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Abstract

We introduce a class of models for the analysis of durations, which we call stochastic condi-
tional duration (SCD) models. These models are based on the assumption that the durations are
generated by a dynamic stochastic latent variable. The model yields a wide range of shapes of
hazard functions. The estimation of the parameters is performed by quasi-maximum likelihood
and using the Kalman $lter. The model is applied to trade, price and volume durations of stocks
traded at NYSE. We also investigate the relation between price durations, spread, trade intensity
and volume.
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1. Introduction

The last few years have witnessed an increasing interest in the empirical analysis
of intraday $nancial data, in particular the transaction and quote data made available
by stock exchanges. One of the salient features of these data is that they are irregu-
larly spaced. Thus durations between observed events of interest are themselves ran-
dom. Since Engle and Russell (1998) proposed the autoregressive conditional duration
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(ACD) model, the empirical analysis of durations between market events has developed
in several directions and moreover has integrated some aspects of the microstructure
theory of $nancial markets.
The ACD model has been extended in diDerent directions. Jasiak (1998) analyzes

the persistence of intertrade durations using the fractionally integrated ACD (FIACD)
model. She argues that the autocorrelation function of the durations can show a slow,
hyperbolic rate of decay typical of long memory processes. Grammig and Maurer
(1999) use the ACD model with the Burr distribution rather than the Weibull, thus
allowing more Gexibility in the shape of the conditional hazard function. Bauwens and
Giot (2000) develop a logarithmic ACD model that avoids positivity restrictions on
the parameters and is therefore more Gexible to introduce exogenous variables. Veredas
et al. (2002) propose a semiparametric model for analyzing jointly the intradaily sea-
sonality and the dynamics. Meddahi et al. (1998) consider a continuous time framework
for modelling volatility with irregularly spaced data; in particular, they propose a du-
ration model that shares some features of the model that we analyze and estimate in
this paper. Bauwens and Giot (2003) consider an asymmetric ACD model where the
dynamics of the duration process depend on the state of the price process. Ghysels
et al. (1997) introduce the stochastic volatility duration model (SVD). They claim that
the fact the durations appear to be driven only by movements in the conditional mean
is not suIcient, and they propose a new model in which the volatility of the durations
is also stochastic. See Bauwens et al. (2000) for a survey and a comparison of most
of the above mentioned models.
Analyzing the intraday market activity, GouriJeroux et al. (1999) introduce duration-

based activity measures. They de$ne new classes of durations like volume durations
(de$ned as the time required to trade a $xed volume) or capital durations (time required
to trade a $xed capital), which help to illustrate some important features of the market
activity. Other researchers have combined the analysis of durations between transactions
with a GARCH model for the returns; see Engle (2000), Ghysels and Jasiak (1997),
and Grammig and Wellner (2002).
In this paper, we analyze a class of parametric models for durations, which we call

stochastic conditional duration (SCD) models. SCD models are based on the assumption
that a latent variable drives the evolution of the durations. One interpretation of the
latent variable is that it captures the random Gow of information that, in the case
of $nancial markets, is very diIcult to observe directly. The Gow of information is
available to the agents on the market, and it modi$es over time the probability of a
quote revision, hence the inter-quote durations, as well as the trading intensity and
volume.
The speci$cation of the model is multiplicative, in the same way as in the ACD

model. But the main diDerence with the latter model is that the SCD model is a
double stochastic process, i.e. a model with two stochastic innovations: one for the
observed duration and the other for the latent variable. In other words, the condi-
tional expected duration of the ACD model becomes a random variable in the SCD
model.
In statistical terms, both the ACD and SCD model are accelerated time models,

but the SCD model is also a mixture of distributions model. Mixture models are well
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documented in general terms and have some computationally easy particular cases (see
Lancaster, 1990). One of these cases is the SVD model of Ghysels et al. (1997), which
combines a gamma distribution and an exponential one to yield a Pareto distribution.
The SCD model combines a lognormal distribution and another one with positive sup-
port. On the basis of some arguments, we choose the Weibull and the gamma distri-
butions. The resulting marginal distribution is not known analytically, although it can
be computed by unidimensional numerical integration.
The idea of mixing distributions is not new in $nance. It can be traced back to

Clark (1973). Tauchen and Pitts (1983) propose a model that explains the positive
association between daily price variability and the trading volume. In this model,
the daily price change (and the trading volume) is the result of a random num-
ber of intraday price changes, each of which is normally distributed. The random-
ness of the number of price changes is linked to the arrival of new information
to the market. Hence, the daily price change is a mixture of a normal distribu-
tion, whose variance is proportional to the (random) number of intraday transac-
tions, by the distribution of this number. If applied to intraday transactions, the SCD
model indirectly bears on the number of transactions during the day, since to a spec-
i$cation of durations corresponds a counting speci$cation (see Cox and Isham,
1980, p. 21).
The main diIculty with the SCD model is in estimation, because unlike for the

ACD model, it is not easy to evaluate its likelihood function: the latent variable
must be integrated out. This can be performed by using computer intensive simu-
lation methods. Other methods, that are less demanding in computing time, do not
evaluate the exact likelihood function. The easiest two techniques are quasi-maximum
likelihood (QML) and generalized method of moments (GMM). These techniques
provide asymptotically consistent estimators and previous research seems to indicate
that the behavior of the QML estimator is better than the one of GMM in the con-
text of the stochastic volatility model; see Ruiz (1994) and Jacquier et al. (1994).
The method used in this paper is QML based on the transformation of the model
into a linear space state representation and the application of the Kalman
$lter.
Finally, the model is applied to four stocks traded at NYSE for three types of

durations: trade, price, and volume durations. These are proxies for trading intensity,
volatility, and liquidity, and hence an analysis of these three types of durations can
give important insights about the behavior of the market. We compare also the SCD
model with the Log-ACD model in diDerent aspects. We conclude that the SCD model
behaves better than the Log-ACD one. Finally using price durations we check whether
the conclusions provided by the Easley and O’Hara (1992) model of the market maker
behavior are veri$ed empirically. We conclude positively.
The paper is organized as follows. In Section 2, the SCD model is introduced,

its properties are derived, and it is compared with the ACD model. In Section 3,
the estimation methods are presented, with an emphasis on the QML approach. The
empirical application is in Section 4 and bears on four shares of the NYSE, including
exogenous variables such as volume or spread to represent some microstructure eDects.
Section 5 concludes.
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2. SCD models

2.1. De*nition

The SCD model is a model for a sequence of durations. It is proposed as a model
for intertemporally correlated event arrival times and it is based on the assumption that
there exists a stochastic latent variable that generates the durations.
The observed duration di is modelled as a latent variable �i times a positive random

variable �i (an ‘error’ term) that forms an IID process. To create a dependence in the
duration process, the latent variable �i is assumed to be auto-correlated. This is done
by specifying a stationary AR(1) process on the logarithm of the latent variable. The
model can be written as

di =�i�i where �i = e i ;

 i = !+ 	 i−1 + ui (|	|¡ 1); (1)

with the following distributional assumptions:

ui|Ii−1 ∼ N(0; 
2)

�i|Ii−1 ∼ some distribution with positive support

ui independent of �j|Ii−1; ∀i; j: (2)

In (2), Ii−1 denotes the information set at the end of duration di−1, supposed to include
the past values of  i and di. A particular distributional assumption on �i is introduced
below. The marginal distribution of di implied by the model is determined by mixing
the distribution of �i and the lognormal distribution of �i. 1 We assume that the initial
value  0 is drawn from the stationary distribution of  i. 2 Finally, using the results of
Carrasco and Chen (2002), it can be shown that the process is 	-mixing.
The (uncentered) moments of �i are assumed to exist and are denoted by

gp = E(�pi ) for p= 1; 2; : : : (3)

For further use, we introduce

� = g2=g21; (4)

i.e. � is equal to one plus the squared variation coeIcient. Among usual distributions
for durations, two possible choices for the distribution of �i are

• the standard Weibull distribution:

�i ∼ W(�; 1); (5)

for which gp = �(1 + p
� ).

1 More information on this issue is provided at the end of Section 2.2.
2 Given (1)–(2) and the restriction on 	, the process di is strictly stationary since a measurable transfor-

mation of a stationary process is stationary. See White (1984, p. 42, Theorem 3.35).
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• the standard Gamma distribution:

�i ∼ G(�; 1); (6)

for which gp = �(�+p)
�(�) .

so that g1 = � and g2 = �(�+ 1).
The Weibull and gamma densities resemble each other. They have a strictly positive

mode when their parameter (� or �) exceeds 1; they start at the origin if the parameter is
larger than 1. They tend to in$nity as �i tends to 0 when their parameter is strictly less
than 1. The exponential distribution is a common particular case when their parameter
is equal to 1. 3 For the Weibull (gamma) distribution, � tends to in$nity if � (�) tends
to 0, and it tends to 1 if � (�) tends to in$nity. For the exponential distribution, � is
equal to 2, so that the ratio of standard deviation to mean (the dispersion ratio) is equal
to 1. Overdispersion corresponds to the case when this ratio exceeds 1, underdispersion
to the case when the ratio is less than 1.
Some other choices of distributions are possible. We could use a non-normal distri-

bution for ui, but this complicates the analysis and the estimation unless we know the
properties of the distribution of ln ui, as in the case of the lognormal. 4 Alternatively,
we could replace �i = exp( i) = exp(! + 	 i−1 + ui) by �i = ! + 	�i−1 + ui and
assume a gamma distribution for ui, but then positivity constraints on the parameters
are needed. With respect to the distribution of �i, although the Weibull or the gamma
distributions can be replaced by, among others, the exponential, Burr or generalized
gamma distribution, this does not seem to be a good idea since the exponential can
lead to misspeci$cation while the Burr or the generalized gamma can lead to over-
parametrisation. 5

Finally, note that the SCD model is a model with unobserved heterogeneity. For
illustrating this concept, suppose that all variables are equal to 1. Then the observed
durations are just a sequence of IID random variables that follow a Weibull or gamma
distribution. In reality the observed durations are not IID and not all have the same
probability to take any value: there exists some unobserved dynamics that makes each
observation diDerent from the others. The diDerences between the durations due to the
latent variable is the unobserved heterogeneity.

2.2. Properties

In this section we compute moments and distributions (conditional to the past, and
unconditional) of the durations implied by the SCD model (1)–(2). The expectation
and the variance of di are denoted �d and 
2

d (and likewise for �i). These moments are

3 As pointed out to us by N. Shephard, the SCD model with an exponential distribution appears in the
working paper version of Shephard and Pitt (1997) but it was removed from the published version to save
space.

4 Nevertheless the choice of such a distribution is worth considering since, as shown in the empirical part,
ui may be non-normal. We leave this issue for further research.

5 Indeed we have tried these distributions and our empirical $ndings con$rmed the mentioned drawbacks.
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computed without assuming a particular distribution for the error �i, and are expressed
as functions of g1, g2 and �.

Theorem 1. The durations and the latent variables of model (1)–(2) have the follow-
ing moments:

�� = e!=(1−	)+1=2 
2=(1−	2);

�d = g1��;


2
� = �2

�(e

2=(1−	2) − 1);


2
d = �2

d(�e

2=(1−	2) − 1): (7)

Proof. As  i is a Gaussian stationary AR(1) process,

�i ∼ LN
(

!
1− 	

;

2

1− 	2

)
(8)

(where LN denotes a lognormal distribution).
The results follow by the independence between the �i and ui sequences, and the mo-

ments of the lognormal distribution. Higher order moments can also be computed.

The model can $t data characterized by overdispersion, i.e. data for which 
d=�d ¿ 1.
The ratio 
d=�d is larger than one if 
2=(1−	2)¿ ln(2=�), which holds if �6 1 in the
Weibull case (�6 1 in the gamma case), and 
2 ¿ 0 (even if 	 = 0). The condition
that � or �¡ 1 is suIcient but not necessary for the overdispersion. In the appendix,
we detail the relations between the parameters and the variation coeIcient 
2

d=�
2
d.

Theorem 2. The autocorrelation function (ACF) of the durations in model (1)–(2) is
given by

�s =
e[


2	s=(1−	2)]−1

�e[
2=(1−	2)]−1
; ∀s¿ 1: (9)

Proof. Since �s = [E(didi−s) − �2
d]=


2
d, we still need to compute the expectation of

didi−s, which (by the independence assumptions) is equal to

E(didi−s) = g21E(e
 i+ i−s): (10)

From the autoregressive equation of  i, we get

 i +  i−s = �i; s = 2!+ 	�i−1; s + ui + ui−s (11)

which is a Gaussian ARMA(1,s) process (with restrictions in the MA polynomial).
Unconditionally,

e�i; s ∼ LN(�s; 
2
s ); (12)
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where

�s =
2!

1− 	
; (13)


2
s =

2
2(1 + 	s)
1− 	2 : (14)

The variance 
2
s of �i; s is obtained by solving the following Yule–Walker equations

for �i; s:


2
s = 	�1; s + 
2 + (1 + 	s)
2;

�1; s = 	
2
s + 	s−1
2; (15)

where �1; s = Cov(�i; s; �i−1; s).
The $nal result is obtained by substituting E(e�i; s) = e�s+0:5
2

s and (7) into the de$-
nition of �s, and making a few simpli$cations.

Clearly, the ACF tends to zero as s tends to in$nity, and for large s, it decreases
geometrically, since

�s ≈ 	s
2=(1− 	2)
(�e
2=(1−	2) − 1)

≈ 	�s−1: (16)

In order to illustrate these results, and as an informal check, we have simulated
samples of observations for diDerent parameter values and distributions of �i (Weibull
or gamma). The aim is to check whether empirical moments oDer reliable estimates
of their theoretical counterparts. For given values of � (or �) and 	, the values of !
and 
2 have been selected so that �d = 1 and 
2

d = 2, using formulae (7). Given the
parameters, a sample of 50,000 observations has been generated using (1) as the data
generating process (DGP). The results are shown in Table 1, for the mean and the
variance, using three values of � (or �): one is � = � = 1 which corresponds to an
exponential distribution, a second is smaller than 1 so that the Weibull and gamma
densities have a mode at 0, and a third is greater than 1 so that both distributions have
a positive mode.
Four conclusions can be drawn from Table 1:

• With a few exceptions discussed below, the empirical moments estimate rather ac-
curately the theoretical moments, although one should keep in mind that the sample
size is rather large. The precision is better for the mean than for the variance, as
can be generally expected.

• The precision of the empirical moments decreases as the parameter 	 tends to 1:
for a given sample size, it is more and more diIcult to estimate precisely �d and

2
d when the latent variable approaches a non-stationary behavior. Moreover, as 
2

increases the accuracy of the experimental moments decreases.
• The precision of the empirical moments seems to deteriorate as � and � increase.
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Table 1
Relative errors of empirical mean and variance for simulated sample of size 50,000

� or � 	 W(�; 1) G(�; 1)

0.8 0.8 
2w = 0:230 1.04 0.4

2g = 0:281 2.55 0.2

0.9 
2w = 0:122 1.43 0.7

2g = 0:144 3.10 0.4

0.99 
2w = 0:012 6.95 3.3

2g = 0:014 11.9 3.2

1 0.8 
2w = 0:325 1.46 1.46

2g = 0:325 3.3 3.3

0.9 
2w = 0:168 2.03 2.03

2g = 0:168 3.95 3.95

0.99 
2w = 0:017 9.05 9.05

2g = 0:017 16.8 16.8

1.2 0.8 
2w = 0:384 1.75 1.52

2g = 0:360 4.00 3.62

0.9 
2w = 0:205 2.50 2.80

2g = 0:185 4.71 5.64

0.99 
2w = 0:019 11.5 10.8

2w = 0:016 25.3 19.6


2w(

2
g) is the variance of ui when �i is Weibull (gamma) and the other parameters take the values given

in columns 1 and 2. The last two columns show the absolute percentage deviations of the experimental
mean and variance with respect to the theoretical values. In each cell, the top value is for the mean, the
bottom one for the variance, with both values in per cent. The theoretical mean and variance are 1 and 2,
respectively.

• One can see that as � or � increases, 
2 increases, whereas it decreases when
	 increases. This is exactly what can be deduced from the results of Theorem 1
(see the appendix).

With simulated samples we also checked the autocorrelation function and we found
a close correspondance between the ACF and the correlogram for various parameter
con$gurations.
Concerning the probability distribution of di implied by the SCD model, we must

distinguish between the distribution conditional to the past and the unconditional one.
To compute them, we need of course to rely on a parametric hypothesis about the
distribution of �i. Although it is not possible to compute analytically the conditional
and the unconditional distributions of di implied by the SCD model, it is possible to
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obtain them by unidimensional numerical integration. Indeed, using (2) we have

p(di|Ii−1) ≡ p(di| i−1) =
∫ ∞

−∞
p(di|ui;  i−1)p(ui) dui; (17)

and

p(di) =
∫ ∞

−∞
p(di| i)p( i) d i; (18)

where p(di|ui;  i−1) and p(di| i) are W(�; e− i) or G(�; e− i), p(ui) is N(0; 
2), and
p( i) is the unconditional density of  i which is N(!=(1 − 	); 
2=(1 − 	2)). The
distinction between p(di|ui;  i−1) and p(di| i) is that the former is evaluated with a
$xed value of  i−1 in  i for each value of ui needed to compute the integral, whereas
the latter is evaluated directly at each value of  i needed to compute the integral.
Fig. 6 shows the unconditional density (solid line) estimated by a gamma kernel, 6 of

the Boeing data (see Section 4 for a description of the data), and the density obtained
by applying (18) (dashed line) with parameter values taken from the estimation of
the Weibull-SCD models (see Table 4) using the same data. These data densities are
typical for stock market durations, with a lot of mass concentrated on small values,
and a long tail at the right, due to a few extremes. Notice also that the densities have
a hump close to 0; this is not an artefact of the non-parametric estimation, since there
is indeed a signi$cant proportion of the durations that are smaller than the mode (see
Table 3). The densities implied by the estimated models reproduce rather well the
shape of the data densities. 7

To the densities p(di| i−1) and p(di) correspond hazard functions. The hazard
function is the ratio of the density to the survival function, itself equal to one minus the
cdf. The survival function can be computed by unidimensional numerical integra-
tion, by replacing p(di|ui;  i−1) in (17) and p(di| i) in (18) by the corresponding
survival functions 8 S(di|ui;  i−1) and S(di| i−1). For example, in the Weibull case,
the hazard is

h(di| i−1) =
�
∫∞
−∞ �−�

i d�−1
i exp [− (di=�i)� − (u2i =2


2)] dui∫∞
−∞ exp [− (di=�i)� − (u2i =2
2)] dui

; (19)

where �i = exp (! + 	 i−1 + ui) and constants that appear in both numerator and
denominator have been simpli$ed. Notice that the hazard function (19) and the density
function (17) are conditional on  i−1 and not on �i. This is so because we want to
get rid of the eDect of ui in order to obtain a hazard function that is conditional to the
past information, like the conditional hazard of the ACD model.

6 This kernel, based on the gamma density, was proposed by Chen (2000). It does not take mass from
the negative part when durations are close to the origin as happens with e.g. the Gaussian kernel. For the
gamma kernel the adequate bandwidth is (0:9sN−0:2)2 where N is the number of observations and s is their
standard deviation.

7 This is true also when the models are speci$ed with a gamma distribution, but we do not show the
results for saving space.

8 These are known analytically in the Weibull case, but not in the gamma case where they correspond to
the incomplete gamma function.
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Fig. 1 shows the shape of the conditional hazard function (19) for diDerent parameter
con$gurations. The conditioning value  i−1 is $xed at the median of its unconditional
distribution in three of four plots. In the top left plot, the parameters are $xed at
the estimates for the Boeing price durations with � = 1:15 (see Table 4), except that

2 varies. When 
2 is very small, the hazard is increasing and concave like that of
a Weibull distribution with parameter between 1 and 2. There is hardly any mixing.
When 
2 increases, the hazard becomes non-monotone, because of the mixing of the
Weibull distribution by the normal one. For large values of 
2, the hazard becomes
more and more similar in shape to that of a lognormal distribution. Note, however, that
for intermediate values of 
2, the hazard does not start at the origin. The same kind of
evolution of the hazard occurs for other values of �. The top right plot in Fig. 1 shows
the graphs for �=1 and the other parameters like in previous plot, with an almost Gat
hazard for small 
2 (as in the exponential distribution), a decreasing convex hazard for
intermediate values of 
2, and $nally a hazard that is concave before becoming convex
for 
2 = 0:9. Note that all these hazard functions are $nite at the origin. Finally, the
bottom left plot shows what happens when �¡ 1. The parameter values are the ‘true’
parameter values given in Table 2 (in particular � = 0:9). The three hazard functions
are decreasing monotonically. Increasing 
2 lowers the hazard for large durations and
$nally for small durations also.

Fig. 1. Conditional hazard functions. From top to bottom and from left to right, conditional hazard functions
at the median of  i−1 for � equal to 1.15, 1 and 0.9, respectively. The bottom right plot shows the conditional
hazard functions for 3 deciles of  i−1, when � = 0:9 and 
2 = 0:056.
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In the bottom right plot of Fig. 1, we show the sensitivity of one hazard function
to the conditioning value  i−1. We observe that when the previous latent duration
increases, the rate of exit of a new duration is uniformly increased. In terms of survival
functions, the probability to survive increases as the past latent duration increases. This
is quite consistent with the phenomenon of duration clustering that characterizes the
data we use in Section 4.

2.3. Comparison with the ACD model

The Weibull-ACD(l, l) (hereafter ACD) model (Engle and Russell, 1998) is

di =�i�i where �i ∼ W(�; 1);

�i = �0 + �1di−1 + �2�i−1: (20)

The ACD and SCD models have four parameters, two of which, (�0; �) and (!; �)
respectively, have the same function. The parameters �1 (in the ACD) and 
2 (in the
SCD) have the eDect of increasing the unconditional dispersion ratio relative to the
conditional one. The ACD(1, 1) can be written as the ARMA(1, 1) process di = �0 +
(�1 + �2)di−1 − �2 i−1 +  i, where  i = di − �i is a martingale diDerence sequence.
Thus the autocorrelation function of the ACD is �s =(�1 + �2)�s−1 while for the SCD
the ACF is �s =	�s−1 (approximately). Hence, the autoregressive parameter is �1 + �2
in the ACD, while it is 	 in the SCD. It is clear that the parameter that increases
the dispersion in the ACD (�1) also aDects the rate of decrease of its ACF. On the
contrary, the parameter that increases the dispersion in the SCD (
2) does not aDect
the rate of decrease of its ACF.
The SCD does not require any restriction on the parameters to ensure positive du-

rations, contrary to the ACD, for which it is convenient to assume that �0; �1, and
�2 are positive. This has motivated Bauwens and Giot (2000) to de$ne a logarithmic
ACD model wherein the autoregressive equation in (20) bears on the logarithm of �i.

Both models are accelerated time models, where the observed durations are speci$ed
from a baseline process (�i) that is multiplied by a non-negative function �i that
modi$es the time scale, e.g. decelerating it if smaller than 1. In the ACD model this
function is deterministic given the past history—indeed it is the conditional expectation
of the durations—while in the SCD model this function is stochastic (because of the
error term ui).
Another diDerence with respect to the ACD is that the SCD model is a mixture

model. This feature complicates the derivation of the conditional (on the past) hazard
function by comparison with the ACD model. In the latter, the conditional hazard di-
rectly stems from the parametric hypothesis about the distribution of �i (for instance
Weibull). In the SCD model, we must integrate the error term ui to obtain the condi-
tional hazard, see (19).
As we have illustrated in the previous subsection, the Weibull-SCD model generates

a wide variety of shapes of the conditional hazard function. It covers the shapes of
the Weibull-ACD model, which happens when 
2 is close enough to 0. But it can
generate shapes like a decreasing hazard with a $nite non-zero value at the origin, and
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a non-monotone hazard (increasing before decreasing) again with the possibility of a
non-zero value at the origin (see Fig. 1). 9 Some of these shapes can be generated
by the ACD model with another distribution than the Weibull. For instance, with
a lognormal, the hazard is non-monotone, but always starts at the origin. Another
candidate is the Burr distribution used in the ACD model by Grammig and Maurer
(1999). The Burr-ACD model encompasses the hazard shapes of the Weibull-ACD
model, and like the SCD model it can produce non-monotone hazard functions, but
they always start from zero when they are increasing at the origin. It is a distinctive
feature of the SCD model that it can generate an increasing strictly positive hazard at
the origin.
The Weibull-SCD model is therefore richer than the Weibull- or even Burr-ACD

model in terms of the class of conditional, and therefore unconditional, hazard functions
that it can produce. This feature is a consequence of the inclusion of a second stochastic
process in the model.

3. Estimation methods

In the literature several estimation methods for latent variable models have been
proposed. All the methods, except quasi maximum likelihood and generalized method
of moments, are based on simulations. The estimation of the parameters of this kind
of unobservable variable model turns out to be diIcult because the likelihood function
is diIcult to evaluate exactly. The fundamental problem of the SCD model is that the
marginal likelihood of the observations is de$ned by a N -dimensional integral (where
N is the sample size).
The likelihood function of the SCD model is built as follows: given a vector of

durations d, it is assumed that d is generated from a probability model p(d| ; !1)
where  (a vector of latent variables) is of the same dimension as d and !1 is a
parameter. The unobservable vector  is assumed to be generated by the probability
mechanism p( |!2), where !2 is another parameter. Thus the density of the durations
is a mixture over the  distribution,

p(d|!) =
∫

p(d| ; !1)p( |!2) d : (21)

Actually the integrand in (21) is p(d;  ; !1; !2) and it is built by the recursive decom-
position

p(d;  |!1; !2) =
N∏
i=1

p(di| i; !1)p( i| i−1; !2): (22)

In practice the multidimensional integral in (21) is very diIcult to evaluate eI-
ciently by numerical techniques, and requires sophisticated Monte Carlo methods. The

9 This happens when the density is itself non-zero at the origin, i.e. when the Weibull and gamma densities
have their parameter between 1 and 2.
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simulation-based methods that have been used in the context of stochastic volatility
models are indirect inference, eIcient method of moments (EMM), simulated (quasi)
maximum likelihood (SML), 10 simulated likelihood ratio (SLR), 11 Monte Carlo max-
imum likelihood (MCL) 12 and Markov chain Monte Carlo techniques (MCMC). 13

Methods that do not require simulations are GMM and QML (also called pseudo-
maximum likelihood).
GMM, indirect inference, SML and related methods are partial in the sense that they

permit to estimate the parameters, but not the latent variables. After estimating the para-
meters, it is of course possible to build an estimate of the latent variables by running
the Kalman $lter or by simulation. Methods like QML, MCL and MCMC techniques
are complete: they incorporate a way to estimate the latent variables, although quite
diDerently.
The methods based on simulations may be greedy in computational time especially

when the number of observations is large, like in the data sets we use (i.e. several
thousands, if not tens of thousands).
One method that is attractive is QML, because it is both complete and relatively

parsimonious in computing time. This technique relies on the Gaussianity assumption
of the log of the error terms and the use of the Kalman $lter in a linear space state
model. It provides asymptotically consistent, but not eIcient, estimates of the para-
meters within the class of linear $lters. It has been developed by Harvey et al. (1994)
and Ruiz (1994) for the stochastic volatility model. Nevertheless, for small sample size
the bias of the estimator is not negligible. Sandmann and Koopman (1998) proposed
the MCL method for avoiding this bias. It consists in decomposing the exact likeli-
hood function into a Gaussian part (provided by QML) and a term that accounts for
departures from normality. The method is based on the importance sampling principle
and it relies on simulations.
Given model (1) and the distributional assumptions (2) with (5) or (6), the parameter

to be estimated is !=(!; 	; �; 
2) for the Weibull case and !=(!; 	; �; 
2) for the gamma
case. The parameter space is de$ned by, !∈R; |	|¡ 1; � (or �)¿ 0, and 
2 ¿ 0.

By a logarithmic transformation of the $rst equation of (1), the SCD model can be
written as

ln di = � +  i + "i;

 i = !+ 	 i−1 + ui; (23)

where "i = ln �i − � and �=E[ln �i]. This transformation puts the model in state space
form and ensures that the error terms are zero mean random variables.
If we assume that � follows a W(�; 1) distribution, " = ln � has the probability

density function f(") = �e"� e−e"� . This is the density of the opposite of a random

10 See GouriJeroux and Monfort (1997) for a detailed exposition. SML can be implemented through impor-
tance sampling—see also Durbin and Koopman (1997)—and accelerated importance sampling—see Richard
and Zhang (2000).
11 See Billio et al. (1997).
12 See Sandmann and Koopman (1998).
13 See Jacquier et al. (1994), Shephard and Pitt (1997), and the survey by Shephard (1996).
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variable that has an extreme value distribution of type I with parameters 0 and 1=�
(also called log-Weibull); see Johnson et al. (1995, p. 11). The mean of this dis-
tribution is −0:57722=� and the variance is $2=6�2. If we assume that � follows a
G(�; 1) distribution, " = ln � has the probability density function f(") = e"�e−e" =�(�).
The mean and the variance of ln � are  (�), the digamma function, and  ′(�), the
trigamma function, respectively; 14 see Johnson et al. (1994, p. 383).
Fig. 2 shows the densities of " when � follows W(1:15; 1) and G(1:23; 1) distribu-

tions. The parameter values correspond to the estimates for the price durations of the
Boeing data (see Table 4 for the Weibull case). The transformed distributions have a
long tail on the left since a lot of mass is concentrated on small positive values in the
original distributions.
To estimate ! and the latent variables, the Kalman $lter can be applied to compute

the likelihood function of the model (23). This procedure would give the exact likeli-
hood function if "i were normally distributed. This is not the case when �i is a Weibull
or a gamma random variable, but it would be the case if �i were following a lognormal
distribution. However, the latter assumption does not seem convenient for our purpose
because the model would mix two lognormal distributions, so that in particular the im-
plied conditional hazard rate could not be monotone decreasing. 15 Thus we estimate
the parameters and the latent variables by treating "i as if it were N(0; 
2

") (hence the
quali$er quasi in QML) with 
2

" = $2=6�2 for the Weibull case and 
2
" =  ′(�) for the

gamma case. Note that, contrary to the stochastic volatility models, there is no need to
$x the distribution of one of the error terms in order to avoid unidenti$cation. This is

Fig. 2. Log-Weibull and Log-gamma densities. Log-Weibull density for �=1:15 (solid line) and Log-gamma
density for � = 1:23.

14 The digamma function is d ln �(�)=d� = �′(�)=�(�), and the trigamma function is d (�)=d�; see
Abramovitz and Stegun (1970, Chapter 6).
15 A deeper analysis of the consequence of error misspeci$cation is provided in Fourgeaud et al. (1988).

They discuss how heterogeneity aDects the estimates in terms of information loss and error misspeci$cation
with a special emphasis on duration models.
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so because the mean and the variance of �i depend on the same parameter (� for the
Weibull case and � for the gamma). Hence it is possible to recover all the parameters.
The prediction error decomposition of the quasi log-likelihood function is given by

ln L(!) =−1
2

N∑
i=1

ln vi − 1
2

N∑
i=1

r2i
vi

; (24)

where ri = ln di − ln di|i−1 is the diDerence between the log-duration and its prediction
given the past information (i.e. the conditional forecast built by the Kalman $lter),
and vi is the variance of ri. This expression is known as the prediction error decomposi-
tion form of the likelihood. It must be maximized numerically with respect to the para-
meter !.
As a check of the method, we generated samples of 5,000 and 50,000 durations

according to a Weibull and to a gamma DGP for some parameter values and estimated
the parameters by QML. The true parameter values were $xed so that the mean and the
variance of the log-durations are equal to 1 and 2, respectively. Table 2 reports the true
and the estimated parameter values, and the heterokedastic-consistent standard errors
(S.E.) for each sample. The estimated values are quite close to the true values and the
standard errors are small due to the large sample sizes.
To check the speci$cation of the model, some diagnostics can be proposed. There is

no generally accepted way of checking a latent variable model. As noted by Shephard
(1996) for stochastic volatility models there is almost no word about this issue. The
only exception is Gallant et al. (1997) but their checking fully stems on their estimation
method, EMM, and hence not applicable here.
We de$ne the residual corresponding to the error �i as

ei =
di

e ̂ i
; (25)

Table 2
Estimation results (simulated data)

Weibull True N = 5; 000 N = 50; 000

Estimate S.E. Estimate S.E.

! −0:020 −0:014 0.004 −0:020 0.002
	 0.900 0.905 0.017 0.904 0.006
� 0.900 0.914 0.014 0.902 0.005

2 0.056 0.059 0.013 0.055 0.005

Gamma
! −0:007 0.010 0.007 −0:007 0.002
	 0.900 0.883 0.022 0.892 0.003
� 0.900 0.890 0.014 0.901 0.002

2 0.067 0.065 0.016 0.066 0.006
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where  ̂ i is the estimate of  i provided by the Kalman $lter (the so-called updated
estimate) at the QML estimate. We also de$ne the residual û i corresponding to the
error ui as

û i =  ̂ i − !̂− 	̂ ̂ i−1: (26)

To check the independence assumptions, we use a non-parametric measure of serial de-
pendence on ei and û i, more precisely the Spearman’s � correlation coeIcient adapted
to the time series case (see Hallin and Puri, 1988). 16 Notice that the use Ljung–Box
statistics in this context is not correct, as noted in Veredas et al. (2002), since data are
irregularly spaced. The use of the time series versions of Spearman’s � is worthwhile
since it accounts for dependence other than linear. As they are based on ranks, these
statistics are ‘atemporal’ measures.
Notice that ei depends on the estimated latent variable and in his turn û i is as

well computed from  ̂ i. Therefore the dynamical structure of both errors is very close.
Hence we will just focus on the independence assumption of ei since it is de$ned as
the ratio of the observed durations over its conditional expectation.
To check the normality of ui, we can use a p-value plot of the residuals û i=
̂

against a N(0; 1) distribution. Finally, to check if �i is distributed as Weibull, we can
also use a p-value plot of the residuals ei against a W(�̂; 1). Notice that residuals
are estimated using estimated latent variables which are themselves functions of the
consistent estimates of the parameters. The distributional properties of the diagnostics
are therefore at best justi$ed by an asymptotic argument, and in small samples these
properties will be aDected. For checking to what extent this occurs, a Monte Carlo
study should be conducted. Given that the sample sizes in the empirical applications
that we conduct are rather large, we neglect the possible distortions. The diagnostics
are used in the next section.

4. Empirical application

4.1. The data

We have estimated the SCD model (and the Log-ACD for comparison) with data
of four shares traded at the New York Stock Exchange (NYSE): Boeing, Coca Cola,
Disney, and Exxon. The data were extracted from the trades and quotes (TAQ) database
pertaining to September, October, and November 1996. This database consists of two
parts: the $rst reports all trades, while the second lists the bid and ask prices posted
by the specialist. Trades and bid/ask quotes recorded before 9:30 am and after 4 pm
were not used. See Bauwens and Giot (2001) for details on the TAQ database and on
the functioning of the NYSE.
From the trade data we de$ne the trade durations as the time intervals between

consecutive trades. The number of observations ranges from 39,620 for Coca Cola to
23,930 for Boeing (see Table 3).

16 Another possible measure is Kendall’s ( statistic, see Ferguson et al. (2000). As it is asymptotically
equivalent to 1.5 times Spearman’s �, we rely on the latter.
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Table 3
Information on duration data

Trade Price Volume

Boeing Coke Disney Exxon Boeing Coke Disney Exxon Boeing Coke Disney Exxon

N 23930 39620 32821 28371 2620 1609 2160 2717 1576 3022 1778 2045
S.D. 1.21 1.17 1.22 1.20 1.36 1.21 1.23 1.23 0.70 0.88 0.72 0.65
Mode 0.10 0.06 0.08 0.08 0.12 0.10 0.10 0.17 0.40 0.21 0.20 0.58
%¡ mode 0.12 0.05 0.07 0.09 0.15 0.09 0.08 0.15 0.20 0.14 0.09 0.31
Min 0.011 0.018 0.014 0.012 0.004 0.004 0.005 0.005 0.02 0.003 0.008 0.02
Max 14.06 17.70 17.10 18.24 20.19 10.31 13.75 17.99 4.82 7.47 4.75 4.17

The original data were extracted from the TAQ database for September, October, and November 1996, and
were transformed as explained in Section 4.1. The mean of each series is equal to 1 by construction. Durations
are measured in adjusted seconds. N denotes the number of observations, S.D. the standard deviation, %¡
mode the proportion of observations smaller than the mode, min and max are the smallest and the largest
durations.

From the quote data, we have computed price durations and volume durations. A
price duration is the minimum duration that is required to observe a price change not
less than a given amount. The price we focus on is the mid-price of the specialist’s
quote, i.e. the average of the bid and ask prices, and the amount is equal to $0.125. Thus
we did not take into account the numerous $0.0625 changes in the mid-price, which
are due to a $0.125 price change of the bid or the ask. This ‘thinning’ of the quote
process can be justi$ed by the presumption that the $0.0625 changes are transitory, i.e.
are mainly due to the short term component of the bid/ask quotes updating process.
The number of price durations is much smaller than the number of original quotes and
varies between 1,609 for Coca Cola and 2,717 for Exxon. As explained by Engle and
Russell (1998) the analysis of price durations can provide a measure of instantaneous
volatility.
Finally, volume durations are de$ned as the time spells such that the total traded

volume is not smaller than 25,000 shares. They are indirect measures of liquidity
since they indicate the time needed to trade a given amount of shares. The number of
observations ranges from 1,576 for Boeing to 3,022 for Coca Cola.
As in Engle and Russell (1998) and Bauwens and Giot (2000, 2003), we adjusted

these durations for ‘seasonal’ eDects. The durations can be thought of as consisting
of two parts: a stochastic component to be is explained by the SCD model, and a
deterministic part, namely the seasonal intradaily pattern. This eDect arises from the
systematic variation of the market activity during each trading day. This deterministic
diurnal eDect is removed from the durations by de$ning

di =
Di

*((i)
; (27)

where Di is the original duration, di is the adjusted duration, and *((i) is the seasonal
eDect at time (i. The seasonal pattern is computed by a non-parametric regression of the
observed duration on the time of the day. It is nothing else but the Nadaraya–Watson
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estimator

*(() =
∑N

i=1 K(((− ti)=h)di∑N
i=1 K(((− ti)=h)

; (28)

where the time variable, (, is the number of cumulative seconds from midnight every
day. The kernel chosen is the quartic and the bandwidth is 2:78sN−1=5 where s is the
standard deviation of the data and N the number of observations. This way of adjusting
for intradaily seasonality has been proposed by Veredas et al. (2002), and it diDers
from the method used by Bauwens and Giot (2000).
Fig. 3 shows the intradaily behavior of the durations for the Boeing stock and for

every day of the week. Clearly there is a strong intradaily pattern. Notice that the level
of the curves is the highest for volume durations that are indeed the longest ones on
average, while the trade durations are the smallest.
Proceeding to the seasonal adjustment prior to estimation of the duration model is

arguable since it is not sure that the seasonality and the dynamics of durations are
orthogonal. This is why Veredas et al. (2002) propose a method to estimate the deter-
ministic seasonal pattern jointly with the stochastic part. Their model is semiparametric:
non-parametric for the seasonal pattern, and parametric (of the Log-ACD type) for the
dynamics. They show that preadjusting the data has no important consequences for
the estimation of the autoregressive parameters since the seasonal component does not

Fig. 3. Diurnal component. See text for explanations. Trade (left box), price (right), and volume (bottom)
durations for the Boeing stock.
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carry a lot of information about them. However they show that for prediction it is
crucial to estimate in one step.
Before discussing the estimation results, let us describe the (adjusted) durations using

Figs. 4–6 and Table 3. 17 The sequence of diDerent durations for Boeing is shown in
Fig. 4 (bottom lines) and is typical of this kind of data. One can see the clustering
of small and large durations. This can be seen also through Spearman’s correlation
coeIcients for serial dependence shown in Fig. 5. The graphs clearly indicate that the
seasonal eDect is not suIcient to take into account the dynamic structure of the three
kinds of durations.
The mean of each series is 1 (by construction), and the standard deviation is greater

than 1 for trade and price durations, which corresponds to the overdispersion phe-
nomenon, while it is smaller than 1 for volume durations, which are underdispersed.
Fig. 6, already described at the end of Section 2.2, displays the estimated densities of
the Boeing trade, price and volume durations (solid lines). The modes and the pro-
portion of durations smaller than the mode are given in Table 3. Finally, let us point
out that the TAQ data imply that some trade durations are equal to zero (because the
recording is not more precise than one second). We deleted the null durations under

Fig. 4. Observed durations and estimated latent factor. Adjusted durations (bottom line) and estimated latent
variables (top line). Trade (left box), price (right), and volume (bottom) durations for the Boeing stock.

17 Although the analysis has been applied to the four stocks, we present the results for Boeing to save
space. When the results for the other stocks present some peculiarity, this is pointed out in the discussion.
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Fig. 5. Spearman’s coeIcients for serial dependence. Spearman’s � coeIcients for serial dependence (vertical
axis) against lag order (horizontal axis). Trade (left box), price (right), and volume (bottom) durations for
the Boeing stock.

the assumption that all these trades come from the same trader that has split a big
block in smaller ones but has sent them to the market at the same time.

4.2. Estimation results

The estimation results by QML for the Weibull-SCD and by ML for the Weibull-Log-
ACD are in Table 4. 18 We begin by a discussion of the SCD results, then we compare
them with the Log-ACD results, and $nally we present the diagnostics on the SCD
speci$cation.

4.2.1. Discussion of SCD estimation results
All the parameters have small asymptotic standard errors. As expected, the esti-

mates of 	 are close to unity in almost all cases, the highest occurring for Boeing
trade durations (with a value of 0.99). The most persistent processes are the trade
durations. These parameters are anyway signi$cantly smaller than 1 (at usual levels

18 Because the estimation results are quite similar whether we use the Weibull or the gamma distribution,
we opted for reporting the results only for the Weibull distribution. Results using the gamma distribution
are available upon request to the authors.
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Fig. 6. Marginal densities. Trade (left box), price (right), and volume (bottom) durations for the Boeing
stock. The solid line is a non-parametric estimate of the density of the observed durations. The dashed
line is the estimated unconditional density of the Weibull-SCD model, obtained by applying (18) with
parameter values set at the estimates reported in Table 4. The dotted line is a non-parametric estimate of
the unconditional density of the Weibull Log-ACD model. This estimate has been computed from a sample
of durations simulated using the Weibull Log-ACD process with parameter values set at the corresponding
estimates (given in Table 4). The inserted windows show a zoom of the curves close to the origin.

of signi$cance), ensuring the existence of the unconditional mean and variance of the
durations.
The estimates of the parameter � of the Weibull distribution are all greater than 1 and

the null hypothesis of unity is rejected. As we have already pointed out in Section 2.2,
the fact that the parameter � is greater than 1 does not imply that the conditional hazard
is monotone increasing. Nevertheless, as illustrated in Fig. 1, the conditional hazard
function is decreasing except for very short durations. Notice that � is much larger for
the volume durations than for the two other types of durations. This is consistent with
the diDerences in Fig. 6. As � increases the mode of the density goes away from zero,
meaning that the probability of $nding very short durations decreases: it is smaller for
volume than for price and trade durations. Stated diDerently, as � increases, the density
becomes more underdispersed which is another feature found in Table 3. The estimates
of the parameters are compatible with the characteristic of overdispersion for trade and
price durations (with the exception of Exxon price durations). If we substitute the
estimated parameters in the theoretical moments (7) we obtain an estimated dispersion
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Table 4
Estimation results

Trade Price Volume

Boeing Coke Disney Exxon Boeing Coke Disney Exxon Boeing Coke Disney Exxon

! −0:001 −0:004 −0:002 −0:010 −0:026 −0:035 −0:005 −0:008 0.0023 −0:001 0.0003 0.0071
[0.0003] [0.0007] [0.0004] [0.0016] [0.0081] [0.0166] [0.0030] [0.0047] [0.0037] [0.0053] [0.0029] [0.0044]

	 0.9919 0.9637 0.9858 0.9129 0.8957 0.7742 0.9672 0.9213 0.9546 0.8651 0.9761 0.9013
[0.0014] [0.0034] [0.0018] [0.0087] [0.0194] [0.0770] [0.0103] [0.0356] [0.0129] [0.0276] [0.0074] [0.0237]


2 0.0015 0.0082 0.0028 0.0222 0.0818 0.0851 0.0116 0.0100 0.0134 0.0435 0.0105 0.0178
[0.0002] [0.0009] [0.0004] [0.0030] [0.0172] [0.0431] [0.0039] [0.0064] [0.0039] [0.0116] [0.0024] [0.0055]

� 1.0807 1.0627 1.0879 1.0994 1.1489 1.1630 1.1765 1.1612 1.6979 1.4011 1.7667 1.8122
[0.0059] [0.0047] [0.0051] [0.0058] [0.0200] [0.0308] [0.0192] [0.0175] [0.0288] [0.0219] [0.0259] [0.0310]

��;d 0.31 0.39 0.32 0.46 0.62 0.61 0.41 0.44 0.54 0.62 0.60 0.59

̂d=�̂d 1.02 1.06 1.02 1.05 1.29 1.07 1.03 0.93 0.76 0.90 0.82 0.67

�0 0.0171 0.0297 0.0087 0.0353 0.0789 0.4751 0.0372 0.0317 0.0265 0.0307 0.0236 0.0213
[0.0014] [0.0035] [0.0008] [0.0029] [0.0101] [0.0114] [0.0059] [0.0062] [0.0044] [0.0032] [0.0032] [0.0038]

�1 0.0281 0.0485 0.0141 0.0596 0.1247 0.0942 0.0658 0.0561 0.1015 0.0848 0.1002 0.0977
[0.0022] [0.0065] [0.0013] [0.0048] [0.0148] [0.0159] [0.0096] [0.0102] [0.0136] [0.0103] [0.0108] [0.0125]

�2 0.9683 0.9212 0.9861 0.8695 0.8111 0.7441 0.9080 0.8846 0.8397 0.8523 0.8727 0.8112
[0.0030] [0.0030] [0.0015] [0.0154] [0.0289] [0.0480] [0.0153] [0.0289] [0.0259] [0.0240] [0.0151] [0.0308]

� 0.9349 0.9262 0.9306 0.9289 0.8931 0.9326 0.9532 0.9578 1.5502 1.2250 1.5974 1.6445
[0.0046] [0.0018] [0.0039] [0.0042] [0.0130] [0.0174] [0.0151] [0.0136] [0.0302] [0.0172] [0.0290] [0.0281]


̂d=�̂d 1.05 1.06 1.04 1.04 1.13 1.07 1.05 1.04 0.66 0.82 0.62 0.61

d.r. 1.21 1.17 1.22 1.20 1.36 1.21 1.23 1.23 0.70 0.88 0.72 0.65

Entries are QML estimates of the Weibull-SCD model (top of the table) and of the Weibull-Log-ACD
model (bottom part). Numbers between brackets are heterokedastic-consistent standard errors. 
̂d=�̂d is the
estimate of 
d=�d obtained by using the estimated parameters in (7); ��;d is the correlation coeIcient
between the estimated latent variable and the observed durations; d.r. is the data dispersion ratio (standard
deviation/mean).

ratio. They are given in Table 4. The estimated ratios turn out to be too small compared
to the data ratios for trade and price durations, and a little too large for the volume
cases.
In Fig. 4, the estimated latent variables for Boeing, estimated using the Weibull-SCD

model, are plotted together with the observed durations. 19 It can be seen that the
latent variables reproduce the essential movements of the durations. The correlation
coeIcients between the observed durations and the latent variables are also in Table 4.
They vary from 0.62 for Coca Cola price durations to 0.31 for Boeing trade durations.
The correlations are smaller for the trade durations (indicating a worse ‘$t’) than for
the other kinds of durations.

19 The latent variables have been mutiplied by some constant and shifted upwards to obtain a good visibility.
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4.2.2. Comparison with Log-ACD results
We turn to the empirical comparison of the SCD and Log-ACD models. We decided

to use a Log-ACD model

di = e i �i where �i ∼ W(�; 1);

 i = �0 + �1 log di−1 + �2 i−1: (29)

The choice of the logarithmic version of the ACD model is made to avoid the sign
constraints on the parameters and the comparison bellow is also valid for the ACD.
The choice of the Weibull density is due to our desire to compare two models with the
same number of parameters. 20 Estimation results on the Log-ACD model are given
in the second part of Table 4. They share many features of the estimates for the
SCD model. For example the parameter � is larger for volume durations than for trade
durations, being in-between for price durations. The parameter �1 behaves as 
2, that
plays the equivalent role in the SCD. It is smaller in general for the trade durations
than for the others. Finally �2 is in general above 0.8, but statistically smaller than 1,
meaning that there is a lot of persistence in the duration process.
Does the Weibull-SCD model represent the essential features of the duration pro-

cesses better than the Weibull-Log-ACD one? To answer to this question, we compare
the unconditional densities, the estimated dispersion ratios and the conditional hazard
functions implied by both models.
The unconditional densities are shown in Fig. 6. The solid line is for the observed

durations, the dashed line for the SCD model, and the dotted line for the Log-ACD
model. 21 For the trade and price durations, it is clear that the Log-ACD model cannot
account for the hump in the density. This is due to the fact that the estimated � is
smaller than 1 and hence the Weibull density has no mode (it tends to in$nity when
the duration tends to zero). For volume durations the two models produce a hump but
the SCD model $ts better than the Log-ACD. Additionally, in all cases for durations
above the mean (equal to 1) the density implied by the Log-ACD is above the empirical
density while this is not the case for the SCD densities. Hence the Log-ACD model
seems to under-represent the very short durations and over-represent the long ones.
With respect to the dispersion ratios (see Table 4), 22 for trade durations both SCD

and Log-ACD ratios are greater than 1, but they underestimate the empirical ratios.
For price durations the results are about as bad, except that for Boeing the SCD does
much better than the Log-ACD, and for Exxon it is the reverse. For volume durations,
both models do a good job (with a slight superiority of the SCD).

20 As mentioned at the end of Section 2, other distributions, like the Burr and the generalized gamma, can
be used for the Log-ACD model, and they usually enhance its performance for trade and price durations,
but not for volume durations. This point has been extensively analyzed in Bauwens et al. (2000).
21 See the legend of Fig. 6 for explanations on how the densities were computed.
22 We have estimated the dispersion ratios of the Log-ACD models from the simulated samples used for

estimating the marginal densities of Fig. 6.
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Finally, we can compare the conditional hazard functions. The hazard function im-
plied by the Weibull Log-ACD is

h(di| i) =
�
e i

(
di

e i

)�−1

; (30)

and the corresponding one for the SCD is given by (19). Notice that in this case we
do not have an empirical counterpart, hence we can just make a comparison of the two
models. Fig. 7 shows the conditional hazard functions for the SCD (solid line) and the
Log-ACD model (dashed line) for Boeing’s trade, price and volume durations. In all
cases the SCD produces a hump, as for the unconditional densities, while the Log-ACD
does not produce any hump. Indeed for the volume case the hazard implied by the
Log-ACD is monotone increasing. This means that the rate of exit of a new volume
duration increases with the length of the duration, which seems counterintuitive. This
eDect in the Log-ACD model is due to the fact that the estimated � is greater than 1,
which inevitably produces an ever increasing hazard function. That � is estimated to
be greater than 1 can be explained by the need to $t the underdispersion of the data,
since with the Weibull distribution it is not possible to have both underdispersion and
a decreasing hazard function.

Fig. 7. Conditional hazard functions. The solid line is the conditional hazard function of the Weibull-SCD
model obtained by applying (19) with parameter estimates. The dotted line is the conditional hazard function
of the Weibull-Log-ACD model given by (30). Trade (left box), price (right), and volume (bottom) durations
for the Boeing stock.
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Summarizing, in terms of unconditional densities, the SCD clearly outperforms the
Log-ACD. For matching the dispersion ratios of the data, the performance of the two
models is fairly comparable (good for volume durations, not so good for trade du-
rations). In terms of conditional hazard functions, the SCD is clearly more Gexible,
which we view as an advantage even if we do not have an empirical benchmark.

4.2.3. Speci*cation diagnostics for SCD
Finally, we discuss the speci$cation of the SCD model using the diagnostic tools

de$ned at the end of Section 3. The analysis is fully graphical and it is based on
Figs. 8–11. The $rst three show the Spearman’s � coeIcients and the p-value plot for
trade, price and volume durations, respectively. All the $gures are for the Boeing stock
but the same comments apply to the other stocks. The residuals ei seem to support the
assumptions: the Weibull distribution is not grossly incompatible with their distribution,
and there is no apparent serial dependence, except for trade durations at the $rst lags.
This may be surprising since the latent variable follows a $rst order Markov chain.
A possible explanation is that trade durations may be fractionally integrated, so that a
more Gexible model in this respect could be tried (see Jasiak, 1998).

Spearman's � for ei

p-value plot for ei p-value plot for ui
∧

Fig. 8. Diagnostic plots for Boeing trade durations. Spearman’s � for serial dependence (top plots) and
p-value plots (bottom). See (25) for ei and (26) for û i .
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Spearman's � for ei

p-value plot for ei p-value plot for ui
∧

Fig. 9. Diagnostic plots for Boeing price durations. Spearman’s � for serial dependence (top plots) and
p-value plots (bottom). See (25) for ei and (26) for û i .

With respect to the û i residuals, they are serially uncorrelated for price and volume
durations, while for trade durations the same problem arises as for ei. 23 Normality
is rejected in all cases as the p-value plots show a clear departure from normality.
Fig. 11 shows the standard normal distribution and the empirical density of the stan-
dardized û i for the price case (the density is a non-parametric estimate computed by
means of a Gaussian kernel). The density of û i has more mass around the mean and
its tails are thinner than in the normal case. It seems therefore that the SCD model
could bene$t from a distribution with thinner tails than the normal, but we leave this
issue for further work.

4.3. Microstructure e:ects

It is reasonable to believe that not all the relevant information for modeling the
durations is represented by the latent variable, or said diDerently, that the durations
may depend on information that is not incorporated in their own past. Therefore, some

23 As noticed in Section 3, the Spearman’s � for û i are very similar to those of ei and hence not shown
here.
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Spearman's � for ei

p-value plot for ei p-value plot for ui
∧

Fig. 10. Diagnostic plots for Boeing volume durations. Spearman’s � for serial dependence (top plots) and
p-value plots (bottom). See (25) for ei and (26) for û i .

Fig. 11. Empirical density of û i . Empirical density of the standardized error term û i (solid line) of Boeing
price durations, and standard normal density (dashed line).
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observable variables may inGuence the frequency of quote revisions and trading. These
variables can be introduced in the model in order to capture these microstructure eDects.
Relevant variables are the spread, the traded volume, and the trading intensity.
Indeed, Easley and O’Hara (1992) demonstrated that the spread and the volume

aDect the speed at which prices adjust to new information arrival. A change of one of
these variables before the last quote is likely to aDect the next price duration, due to
the fact that the market maker revises her beliefs. Let us describe brieGy the variables
we use and their expected inGuence on the price durations. 24

• For the spread, no trade (and hence no price change) means no new information
in the market, implying that the probability of dealing with an informed trader de-
creases. Hence the market maker will tend to decrease the spread since she believes
(without being certain) that no informed traders are present in the market. This im-
plies that a negative coeIcient for the spread is expected when introduced in the
SCD model.

• In the case of the traded volume, a similar negative eDect is predicted. If there is
no information event, the probability that no trade will occur increases relatively to
the complementary event. This means that trading is positively correlated with the
occurrence of an information event. As trading is itself positively related to volume,
the occurrence of unusually small volume lowers the market maker’s belief that new
information exists, so that the price duration should increase.

• With respect to the trading intensity, a negative eDect on the durations is also ex-
pected. Trading intensity is de$ned as the number of trades during a price duration,
divided by the value of this duration. Easley and O’Hara’s model implies that an
increase in the trading intensity is due to an information event. Thus the market
maker will revise her quotes in order to account for this increase. Therefore the
durations will become shorter.

In the SCD model it is possible to include exogenous variables 25 in order to test
these eDects. The exogenous variables are included in the autoregressive equation of
the log latent variable equation of the SCD model, which becomes

 i = !+ 	 i−1 + -′zi−1 + ui; (31)

where -=(-1; -2; -3) is a parameter vector, and zi−1 is the vector of exogenous variables
(spread, volume, and trading intensity). The three exogenous variables are seasonally
adjusted, as has been done for the durations. The variable used to measure the spread
(called Spread) is the average spread over each price duration. 26 For the volume, the
variable used is the average volume per trade (Aver. Vol.) which gives a measure of
the unexpected volume at a particular time and day. 27

24 More details can be found in Bauwens and Giot (2001).
25 These variables are time invariant, meaning that they remain constant within a distribution.
26 Remember that a price duration may correspond to more than one quote revision, so that the spread

may change over the price duration.
27 Unexpected because it has been seasonally adjusted.
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Table 5
SCD estimation with microstructure variables

Boeing Coca Cola Disney Exxon

! 0.4743 0.0651 0.0377 −0:023
[0.1281] [0.0166] [0.0145] [0.0136]

	 0.7123 0.9271 0.9536 0.9182
[0.0767] [0.0177] [0.0176] [0.0439]


2 0.1133 0.0265 0.0081 0.0071
[0.0489] [0.0077] [0.0040] [0.0056]

� 1.2981 1.2413 1.2443 1.2594
[0.0409] [0.0186] [0.0179] [0.0194]

Spread −0:356 −0:441 −0:456 −0:512
[0.0113] [0.0071] [0.0175] [0.0101]

Aver. vol. −0:194 −0:069 −0:055 −0:095
[0.0391] [0.0228] [0.0303] [0.0209]

Trad. Int. −1:301 −0:671 −0:478 0:7570
[0.1234] [0.0521] [0.0712] [0.0537]

Results are for price durations. Entries are QML estimates of Weibull-SCD model (1)–(2) modi$ed by
(31), and heterokedastic-consistent standard errors between brackets.

Estimates of the model with the microstructure variables are reported in Table 5. The
empirical evidence in favour of the information model of Easley and O’Hara (1992) is
strong. The coeIcients are negative (with the exception of trade intensity for Exxon)
and highly signi$cant. 28

Let us point out $nally that the estimates of the parameters 	, � and 
2 are changed
by the introduction of the microstructure variables (compare Tables 4 and 5), meaning
that the information content of these variables is not orthogonal to the unobserved
heterogeneity captured by the latent variable. This makes sense since the variable that
captures the dynamics in the SCD model is latent and hence it can capture to some
extent the eDect of the exogenous variables included in (31).

5. Conclusion

In this paper, we have put forward a class of parametric models for $nancial dura-
tions (and potentially other durations having the same properties). The model, which
is a mixture model, has been de$ned and its basic properties have been derived. One
possible re$nement of the model is to extend the AR(1) process for the latent variable

28 We do not report the results for the Log-ACD model since they lead to the same conclusions and
comparable results are available in Bauwens and Giot (2000).
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to a more complex process, like an ARMA or a fractionally integrated process. An-
other extension, also based on the empirical results, is to consider a broader class of
distributions than the normal family for the error term of the latent variable equation.
The SCD model is very Gexible in terms of the range of hazard functions it can

generate. Given that it is a latent variable model, its estimation is not easy, and in
this paper we have used the QML method which is tractable and seems to be reliable.
A topic for further research is to implement other estimation methods and to compare
their performance.
The SCD model has been applied to trade, price and volume durations of shares

traded at the NYSE. It is able to capture the main features of $nancial durations.
Comparisons with the Log-ACD model indicate that for all the duration processes
considered the SCD better $ts some features of the data, especially in terms of the
unconditional distribution of the durations. Finally, we have used the SCD model for
testing market microstructure theory and we $nd empirical support for the model of
Easley and O’Hara (1992).
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Appendix A. Relations between the parameters

The last result of Theorem 1 implies that

# ≡ 1 +

2
d

�2
d
= � exp

(

2

1− 	2

)
: (A.1)

A given value of the variation coeIcient 
2
d=�

2
d can be matched by diDerent 	,


2, and � or �. The dependence of this variation coeIcient with respect to � or � is
mediated through � which is equal to 1 plus the variation coeIcient of the Weibull
or gamma distribution of �i—see (4)—and is a decreasing function of � or �. From
(A.1), #¿� (with equality if 
2 = 0) implying that the variation coeIcient of the
duration is larger than that of �i. From (A.1), we get


2 = (1− 	2) ln(#=�); (A.2)
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	 =

√
1− 
2

ln(#=�)
if 
26 ln(#=�): (A.3)

Computing derivatives, we can check how a parameter must change to keep # con-
stant when one of the other parameters varies. In doing so, � is treated as a function
of � (or � in the Weibull case), with $rst derivative �′. From (A.2)–(A.3),

@
2

@	
=−2	 ln(#=�)¡ 0; (A.4)

@
2

@�
=−(1− 	2)

�′

�
¿ 0; (A.5)

@	
@�

=
−
2�′

2�	[ln(#=�)]2
¿ 0; (A.6)

where we assume 	¿ 0. The inverse relation between 
2 and 	 is obvious from
(A.1). The results (A.5)–(A.6) follow from the fact that �′ is negative. The $rst one
of these expresses that 
2 has to increase to maintain the overdispersion of the duration
when the parameter of the gamma or Weibull distribution increases. This is due to the
fact that when � increases the contribution of the gamma or Weibull density to the
overdispersion is reduced and must be compensated by an increased heterogeneity.
The last result can be interpreted in the same way, with the compensation coming
from an increase of 	, i.e. a greater persistence in the process of the latent variable.
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