 853 models that constitute the ESB collection and then perform

more than 360 thousand comparisons among all shapes in order to obtain the complete

similarity map.

This similarity map is a matrixMsim that contains the distance between all models.

Due to distance properties, the size of this matrix was reduced by using a triangular ma-

trix. Thus, we employed a triangular matrix Msim with 853 rows and 853 columns to

store the distances between all models in the ESB collection.

From data stored in Msim we computed the average distance, dξall
= 0.598, and

the distribution of the similarity. The histogram depicted in Figure A.6 illustrates that

distribution. The analysis of this distribution confirms the assertion made above regarding

the similarity values in random shapes.

Indeed, the peak of the histogram is around d = 0.6, but this happens because the

number of dissimilar shapes in the whole collection is much larger than the number of

similar models. If we consider a vicinity V with a radius δ = 0.15 we observe that more

than 62% of the similarities lie in the interval 0.45 < d < 0.75, as illustrated in the

chart depicted in Figure A.7. Here is possible to see that the remaining similarities are

distributed equally at left and right of vicinity V .

A.2 Geometrically similar shapes 169

d<0,45

0,45<d<0,75

0,75<d<1,0

Figure A.7: Distribution of similarity values between all models in the collection.

A.2 Geometrically similar shapes

For the second part of the study we used the query mechanism provided with the ESB

to create sets of similar shapes. To that end we select a small set of six shapes randomly

chosen from the ESB collection and use them as queries to the ESB search system. From

the answers produced by the system we created the sets of similar models ξsimi
for our

tests.

Each set ξsimi
contained eight models Sij identified as similar by the ESB query

mechanism. While in Table A.2 we describe these models according to their classification

in the ESB colection, in Figures A.8 to A.18 we present the different sets, illustrating the

models that campose each set ξsimi
= {Si1 , ..., Si8} and corresponding signatures FVi1 to

FVi8 , and indicating the respective names in the ESB collection.

As in the previous tests, the feature vectors which represent the models were com-

puted through the SHA shape descriptor, using the same tools. After computing these

signatures for all models, we estimated the similarity

sij,k
= d2(FVij , FVik)

between them, given that i is the index of the shape set while j and k are the indices of

two shapes in that set. The measured distances are shown in Figures A.9 to A.19, where

for each model we indicate the similarity to all other models in the same set.

170 Appendix A. Shape Similarity Study

Model Name ESB Cluster ESB Class
S11 bed2 left sidepannel Flat-Thin Wall Components Slender Thin Plates
S12 bed2 right sidepannel Flat-Thin Wall Components Slender Thin Plates
S13 bed left sidepannel Flat-Thin Wall Components Slender Thin Plates
S14 bed tailgate Flat-Thin Wall Components Slender Thin Plates
S15 CLAMP FINGER PRT Rectangular-Cubic Prism Long Machine Elements
S16 PART 13 PRT Flat-Thin Wall Components Slender Thin Plates
S17 PART 4 PRT Rectangular-Cubic Prism Slender Links
S18 SLIDER .STL Flat-Thin Wall Components Slender Thin Plates
S21 2473396 Solid Of Revolution Oil Pans
S22 2473396 1 Solid Of Revolution Oil Pans
S23 2487583 Solid Of Revolution Oil Pans
S24 2487583 1 Solid Of Revolution Oil Pans
S25 2487583 3 Solid Of Revolution Oil Pans
S26 2494009 Solid Of Revolution Oil Pans
S27 2494009 1 Solid Of Revolution Oil Pans
S28 sh-r44357-000-u Solid Of Revolution Flange Like Parts
S31 1546387 Rectangular-Cubic Prism Rocker Arms
S32 1546387 1 Rectangular-Cubic Prism Rocker Arms
S33 2360536 Rectangular-Cubic Prism Rocker Arms
S34 2360536 1 Rectangular-Cubic Prism Rocker Arms
S35 7n3433 Rectangular-Cubic Prism Rocker Arms
S36 7n3433 1 Rectangular-Cubic Prism Rocker Arms
S37 9y4757 Rectangular-Cubic Prism Rocker Arms
S38 9y4757 1 Rectangular-Cubic Prism Rocker Arms
S41 SPACER 87 BACK SHORTS Solid Of Revolution Discs
S42 SPACER 87 FRONT SHORTS Solid Of Revolution Discs
S43 SPACER 87 LINK1 43 LINK1 42 Solid Of Revolution Discs
S44 SPACER 87 LINK 43 LINK 42 Solid Of Revolution Discs
S45 SPACER 87 LINK 43 LINK 42 Solid Of Revolution Discs
S46 SPACER 87 LINK 43 LINK 42 Solid Of Revolution Discs
S47 SPACER 87 LINK 43 LINK 42 Solid Of Revolution Discs
S48 SPACER 87 LINK 43 LINK 42 Solid Of Revolution Discs
S51 assem spool gear Solid Of Revolution Gear like Parts
S52 GEAR43 Solid Of Revolution Gear like Parts
S53 gear 30 Solid Of Revolution Spoked Wheels
S54 GEAR PRT Solid Of Revolution Gear like Parts
S55 LOW REV GEAR Solid Of Revolution Gear like Parts
S56 LOW REV GEAR PRT Solid Of Revolution Gear like Parts
S57 MS SEC GEAR Solid Of Revolution Gear like Parts
S58 MS SEC GEAR PRT Solid Of Revolution Gear like Parts
S61 BEARING SHAFT 57 LINK1 43 Solid Of Revolution Long Pins
S62 BEARING SHAFT 57 LINK 42 Solid Of Revolution Long Pins
S63 BEARING SHAFT 57 LINK 43 Solid Of Revolution Long Pins
S64 CLUSTER COUNTERSHAFT Solid Of Revolution Long Pins
S65 CLUSTER COUNTERSHAFT PRT Solid Of Revolution Long Pins
S66 ganter gn698 Solid Of Revolution Round Change At End
S67 MOTOR Solid Of Revolution Round Change At End
S68 POTENTIOMETER Solid Of Revolution Round Change At End

Table A.2: Description of models in sets ξsim1 to ξsim6 .

A.2 Geometrically similar shapes 171

bed2_left_sidepannel bed2_right_sidepannel bed_left_sidepannel bed_tailgate CLAMP_FINGER_PRT PART_13_PRT PART_4_PRT SLIDER_

bed2_left_sidepannel bed2_right_sidepannel bed_left_sidepannel bed_tailgate

CLAMP_FINGER_PRT PART_13_PRT PART_4_PRT SLIDER_

Figure A.8: Set ξsim1 of similar shapes and corresponding SHA signatures.

0,000

0,136 0,000

0,136 0,009 0,000

0,176 0,252 0,251 0,000

0,186 0,232 0,232 0,229 0,0000,186 0,232 0,232 0,229 0,000

0,233 0,209 0,210 0,231 0,283 0,000

0,214 0,249 0,248 0,129 0,207 0,218 0,000

0,207 0,234 0,233 0,134 0,211 0,186 0,056 0,000

Figure A.9: Distances between SHA feature vectors of models in ξsim1 .

172 Appendix A. Shape Similarity Study

2473396 2473396_1 2487583 2487583_1 2487583_3 2494009 2494009_1 sh-r44357-000-u

2473396 2473396_1 2487583 2487583_1

2487583_3 2494009 2494009_1 sh-r44357-000-u

Figure A.10: Set ξsim2 of similar shapes and corresponding SHA signatures.

0,000

0,002 0,000

0,179 0,179 0,000

0,179 0,179 0,005 0,000

0,179 0,179 0,004 0,003 0,0000,179 0,179 0,004 0,003 0,000

0,076 0,076 0,204 0,204 0,204 0,000

0,076 0,076 0,204 0,204 0,203 0,001 0,000

0,298 0,298 0,271 0,271 0,270 0,296 0,296 0,000

Figure A.11: Distances between SHA feature vectors of models in ξsim2 .

A.2 Geometrically similar shapes 173

1546387 1546387_1 2360536 2360536_1 7n3433 7n3433_1 9y4757 9y4757_1

1546387 1546387_1 2360536 2360536_1

7n3433 7n3433_1 9y4757 9y4757_1

Figure A.12: Set ξsim3 of similar shapes and corresponding SHA signatures.

0,000

0,154 0,000

0,166 0,192 0,000

0,166 0,192 0,000 0,000

0,119 0,225 0,207 0,207 0,0000,119 0,225 0,207 0,207 0,000

0,193 0,300 0,259 0,259 0,114 0,000

0,191 0,212 0,155 0,155 0,190 0,241 0,000

0,209 0,253 0,175 0,175 0,192 0,212 0,071 0,000

Figure A.13: Distances between SHA feature vectors of models in ξsim3 .

174 Appendix A. Shape Similarity Study

SPACER_87_BACK_SHORTS SPACER_87_FRONT_SHORTS SPACER_87_LINK1_43_LINK1_42 SPACER_87_LINK_43_LINK_42 SPACER_87_LINK_SHORT_LINK1_42 SPACER_87_LINK_SHORT_LINK1_43 SPACER_87_LINK_SHORT_LINK_42 SPACER_87_LINK_SHORT_LINK_43

SPACER_87_BACK_SHORTS SPACER_87_FRONT_SHORTS SPACER_87_LINK1_43_LINK1_42 SPACER_87_LINK_43_LINK_42

SPACER_87_LINK_SHORT_LINK1_42 SPACER_87_LINK_SHORT_LINK1_43 SPACER_87_LINK_SHORT_LINK_42 SPACER_87_LINK_SHORT_LINK_43

Figure A.14: Set ξsim4 of similar shapes and corresponding SHA signatures.

0,000

0,001 0,000

0,002 0,003 0,000

0,002 0,002 0,003 0,000

0,003 0,002 0,004 0,002 0,000

0,002 0,002 0,003 0,002 0,001 0,000

0,001 0,002 0,001 0,002 0,003 0,003 0,000

0,002 0,002 0,001 0,002 0,003 0,003 0,001 0,000

Figure A.15: Distances between SHA feature vectors of models in ξsim4 .

A.2 Geometrically similar shapes 175

assem_spool_gear GEAR43 gear_30 GEAR_PRT LOW_REV_GEAR LOW_REV_GEAR_PRT MS_SEC_GEAR MS_SEC_GEAR_PRT

assem_spool_gear GEAR43 gear_30 GEAR_PRT

LOW_REV_GEAR LOW_REV_GEAR_PRT MS_SEC_GEAR MS_SEC_GEAR_PRT

Figure A.16: Set ξsim5 of similar shapes and corresponding SHA signatures.

0,000

0,288 0,000

0,265 0,193 0,000

0,288 0,000 0,193 0,000

0,212 0,174 0,206 0,174 0,000

0,212 0,174 0,206 0,174 0,000 0,000

0,268 0,225 0,242 0,225 0,121 0,121 0,000

0,268 0,225 0,242 0,225 0,121 0,121 0,000 0,000

Figure A.17: Distances between SHA feature vectors of models in ξsim5 .

176 Appendix A. Shape Similarity Study

BEARING_SHAFT_57_LI
NK1_43

BEARING_SHAFT_57_LI
NK_42

BEARING_SHAFT_57_LI
NK_43

CLUSTER_COUNTERSH
AFT

CLUSTER_COUNTERSH
AFT_PRT ganter_gn698 MOTOR POTENTIOMETER

BEARING_SHAFT_57_LINK1_43 BEARING_SHAFT_57_LINK_42 BEARING_SHAFT_57_LINK_43 CLUSTER_COUNTERSHAFT

CLUSTER_COUNTERSHAFT_PRT ganter_gn698 MOTOR POTENTIOMETER

Figure A.18: Set ξsim6 of similar shapes and corresponding SHA signatures.

0,000

0,002 0,000

0,003 0,003 0,000

0,260 0,261 0,261 0,000

0,260 0,261 0,261 0,000 0,000

0,235 0,236 0,236 0,252 0,252 0,000

0,298 0,298 0,299 0,276 0,276 0,288 0,000

0,298 0,298 0,299 0,276 0,276 0,288 0,000 0,000

Figure A.19: Distances between SHA feature vectors of models in ξsim6 .

A.3 Nearest Neighbours 177

0 2

0,25

0,3

0,35

0

0,05

0,1

0,15

0,2
Avg

Figure A.20: Chart representing similarity values between models in each set ξsimi
.

From the analysis feature vector distances in sets ξsimi
we observed that when two

extremely similar shapes are compared the similarity value is very low, as in s46,5 =

0.00096, while less similar shapes have higher values, as in s28,1 = 0.298. Indeed, in the

tested sets the measured similarities ranged in a well defined interval

0.0 ≤ sij,k
< 3.0.

This fact is clearly visible in the chart depicted in Figure A.20, where we show graphically

the distances measured in this test, along with average similarity

sξsim
= 0.191.

A.3 Nearest Neighbours

It is not feasible to apply te test described in the previous section for every model

in a collection containing more than eight hundred models because it requires human

intervention. Thus, to validate the observed behaviour we performed a slightly different

test. This third part of our study consisted in analysing the similarity of all models in the

ESB collection with their nearest neighbours in the feature vector space.

To that end, we computed the SHA descriptor of every object in the collection and

created with the corresponding feature vectors a multidimensional dataset. Then for

each model we executed a linear k-NN search in this dataset with k = 5. The result

kNN(Q) = {R1Q
, · · · , R5Q

} produced by the algorithm when applied to each model Si

178 Appendix A. Shape Similarity Study

#1 #2 #3 #4 #5

0.0 ≤ d < 0.1 541 308 210 148 102
0.1 ≤ d < 0.2 185 301 339 345 328
0.2 ≤ d < 0.3 120 225 273 308 352
0.3 ≤ d < 0.4 7 19 31 48 67
d ≥ 0.4 0 0 0 4 4

d 0.087 0.147 0.179 0.181 0.194
var(d) 0.00841 0.00834 0.00742 0.00717 0.00703

Table A.3: Statistics of feature vector distance, d2, for the five nearest neighbours consid-
ering all models in the collection.

correspond to a set ξkNNi
. These sets contain the five nearest neighbours to each models

of the ESB collection. Thus, we ended up with 853 sets of k-NN query results,

ξkNN = {ξkNN1 , · · · , ξkNN853}.

For each set ξkNNi
we estimated the similarity between the query and every corre-

sponding result using Euclidean distance

sij = d2(FVSi
, FVRji

)

where FVSi
is the feature vector of the query model and FVRji

is the feature vector of the

corresponding jth query result, with 1 ≤ j ≤ 5.

From the analysis of this data we observed that only four of the 4265 distances

mesured were above 0.4 and that the majority (more than ninety percent) of the distances

lay below 0.3, as shown in Table A.3. Moreover we also detected that the a large majority

(almost seventy percent) of the similarity values for the first nearest neighbour were un-

der 0.1. This means that a large number of objects in the collection have at least one very

similar model, according to the geometric features considered by the SHA descriptor.

In Figure A.21 we depict the similarities between every model and each one of its

five nearest neighbours. In this chart it is possible to observe that there are a large number

of distances d2 ≈ 0, which correspond to extremely similar models in the collection,

and the rest of the distances are distributed mostly in a wide vicinity of d2 = 0.2, which

correspond to similar models. The distances measured for each query result are shown in

charts depicted in Figures A.22 to A.26.

A.3 Nearest Neighbours 179

0,25

0,30

0,35

0,40

#1

0,00

0,05

0,10

0,15

0,20
#2

#3

#4

#5

Figure A.21: Chart representing similarity values between models and corresponding top
five nearest neighbours.

0,25

0,30

0,35

0,40

0,00

0,05

0,10

0,15

0,20

Figure A.22: Chart representing similarity values between all models and corresponding
1st nearest neighbour.

0,25

0,30

0,35

0,40

0,00

0,05

0,10

0,15

0,20

Figure A.23: Chart representing similarity values between all models and corresponding
2nd nearest neighbour.

180 Appendix A. Shape Similarity Study

0,25

0,30

0,35

0,40

0,00

0,05

0,10

0,15

0,20

Figure A.24: Chart representing similarity values between all models and corresponding
3rd nearest neighbour.

0,25

0,30

0,35

0,40

0,00

0,05

0,10

0,15

0,20

Figure A.25: Chart representing similarity values between all models and corresponding
4th nearest neighbour.

0,25

0,30

0,35

0,40

0,00

0,05

0,10

0,15

0,20

Figure A.26: Chart representing similarity values between all models and corresponding
5th nearest neighbour.

A.3 Nearest Neighbours 181

Results

Query

ball_catcher

ball_return bottom2 schmersal_AZ-17-3 TOP_COVER_PRT TOP_COVER

d2 = 0,180 d2 = 0,211 d2 = 0,216 d2 = 0,222 d2 = 0,222

Figure A.27: Example of k-NN query, with k = 5, depicting the shapes, the correspond-
ing SHA signatures and the Euclidean distances, d2, from each result to the query.

To illustrate the obtained results, we randomly selected one model from the ESB

and show here the five nearest neighbours for a query made with that object, as we did

in this test for all models in the collection. In Figure A.27 we depict the query and

the neighbours, presenting not only a view of each shape but also the respective SHA

signature and the Euclidean distance, d2 measured between the query and each result.

As expected, in this example is possible to check that the nearest neighbour is a

geometrically similar shape and that the similarity decreases in the following neighbours.

Additionally, the fourth and fifth neighbours correspond to two extremely similar objects.

Thus, the distance to te given query is the same. This similarity is an example of the

typical case that justifies the large number of almost absolute similarity observed in this

test. There are several models with a twin in the ESB collection.

182 Appendix A. Shape Similarity Study

A.4 Summary

In this annex we presented with some detail a set of tests we made with the ESB col-

lection in order to comprehend the behaviour of the SHA shape descriptor when applied

to CAD models. The presented study was composed of three different parts, always fo-

cused on similarity among shapes but with distinct approaches. In the first part we study

a set of random models. The second part focused on sets of geometrically similar models,

according to the ESB search system. Finally, in the third part we examined the results

produced by a k-NN search for each model in the collection.

From this study it was possible to perceive the behaviour of the SHA descriptor with

the ESB collection. Namely regarding the range on which the distance among feature

vector varies and how these distances are distributed. The results obtained during this

study were used to define a reasonable range for the similarity threshold, an important

parameter of the CAS/HFP algorithm proposed in this dissertation.

B
Building a Thesaurus from

Primitive Shapes

The present dissertation introduces a technique to index collections of three-dimensional

models. This technique transposes to the 3D context concepts widely used on text infor-

mation retrieval. The central concept behind our approach to 3D object indexing is a

shape thesaurus, equivalent to a lexicon in text collections.

Unfortunately, while words are explicit in text documents, the shapes that compose

a model are not generally easy to determine, unless the object representation already

contains such information. One example for such exception is when models in the col-

lection are represented by primitive instancing. In this particular case, the shapes used

to construct the object are explicit in the model, which greatly simplifies the thesaurus

construction.

Despite the fact that such representation are used on very specific domains, we exem-

plify in this annex the construction of a shape thesaurus for a simple collection with ten

models represented by primitive-instancing. These models were created using just four

basic primitives depicted in Figure B.1: the box, the sphere, the cylinder, and the cone

The collection containing the models represented by primitive instancing using this

Box Sphere Cylinder Cone

Figure B.1: Primitives used in the example collection.

183

184 Appendix B. Building a Thesaurus from Primitive Shapes

S1 S2 S3 S4 S5

S6 S7 S8 S9 S10

Figure B.2: Collection of models represented using primitive instancing.

primitive set is depicted in Figure B.2. To index this collection using a shape thesaurus

we must, first of all, identify the building blocks for each model. Indeed, unlike the

generic approach described in this dissertation, in this case no decomposition algorithm

is necessary. The shapes that compose each model are explicitly available in the object

representation.

Therefore, in this type of collection, the CAS/HFP algorithm and subsequent shape

pool clustering, introduced in this dissertation, are not required to determine the terms of

the shape thesaurus. Instead, the terms of the thesaurus are the primitive shapes used in

the representation scheme. In this small example we use four primitives, but this number

can be much higher in some cases, such as engineering models represented by primitive-

instancing, where the shape primitives usually correspond to mechanical parts, like screws

or bolts. Nevertheless, the working principle presented in this annex to create the shape

thesaurus is applied similarly in these cases.

To identify the primitives used in each object it is sufficient to inspect the correspond-

ing scene graph and check with shapes are assigned to the leaf nodes. These shapes are

the primitives used in the model. In order to clearly show the primitives used by each ob-

ject in the example collection we present in Figures B.3 to B.12 the corresponding scene

graphs.

185

Scale

Translate Scale

Group

Figure B.3: Scene graph for model S1.

Scale

Translate Scale

Group

Translate

Group

Figure B.4: Scene graph for model S2.

Scale

Translate Scale

Group

Scale

Translate

Figure B.5: Scene graph for model S3.

186 Appendix B. Building a Thesaurus from Primitive Shapes

Scale

Translate

Scale

Group

Scale

Translate

Group

Figure B.6: Scene graph for model S4.

Scale

Translate

Scale

Group

Scale

Translate

Group

Rotate

Figure B.7: Scene graph for model S5.

Scale

Translate Scale

Group

Translate

Group

Scale

Figure B.8: Scene graph for model S6.

187

Scale

Translate

Scale

Group

Scale

Translate

Group

Rotate

Scale

Group

Translate

Figure B.9: Scene graph for model S7.

Scale

Translate

Scale

Group

Scale

Translate

Group

Rotate

Scale

Group

Translate

Figure B.10: Scene graph for model S8.

Scale

Translate

Scale

Translate

Group

Scale

Scale

Group

Translate

Figure B.11: Scene graph for model S9.

188 Appendix B. Building a Thesaurus from Primitive Shapes

Scale

Translate

Scale

Group

Scale

Translate

Group

Scale

Translate

Group

Translate

Scale

Group

Scale

Translate

Translate

Group

RotateRotateScale

Translate

Scale

Translate

Group

Translate

Scale

Translate

Scale

Translate

Scale

Translate

Figure B.12: Scene graph for model S10.

As explained above, the shape thesaurus is constructed directly using as terms the

primitive shapes. Following the terminology introduced in Chapter 4, the thesaurus in

this example is defined as

T = {t1, · · · , t4},

where

t1 = Box, t2 = Sphere, t3 = Cylinder, and t4 = Cone.

From the identification of primitives used in each object, which is directly obtained

from the analysis of the model representation, we build the inverted index

I = {〈t1,O1〉, 〈t2,O2〉, 〈t3,O3〉, 〈t4,O4〉},

where

O1 = {S1, S2, S4, S6, S7},

O2 = {S4, S9},

O3 = {S2, S4, S6, S7, S8, S10}, and

O4 = {S6, S7, S8, S9, S10}.

189

Thesaurus

t1

t2

t3

t4

B
ox

Sp
he
re

C
yl
in
de
r

C
on
e

t1 t2 t3 t4

1 2 3 4

Inverted Index

Figure B.13: Shape thesaurus and inverted index for the example collection.

For an easier interpretation, we depict, in Figure B.13, the computed thesaurus and

corresponding inverted index. Although less formal than the definitions above, this illus-

tration shows clearly how the models of the collection are indexed with a shape thesaurus.

While the example given in this annex refers a very small set of basic primitives, usu-

ally an application of primitive instancing is far more complex. Typically these primitives

are parameterized on several properties. for instance, on a geometric modeling tool, a

primitive object may be a regular prism with parameterized base face count. In this case,

to specify a pentagonal prism, this parameter might be set to five.

Another example of primitive instancing can be found on some CAD modeling, where

the primitives are complex objects. For instance, bolt or gear can be primitives and the

parameters can range from the dimensions of the object to specific information such as

the number of teeth in a gear.

The approach presented in this annex for thesaurus construction works with collec-

190 Appendix B. Building a Thesaurus from Primitive Shapes

tions containing models represented as described in the previous paragraph. However,

despite the wide use of primitive instancing for modeling purposes in some domains,

models found in collections are rarely represented using primitive instancing and, when

they are, they commonly use proprietary formats.

Therefore, although simple, this approach has a very limited number of applications.

A generic approach should be able to classify collections independently of model rep-

resentation. To that end, in our research work we consider that models are specified as

polygonal meshes. This assumption is safe since other representations of 3D models can

be easily converted to a polygonal mesh.

However, a polygonal mesh does not contain explicit information about the shapes

that compose the model. Thus, the creation of a shape thesaurus and corresponding index

is much more complex than the method presented above. In the present dissertation we

proposed a solution for this issue.

C
Prototypes

During our research work we developed several software prototypes. From file format

converters to the 3D shape retrieval with partial matching tool, we developed a wide va-

riety of small applications. Some of these, although not directly related with our research

goals provided relevant support to our work.

C.1 Support Prototypes

In this section we will describe the most noticeable support prototypes developed

during our research. Although apparently simple and unrelated to our final goal, the

prototypes herein presented were used not only in our research but also for other purposes

by other researchers.

C.1.1 File conversion (and more)

This tool was initially devised as a simple format converter (from OFF to VRML).

However, during our research work, lots of extra functionalities were added. Among these

are the ability to write the model in other formats, as STL or PLY, or the capability to read

from STL files as well.

Besides providing format conversion functionalities, the OFFtoVRML tool offers a

lot of other extra features. It is possible to represent in the VRML file the face and vertex

normals, as well as create a point cloud instead of a mesh and compute and include special

shapes, such as convex hull or the minimum axis-aligned bounding box of the model.

191

192 Appendix C. Prototypes

C.1.2 Counting faces on meshes

To help us creating statistics on collections of 3D models we developed a prototype

that counts the faces of surface meshes stored in STL (or OFF) files. The FaceCounter

can be used to analyze a single model or a collection of models. The first is done by spec-

ifying the corresponding STL file and the second by specifying the folder that contains

the collection.

Indeed, this a very small application that implements a single functionality available

in many other much more complete (and complex) tools. However, when the only in-

formation needed is the number of polygons in a mesh there is no point in installing and

using powerful tools for that.

C.1.3 Visual representation of a shape signature

To help us visualizing the shape signature of 3D objects we developed the SHaVisRep

prototype. It produces visual representations of spherical harmonics (SHA) signatures. It

receives as input the binary signature created by the executable for computing the SHA

descriptor of 3D models provided by Kazhdan [78] and produce a visual representation

for this descriptor. This visual representation can be a 3D column chart or a 2D line chart

in VRML or BMP format, respectively, as depicted in Figure C.1.

SHaVisRep

3D Object

Bitmap Line Chart

VRML 3D Column Chart

Figure C.1: Diagram of SHaVisRep prototype.

C.2 Research Prototypes 193

C.2 Research Prototypes

Although prototypes presented above are useful and have several applications, they

do not cover the research work presented in this dissertation. To validate and evaluate

our approach we developed a set of prototypes that implemented the algorithms and tech-

niques devised during our investigation.

These research prototypes were created according to the methodology followed dur-

ing our research, including the inter-algorithmic independence. Thus, we ended up with

four prototypes corresponding to the decomposition, segmentation, thesaurus building

and shape retrieval components of our approach.

C.2.1 Collection Decomposition

As we have described in this thesis dissertation, our approach to 3D object retrieval

uses indexing concepts transposed from the textual information retrieval field. However,

while text documents can be immediately decomposed into atomic elements (words), such

does not occur with three-dimensional models. Unless models include explicitly its de-

composition, it is not trivial to identify the segments that compose a generic 3D model. To

compute the decomposition of models in collections we presented the Collection-Aware

Decomposition algorithm.

The CASdecomposer prototype implements the CAS algorithm. This prototype de-

composes all models in a collection according to given parameters. Trough these parame-

ters is possible, among other functionalities, to tune the algorithm behavior, by setting the

values of the similarity threshold, similar count threshold and maximum iteration count.

Receiving as input a set of 3D models, the CASdecomposer prototype produces two

distinct outputs. The most important is the pool that stores the segments that compose

the models in the collection and corresponding signatures, the shape pool. This pool is

basically a dataset in the SHA signature space where each point corresponds to a segment.

The other output is a set containing the decomposed models. Here, besides the represen-

tation used in our approach, based on HSM trees, the prototype can produce VRML files

containing the decomposed models.

194 Appendix C. Prototypes

C.2.2 Segment Clustering

The output produced by the collection decomposition prototype serves as input for

the SegmentClustering prototype. In text information retrieval the words are grouped

into terms. Similarly, in our approach to 3D object retrieval, to compute a thesaurus for

shapes the segments should also be clustered into terms. To that end, a partition for the

shape pool has to be calculated.

The segment clustering prototype computes this partition trough an adapted imple-

mentation of the k-means clustering algorithm proposed by Kanungo [76]. The cen-

ter of each cluster in the partition corresponds to a term in the thesaurus. Thus, the

SegmentClustering prototype produces a file containing the partition of the shape pool.

This file contains, for each cluster in the partition, the coordinates of the cluster center

and the identification of the segments belonging to that group.

C.2.3 Thesaurus Building

Based on the output produced by the two research prototypes presented above, the

TBuilder prototype computes the shape thesaurus and corresponding inverted index. To

that end it assembles the clusters present the shape pool partition into a set of thesaurus

terms. This set of terms constitutes the shape thesaurus.

Having the shape thesaurus properly computed, the prototype identifies the models

in the collection that contain segments associated with each term in the thesaurus. This

information is compiled into an inverted index that maps the terms in the thesaurus with

models in the collection.

C.2.4 Shape Retrieval

Our last, but not less important, research prototype implements the retrieval part of

our approach. The current version of the 3DSRetrieval prototype is based on query-

by-example methodology. Thus, to query the collection the user provides a 3D model,

more specifically an OFF file containing the model to use as query. The prototype will

search for models that contain segments similar to that query, performing part-in-whole

matching using our thesaurus-based approach.

C.3 Conclusions 195

The 3DSRetrieval prototype starts by loading into memory the necessary indexing

data and then allows innumerous queries to be submitted. The indexing data to load is

comprised by the dataset containing all the segments in the shape pool, which will be

used to order the retrieved results, the shape thesaurus and the inverted index.

The indexing data should fit in computer physical memory to provide efficient re-

trieval experience. Nevertheless, this easily occurs since, according to our experiences,

the size of such structures for a collection with around a thousand elements does not

exceed the fifteen megabytes.

For each query submitted to the 3DSRetrieval prototype, a list of results is compiled

and presented properly ordered to the user. This list of results contains some additional

information, such as the signature distance between the closer matching segment and the

query. This additional information, useless for a common user, is of major importance for

research purposes.

C.3 Conclusions

In this annex we listed the most relevant prototypes developed during our research.

The three support prototypes provide functionalities such as file format converting, face

counting on meshes and producing visual representation of signatures. The four research

prototypes implement the algorithms and techniques that comprise our approach to object

retrieval.

The prototypes herein presented are freely available in the internet. This way we

expect to improve the dissemination of our research work and to provide helpful tools for

researchers and general users worldwide.

196 Appendix C. Prototypes

Bibliography

[1] Hervé Abdi. Distance. Encyclopedia of Measurements and Statistics, 2:280–284,
2007.

[2] Milton Abramowitz and Irene A. Stegun. Probability functions. Handbook of
Mathematical Functions, With Formulas, Graphs, and Mathematical Tables, pages
925–964, 1974.

[3] Ceyhun Burak Akgül. 3d shape descriptors and similarity learning. Phd thesis
progress report, Boḡaziçi University, Istanbul, June 2006.

[4] Ceyhun Burak Akgül. Density-based Shape Descriptors and Similarity Learn-
ing for 3D Object Retrieval. PhD thesis, Ecole Nationale Supérieure des
Télécommunications, Paris an Boḡaziçi University, Istanbul, December 2007.

[5] Ceyhun Burak Akgul, Bulent Sankur, Francis Schmitt, and Yucel Yemez. Multi-
variate density-based 3d shape descriptors. In SMI ’07: Proceedings of the IEEE
International Conference on Shape Modeling and Applications 2007, pages 3–12,
Washington, DC, USA, 2007. IEEE Computer Society.

[6] Ceyhun Burak Akgül, Bülent Sankur, Yücel Yemez, and Francis Schmitt. A frame-
work for histogram-induced 3d descriptors. In Proceedings of the 14th. European
Signal Processing Conference (EUSIPCO’06), Florence, Italy, September 2006.

[7] Ceyhun Burak Akgül, Bülent Sankur, Yücel Yemez, and Francis Schmitt. Density-
based 3d shape descriptors. EURASIP Journal on Advances in Signal Processing,
2007:Article ID 32503, 16 pages, 2007. doi:10.1155/2007/32503.

[8] Michael R. Anderberg. Cluster analysis for applications. Academic Press, New
York, 1973.

[9] Mihael Ankerst, Gabi Kastenmı̈¿1
2
ller, Hans-Peter Kriegel, and Thomas Seidl. 3d

shape histograms for similarity search and classification in spatial databases. In
SSD99: Proceedings of the 6th International Symposium on Advances in Spatial
Databases, pages 207–226, London, UK, 1999. Springer-Verlag.

[10] Tarik Filali Ansary, Mohamed Daoudi, and Jean-Philippe Vandeborre. 3d-models
search engine from photos. In Proceedings of ACM International Conference on
Image and Video Retrieval (CIVR 2007), Amsterdam, The Netherlands, July 2007.

197

198 Bibliography

[11] Tarik Filali Ansary, Mohamed Daoudi, and Jean-Philippe Vandeborre. A bayesian
3D search engine using adaptive views clustering. IEEE Transactions on Multime-
dia, 9(1):78–88, January 2007.

[12] Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. Approximation schemes
for euclidean k-medians and related problems. In STOC ’98: Proceedings of the
thirtieth annual ACM symposium on Theory of computing, pages 106–113, New
York, NY, USA, 1998. ACM.

[13] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala,
and Vinayaka Pandit. Local search heuristics for k-median and facility location
problems. SIAM J. Comput., 33(3):544–562, 2004.

[14] Jürgen Assfalg, Alberto Del Bimbo, and Pietro Pala. Retrieval of 3d objects by
visual similarity. In MIR ’04: Proceedings of the 6th ACM SIGMM international
workshop on Multimedia information retrieval, pages 77–83, New York, NY, USA,
2004. ACM Press.

[15] Marco Attene. ’efpisoft’. http://efpisoft.sourceforge.net/, October 2006.

[16] Marco Attene, Bianca Falcidieno, and Michela Spagnuolo. Hierarchical mesh seg-
mentation based on fitting primitives. Vis. Comput., 22(3):181–193, 2006.

[17] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[18] D. H. Ballard. Generalizing the Hough transform to detect arbitrary shapes. Read-
ings in computer vision: issues, problems, principles, and paradigms, pages 714–
725, 1987.

[19] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using
shape contexts. IEEE Trans. Pattern Anal. Mach. Intell., 24(4):509–522, 2002.

[20] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509–517, 1975.

[21] Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland, T. N. Bhat,
Helge Weissig, Ilya N. Shindyalov, and Philip E. Bourne. The protein data bank.
Nucleic Acids Research, 28(1):235–242, 2000.

[22] F.C. Bernstein, T.F. Koetzle, G.J. Williams, E.F. Meyer Jr, M.D. Brice, J.R.
Rodgers, O. Kennard, T. Shimanouchi, and M. Tasumi. The protein data bank.
a computer-based archival file for macromolecular structures. European Journal of
Biochemistry, 80:319–324, 1977.

[23] Dmitriy Bespalov, Cheuk Yiu Ip, William C. Regli, and Joshua Shaffer. Bench-
marking cad search techniques. In Proceedings of the 2005 ACM symposium on
Solid and physical modeling (SPM ’05), pages 275–286, New York, NY, USA,
2005. ACM Press.

Bibliography 199

[24] Dmitriy Bespalov, William C. Regli, and Ali Shokoufandeh. Reeb graph based
shape retrieval for cad. Proceedings of DETC’03 2003 ASME Design Engineering
Technical Conferences, September 2003.

[25] Dmitriy Bespalov, William C. Regli, and Ali Shokoufandeh. Local feature ex-
traction and matching partial objects. Computer-Aided Design, 38(9):1020–2037,
September 2006.

[26] Dmitriy Bespalov, Ali Shokoufandeh, William C. Regli, and Wei Sun. Scale-space
representation of 3d models and topological matching. In Proceedings of the 8th

ACM symposium on Solid Modeling and Applications, pages 208–215, New York,
NY, USA, June 2003. ACM Press.

[27] Silvia Biasotti. Topological techniques for shape understanding. Central European
Seminar on Computer Graphics, Bratislava, Slovakia, 2001.

[28] Silvia Biasotti and Marco Attene. Shrec08 entry: Report of the stability track
on watertight models. In IEEE International Conference on Shape Modeling and
Applications 2008, New York, USA, June 2008. IEEE Computer Society.

[29] Silvia Biasotti, Ennio De Giorgi, Michela Spagnuolo, and Bianca Falcidieno. Size
functions for 3d shape retrieval. In Konrad Polthier and Alla Sheffer, editors, Pro-
ceedings of the Fourth Eurographics Symposium on Geometry Processing, pages
239–242, Cagliari, Sardinia, Italy, June 2006. Eurographics Association.

[30] Silvia Biasotti, Simone Marini, Michela Mortara, Giuseppe Patanı̈¿1
2
, Michela

Spagnuolo, and Bianca Falcidieno. 3d shape matching through topological struc-
tures. In Ingela Nystrı̈¿1

2
m, Gabriella Sanniti di Baja, and Stina Svensson, editors,

Discrete Geometry for Computer Imagery, volume 2886 of Lecture Notes in Com-
puter Science, pages 194–203. Springer, 2003.

[31] Silvia Biasotti, Simone Marini, Michela Spagnuolo, and Bianca Falcidieno. Sub-
part correspondence by structural descriptors of 3d shapes. Computer-Aided De-
sign, 38(9):1002–1019, 2006.

[32] Irving Bierderman. Recognition-by-components: A theory of human image under-
standing. Psychological Review, 94(2):115–147, April 1987.

[33] Alberto Del Bimbo and Pietro Pala. Content-based retrieval of 3d models. ACM
Trans. Multimedia Comput. Commun. Appl., 2(1):20–43, 2006.

[34] Miroslaw Bober. Mpeg-7 visual shape descriptors. IEEE TRANSACTIONS ON
CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 11(6):716–719, 2001.

[35] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
search engine. Comput. Netw. ISDN Syst., 30(1-7):107–117, 1998.

[36] Benjamin Bustos, Daniel Keim, Dietmar Saupe, and Tobias Schreck. Content-
based 3d object retrieval. IEEE Computer Graphics and Applications, 27(4):22–
27, 2007.

200 Bibliography

[37] Benjamin Bustos, Daniel A. Keim, Dietmar Saupe, Tobias Schreck, and Dejan V.
Vranić. Feature-based similarity search in 3d object databases. ACM Computing
Surveys, 37(4):345–387, 2005.

[38] Benjamin Bustos, Daniel A. Keim, Dietmar Saupe, Tobias Schreck, and Dejan V.
Vranić. An experimental effectiveness comparison of methods for 3d similarity
search. International Journal on Digital Libraries, 6(1):39–54, 2006.

[39] Richard J. Campbell and Patrick J. Flynn. A survey of free-form object represen-
tation and recognition techniques. Comput. Vis. Image Underst., 81(2):166–210,
2001.

[40] J. F. Canny. A computational approach to edge detection. IEEE Trans. Pattern
Anal. Mach. Intell., 8(6):679–698, 1986.

[41] Vittorio Castelli. Multidimensional indexing structures for content-based retrieval.
Image Databases, 2002.

[42] Bernard Chazelle, David P. Dobkin, Nadia Shouraboura, and Ayellet Tal. Strategies
for polyhedral surface decomposition: an experimental study. In Proceedings of the
eleventh annual symposium on Computational geometry (SCG ’95), pages 297–
305, New York, NY, USA, 1995. ACM Press.

[43] Bernard Chazelle and Leonidas Palios. Decomposition algorithms in geometry.
Algebraic Geometry and its Applications, pages 419–447, 1994.

[44] Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung. On visual sim-
ilarity based 3d model retrieval. Computer Graphics Forum, 22(3):223–232, 2003.

[45] Nicu D. Cornea, M. Fatih Demirci, Deborah Silver, Ali Shokoufandeh, Sven J.
Dickinson, and Paul B. Kantor. 3d object retrieval using many-to-many matching
of curve skeletons. In SMI ’05: Proceedings of the International Conference on
Shape Modeling and Applications 2005, pages 368–373, Washington, DC, USA,
2005. IEEE Computer Society.

[46] Michele d’Amico, Patrizio Frosini, and Claudia Landi. Using matching distance in
size theory: A survey. International Journal of Imaging Systems and Technology,
16(5):154–161, 2006.

[47] Pedro A. de Alarcón, Alberto D. Pascual-Montano, and José M. Carazo. Spin
images and neural networks for efficient content-based retrieval in 3d object
databases. In CIVR ’02: Proceedings of the International Conference on Image
and Video Retrieval, pages 225–234, London, UK, 2002. Springer-Verlag.

[48] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, 1959.

[49] Chitra Dorai and Anil K. Jain. Shape spectrum based view grouping and matching
of 3d free-form objects. IEEE Trans. Pattern Anal. Mach. Intell., 19(10):1139–
1146, 1997.

Bibliography 201

[50] Helin Dutagaci, Bulent Sankur, and Yucel Yemez. Transform-based methods for
indexing and retrieval of 3d objects. In 3DIM ’05: Proceedings of the Fifth In-
ternational Conference on 3-D Digital Imaging and Modeling, pages 188–195,
Washington, DC, USA, 2005. IEEE Computer Society.

[51] Michael Elad, Ayellet Tal, and Sigal Ar. Content based retrieval of vrml objects:
an iterative and interactive approach. In Proceedings of the sixth Eurographics
workshop on Multimedia, pages 107–118, New York, NY, USA, 2002. Springer-
Verlag New York, Inc.

[52] Christos Faloutsos. Searching Multimedia Databases by Content. Kluwer Aca-
demic Publishers, Norwell, MA, USA, 1996.

[53] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Com-
puter Graphics: Principles and Practice in C. Addison-Wesley Professional, sec-
ond edition, August 1995.

[54] Manuel J. Fonseca. Sketch-Based Retrieval in Large Sets of Drawings. PhD thesis,
Instituto Superior Técnico / Universidade Técnica de Lisboa, 07 2004.

[55] Thomas Funkhouser, Michael Kazhdan, Patrick Min, and Philip Shilane. Shape-
based retrieval and analysis of 3d models. Communications of the ACM, 48(6):58–
64, 2005.

[56] Thomas Funkhouser, Patrick Min, Michael Kazhdan, Joyce Chen, Alex Halder-
man, David Dobkin, and David Jacobs. A search engine for 3d models. ACM
Trans. Graph., 22(1):83–105, 2003.

[57] Thomas Funkhouser and Philip Shilane. Partial matching of 3D shapes with
priority-driven search. In Symposium on Geometry Processing. Eurographics, June
2006.

[58] Volker Gaede and Oliver Günther. Multidimensional access methods. ACM Com-
puting Surveys (CSUR), 30(2):170–231, 1998.

[59] Ran Gal and Daniel Cohen-Or. Salient geometric features for partial shape match-
ing and similarity. ACM Transactions on Graphics, 25(1):130–150, 2006.

[60] Michael Garland, Andrew Willmott, and Paul S. Heckbert. Hierarchical face clus-
tering on polygonal surfaces. In I3D ’01: Proceedings of the 2001 symposium on
Interactive 3D graphics, pages 49–58, New York, NY, USA, 2001. ACM.

[61] John Gero and Vladimir Kazakov. On measuring the visual complexity of 3d
objects. International Journal of Design Sciences and Technology, 12(1):35–44,
2004.

[62] Daniela Giorgi, Silvia Biasotti, and Laura Paraboschi. Shape retrieval contest 2007:
Watertight models track, 2007.

202 Bibliography

[63] C. Harris and M.J.Stephens. A combined corner and edge detector. In Fourth Alvey
Vision Conference, pages 147–152, 1988.

[64] Ho Min Wong Hee Kap Ahn, Nikos Mamoulis. A survey on multidimensional
access methods. Technical Report UU-CS-2001-14, Institute of Information and
Computing Sciences, Utrecht University, 2001.

[65] Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, and Tosiyasu L. Kunii.
Topology matching for fully automatic similarity estimation of 3d shapes. In SIG-
GRAPH ’01: Proceedings of the 28th annual conference on Computer graphics
and interactive techniques, pages 203–212, New York, NY, USA, 2001. ACM
Press.

[66] Donald D. Hoffman and Manish Singh. Salience of visual parts. Cognition,
63(1):29–78, April 1997.

[67] B. K. P. Horn. Extended gaussian images. Proceedings of the IEEE, 72(12):1671–
1686, 1984.

[68] Google Inc. ’google sketchup’. http://sketchup.google.com, 2006.

[69] Google Inc. ’3d warehouse’. http://sketchup.google.com/3dwarehouse, 2007.

[70] Natraj Iyer, Subramaniam Jayanti, Kuiyang Lou, Yagnanarayanan Kalyanaraman,
and Karthik Ramani. Three-dimensional shape searching: state-of-the-art review
and future trends. Computer-Aided Design, 37:509–530, April 2005.

[71] Subramaniam Jayanti, Yagnanarayanan Kalyanaraman, Natraj Iyer, and Karthik
Ramani. Developing an engineering shape benchmark for cad models. Computer-
Aided Design, 39(9):939–953, September 2006.

[72] Andrew Johnson. Spin-Images: A Representation for 3-D Surface Matching.
PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, Au-
gust 1997.

[73] Andrew E. Johnson and Martial Hebert. Using spin images for efficient object
recognition in cluttered 3d scenes. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 21(5):433–449, 1999.

[74] Andrew Edie Johnson and Martial Hebert. Recognizing objects by matching ori-
ented points. In CVPR ’97: Proceedings of the 1997 Conference on Computer
Vision and Pattern Recognition (CVPR ’97), page 684, Washington, DC, USA,
1997. IEEE Computer Society.

[75] S. B. Kang and K. Ikeuchi. The complex egi: A new representation for 3-d pose
determination. IEEE Trans. Pattern Anal. Mach. Intell., 15(7):707–721, 1993.

[76] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth
Silverman, and Angela Y. Wu. An efficient k-means clustering algorithm: Anal-
ysis and implementation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(7):881–892, 2002.

Bibliography 203

[77] Michael Kazhdan, Bernard Chazelle, David Dobkin, Thomas Funkhouser, and
Szymon Rusinkiewicz. A reflective symmetry descriptor for 3d models. Algo-
rithmica, 38(1):201–225, 2003.

[78] Michael Kazhdan, Thomas Funkhouser, and Szymon Rusinkiewicz. Rotation in-
variant spherical harmonic representation of 3d shape descriptors. In Leif Kobbelt,
Peter Schroder, and Hugues Hoppe, editors, Proceedings of the 2003 Eurograph-
ics/ACM SIGGRAPH symposium on Geometry processing, pages 156–164, Aire-
la-Ville, Switzerland, 2003. Eurographics Association.

[79] Michael Kazhdan, Thomas Funkhouser, and Szymon Rusinkiewicz. Symmetry
descriptors and 3d shape matching. In SGP ’04: Proceedings of the 2004 Euro-
graphics/ACM SIGGRAPH symposium on Geometry processing, pages 115–123,
New York, NY, USA, 2004. ACM Press.

[80] S. Kirkpatrick, Jr. Gelatt, C. D., and M. P. Vecchi. Optimization by Simulated
Annealing. Science, 220(4598):671–680, 1983.

[81] Jan J. Koenderink and Andrea J. van Doorn. Surface shape and curvature scales.
Image Vision Comput., 10(8):557–565, 1992.

[82] Jacob Kogan. Introduction to Clustering Large and High-Dimensional Data. Cam-
bridge University Press, New York, NY, USA, 2007.

[83] Stavros G. Kolliopoulos and Satish Rao. A nearly linear-time approximation
scheme for the euclidean k-median problem. SIAM Journal on Computing,
37(3):757–782, 2007.

[84] M. Körtgen, G.-J. Park, M. Novotni, and R. Klein. 3d shape matching with 3d
shape contexts. In The 7th Central European Seminar on Computer Graphics,
Budmerice, Slovakia, April 2003.

[85] Yehezkel Lamdan and Haim J. Wolfson. Geometric hashing: A general and ef-
ficient model-based recognition scheme. In Proceeedings of the Second Interna-
tional Conference on Computer Vision, pages 238–249, December 1988.

[86] Marc Levoy. The digital michelangelo project. In Proceedings of the Second Inter-
national Conference on 3-D Digital Imaging and Modeling, pages 2–11, Ottawa,
Ont., Canada, October 1999.

[87] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David Koller, Lucas
Pereira, Matt Ginzton, Sean Anderson, James Davis, Jeremy Ginsberg, Jonathan
Shade, and Duane Fulk. The digital michelangelo project: 3d scanning of large
statues. In SIGGRAPH ’00: Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, pages 131–144, New York, NY, USA,
2000. ACM Press/Addison-Wesley Publishing Co.

[88] Yi Liu, Hongbin Zha, and Hong Qin. The generalized shape distributions for shape
matching and analysis. In Proceedings of the IEEE International Conference on

204 Bibliography

Shape Modeling and Applications 2006 (SMI’06), page 16, Washington, DC, USA,
2006. IEEE Computer Society.

[89] Stuart P. Lloyd. Least squares quantization in pcm. IEEE Transactions on Infor-
mation Theory, 28(2):129–137, Mar 1982.

[90] Kuiyang Lou, Sunil Prabhakar, and Karthik Ramani. Content-based three-
dimensional engineering shape search. International Conference on Data Engi-
neering, page 754, 2004.

[91] P.C. Mahalanobis. On the generalized distance in statistics. National Institute of
Sciences of India, 2(1):49–55, 1936.

[92] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction
to Information Retrieval. Cambridge University Press, July 2008.

[93] Simone Marini, Biasotti Silvia, and Falcidieno Bianca. Partial matching by struc-
tural descriptors. In Tim Crawford and Remco C. Veltkamp, editors, Content-
Based Retrieval, number 06171 in Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl,
Germany, 2006.

[94] Simone Marini, Michela Spagnuolo, and Bianca Falcidieno. From exact to approxi-
mate maximum common subgraph. In Luc Brun and Mario Vento, editors, Graph-
Based Representations in Pattern Recognition, volume 3434 of Lecture Notes in
Computer Science, pages 263–272. Springer, 2005.

[95] Jiri Matoušek. On approximate geometric k-clustering. Discrete and Computa-
tional Geometry, 24(1):61–84, December 2000.

[96] Michela Mortara and Giuseppe Patanè. Shape-covering for skeleton extraction.
International Journal of Shape Modeling, 8(2):139–158, 2002.

[97] John Novatnack, Ko Nishino, and Ali Shokoufandeh. Extracting 3d shape features
in discrete scale-space. In Proceeding of the Third International Symposium on 3D
Data Processing, Visualization, and Transmission, pages 946–953, Los Alamitos,
CA, USA, 2006. IEEE Computer Society.

[98] Marcin Novotni and Reinhard Klein. 3d zernike descriptors for content based shape
retrieval. In SM ’03: Proceedings of the eighth ACM symposium on Solid modeling
and applications, pages 216–225, New York, NY, USA, 2003. ACM Press.

[99] Ryutarou Ohbuchi, Takahiro Minamitani, and Tsuyoshi Takei. Shape-similarity
search of 3d models by using enhanced shape functions. In TPCG ’03: Proceedings
of the Theory and Practice of Computer Graphics 2003, page 97, Washington, DC,
USA, 2003. IEEE Computer Society.

[100] Ryutarou Ohbuchi, Kunio Osada, Takahiko Furuya, and Tomohisa Banno. Salient
local visual features for shape-based 3d model retrieval. In IEEE International
Conference on Shape Modeling and Applications 2008 (SMI 2008), pages 93–102,
June 2008.

Bibliography 205

[101] Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David Dobkin. Shape
distributions. ACM Trans. Graph., 21(4):807–832, 2002.

[102] Panagiotis Papadakis, Ioannis Pratikakis, Stavros Perantonis, and Theoharis Theo-
haris. Efficient 3d shape matching and retrieval using a concrete radialized spheri-
cal projection representation. Pattern Recogn., 40(9):2437–2452, 2007.

[103] E. Paquet and M. Rioux. Nefertiti: a query by content software for three-
dimensional models databases management. In Proceedings of the International
Conference on Recent Advances in 3-D Digital Imaging and Modeling, volume 0,
page 345, Washington, DC, USA, 1997. IEEE Computer Society.

[104] Eric Paquet, Marc Rioux, Anil Murching, Thumpudi Naveen, and Ali Tabatabai.
Description of shape information for 2-d and 3-d objects. Signal Processing: Image
Communication, 16:103–122, September 2000.

[105] Joshua Podolak, Philip Shilane, Aleksey Golovinskiy, Szymon Rusinkiewicz, and
Thomas Funkhouser. A planar-reflective symmetry transform for 3d shapes. In
Proceedings of International Conference on Computer Graphics and Interactive
Techniques: ACM SIGGRAPH, pages 549–559, New York, NY, USA, 2006. ACM
Press.

[106] Georges Reeb. Sur les points singuliers dúne forme de pfaff completement inte-
grable ou dúne fonction numı̈¿1

2
rique. Comptes Rendus des séances de lÁcadémie

des sciences, 222:847–849, 1946.

[107] William C. Regli, Cheryl Foster, Erik Hayes, Cheuk Yiu Ip, David McWherter,
Mitchell Peabody, Yuriy Shapirsteyn, and Vera Zaychik. National design reposi-
tory project: A status report. In International Joint Conferences on Artificial In-
telligence (IJCAI) and AAAI/SIGMAN Workshop on AI in Manufacturing Systems,
Seattle, Washington, USA, August 2001.

[108] William C Regli and Daniel M Gaines. A repository for design, process planning
and assembly. Computer-Aided Design, 29(12):895–905, December 1997.

[109] Julien Ricard, David Coeurjolly, and Atilla Baskurt. Generalizations of angular
radial transform for 2d and 3d shape retrieval. Pattern Recogn. Lett., 26(14):2174–
2186, 2005.

[110] Salvador Ruiz-Correa, Linda G. Shapiro, and Marina Meila. A new paradigm for
recognizing 3-d object shapes from range data. In ICCV ’03: Proceedings of the
Ninth IEEE International Conference on Computer Vision, page 1126, Washington,
DC, USA, 2003. IEEE Computer Society.

[111] Dietmar Saupe and Dejan V. Vranić. 3d model retrieval with spherical harmonics
and moments. In Proceedings of the 23rd DAGM-Symposium on Pattern Recogni-
tion, pages 392–397, London, UK, 2001. Springer-Verlag.

[112] Jau-Ling Shih, Chang-Hsing Lee, and Jian Tang Wang. A new 3d model retrieval
approach based on the elevation descriptor. Pattern Recogn., 40(1):283–295, 2007.

206 Bibliography

[113] Philip Shilane and Thomas Funkhouser. Selecting distinctive 3d shape descriptors
for similarity retrieval. In Proceedings of the IEEE International Conference on
Shape Modeling and Applications 2006 (SMI’06), page 18, Washington, DC, USA,
2006. IEEE Computer Society.

[114] Philip Shilane and Thomas Funkhouser. Distinctive regions of 3d surfaces. ACM
Transactions on Graphics, 26(2):7, 2007.

[115] Philip Shilane, Patrick Min, Michael Kazhdan, and Thomas Funkhouser. The
princeton shape benchmark. In Shape Modeling International, June 2004.

[116] Yoshihisa Shinagawa and Tosiyasu L. Kunii. Constructing a reeb graph automati-
cally from cross sections. IEEE Computer Graphics and Applications, 11(6):44–
51, 1991.

[117] A. Shokoufandeh, S. Dickson, K. Siddiqi, and S. Zucker. Indexing Using a Spectral
Encoding of Topological Structure. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR’99), pages 2491–2497. IEEE Computer Society, 1999.

[118] Craig Silverstein, Hannes Marais, Monika Henzinger, and Michael Moricz. Anal-
ysis of a very large web search engine query log. SIGIR Forum, 33(1):6–12, 1999.

[119] Alan F. Smeaton, Paul Over, and Wessel Kraaij. Trecvid: evaluating the effec-
tiveness of information retrieval tasks on digital video. In Proceedings of the 12th
annual ACM international conference on Multimedia (MULTIMEDIA ’04), pages
652–655, New York, NY, USA, 2004. ACM Press.

[120] Michela Spagnuolo, Silvia Biasotti, Bianca Falcidieno, and Simone Marini. Struc-
tural descriptors for 3d shapes. In Tim Crawford and Remco C. Veltkamp, editors,
Content-Based Retrieval, number 06171 in Dagstuhl Seminar Proceedings. Inter-
nationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss
Dagstuhl, Germany, 2006.

[121] H. Sundar, D. Silver, N. Gagvani, and S. Dickinson. Skeleton based shape matching
and retrieval. Proceedings of the Shape Modeling International 2003, page 290,
2003.

[122] Motofumi T. Suzuki, Toshikazu Kato, and N. Otsu. A similarity retrieval of 3d
polygonal models using rotation invariant shape descriptors. In Proceedings of
IEEE International Conference on Systems, Man and Cybernetics, volume 4, pages
2946–2952, Nashville, TN, USA, 2000. IEEE Computer Society.

[123] Motofumi T. Suzuki, Yoshitomo Yaginuma, and Yasutaka Shimizu. A partial shape
matching technique for 3d model retrieval systems. In ACM SIGGRAPH 2005
Posters, page 128, New York, NY, USA, 2005. ACM Press.

[124] Motofumi T. Suzuki, Yoshitomo Yaginuma, and Yuji Y. Sugimoto. A 3d model
retrieval system for cellular phones. In Proceedings of IEEE International Confer-
ence on Systems, Man and Cybernetics, volume 4, pages 3846–3851. IEEE Com-
puter Society, October 2003.

Bibliography 207

[125] Motofumi T. Suzuki, Yoshitomo Yaginuma, Tsuneo Yamada, and Yasutaka
Shimizu. A partial shape matching method for 3d model databases. In Proceed-
ings of the Ninth IASTED International Conference on Software Engineering and
Applications (SEA2005), pages 389–394, Phoenix, USA, November 2005. ACTA
Press.

[126] Motofumi T. Suzuki, Yoshitomo Yaginuma, Tsuneo Yamada, and Yasutaka
Shimizu. A 3d model retrieval based on combinations of partial shape descrip-
tors. In Proceedings of IEEE North American Fuzzy Information Processing So-
ciety Annual Conference (NAFIPS 2006), pages 273–278, Montreal, Canada, June
2006. IEEE Computer Society.

[127] S. Szykman, R.D. Sriram, C. Bochenek, J.W. Racz, and J. Senfaute. Design repos-
itories: engineering design’s new knowledge base. Intelligent Systems and Their
Applications, IEEE, 15(3):48–55, 2000.

[128] Johan W.H. Tangelder and Remco C. Veltkamp. A survey of content based 3d
shape retrieval methods. Multimedia Tools and Applications, 39:441–471, 2008.
10.1007/s11042-007-0181-0.

[129] Tony Tung and Francis Schmitt. Augmented reeb graphs for content-based retrieval
of 3d mesh models. In Proceedings of the Shape Modeling International 2004
(SMI0́4), pages 157–166, Los Alamitos, CA, USA, 2004. IEEE Computer Society.

[130] Tony Tung and Francis Schmitt. The augmented multiresolution reeb graph ap-
proach for content-based retrieval of 3d shapes. International Journal of Shape
Modeling, 11(1):91–120, 2005.

[131] Jean-Philippe Vandeborre, Vincent Couillet, and Mohamed Daoudi. A practical
approach for 3D model indexing by combining local and global invariants. In 1st
IEEE International Symposium on 3D Data Processing Visualization Transmission
(3DPVT’02), Padova, Italy, June, 19-21 2002.

[132] Dejan V. Vranić. An improvement of rotation invariant 3d-shape based on functions
on concentric spheres. In Proceedings of the 2003 IEEE International Conference
on Image Processing (ICIP 2003), volume 3, pages 757–760, Barcelona, Spain,
September 2003.

[133] Dejan V. Vranić. 3D Model Retrieval. PhD thesis, University of Leipzig, Germany,
June 2004.

[134] Dejan V. Vranić and Dietmar Saupe. 3d model retrieval. In Proceeedings of Spring
Conference on Computer Graphics and its Applications (SCCG2000), pages 89–
93, Budmerice, Slovakia, May 2000.

[135] Dejan V. Vranić and Dietmar Saupe. 3d shape descriptor based on 3d fourier trans-
form. In Proceedings of the EURASIP Conference on Digital Signal Processing for
Multimedia Communications and Services (ECMCS 2001), pages 271–274, Bu-
dapest, Hungary, 2001.

208 Bibliography

[136] Dejan V. Vranić and Dietmar Saupe. Description of 3d-shape using a complex
function on the sphere. In Proceeedings of 2002 IEEE International Conference
on Multimedia and Expo (ICME ’02), volume 1, pages 177–180, 2002.

[137] Liu Wei and He Yuanjun. 3d shape similarity comparison using multi-level spher-
ical moments. Computer-Aided Design Applications, 3(1–4):307–314, 2006.

[138] Eric W. Weisstein. Orthotope. From MathWorld–A Wolfram Web Resource.

[139] Haim J. Wolfson and Isidore Rigoutsos. Geometric hashing: An overview. IEEE
Comput. Sci. Eng., 4(4):10–21, 1997.

[140] Meng Yu, Indriyati Atmosukarto, Wee Kheng Leow, Zhiyong Huang, and Rong
Xu. 3d model retrieval with morphing-based geometric and topological feature
maps. 2003 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR ’03), 02:656, 2003.

[141] Hagit Zabrodsky, Shmuel Peleg, and David Avnir. Symmetry as a continu-
ous feature. IEEE Transactions on Pattern Analysis and Machine Intelligence,
17(12):1154–1166, 1995.

[142] T. Zaharia and F. J. Prêteux. 3D shape-based retrieval within the MPEG-7 frame-
work. In Edward R. Dougherty and Jaakko T. Astola, editors, Proceedings of the
SPIE conference on Nonlinear Image Processing and Pattern Analysis XII, volume
4304, pages 133–145, May 2001.

[143] T. Zaharia and F. J. Prêteux. Hough transform-based 3D mesh retrieval. In L. J.
Latecki, D. M. Mount, A. Y. Wu, and R. A. Melter, editors, Proceedings of the
SPIE conference on Vision Geometry X, volume 4476, pages 175–185, November
2001.

[144] Jiqi Zhang, Hau-San Wong, and Zhiwen Yu. 3d model metrieval based on volu-
metric extended gaussian image and hierarchical self organizing map. In MUL-
TIMEDIA ’06: Proceedings of the 14th annual ACM international conference on
Multimedia, pages 121–124, New York, NY, USA, 2006. ACM Press.

[145] Emanuel Zuckerberger, Ayellet Tal, and Shymon Shlafman. Polyhedral surface
decomposition with applications. Computers & Graphics, 26(5):733–743, 2002.

