
ARTICLE  IN  PRESS
Nonlinear Analysis: Real World Applications ( ) –

Contents lists available at ScienceDirect

Nonlinear Analysis: Real World Applications

journal homepage: www.elsevier.com/locate/nonrwa

Particle swarm optimization approach to portfolio optimization
Tunchan Cura ∗

Istanbul University, Faculty of Business Administration, Quantitative Methods, Turkey

a r t i c l e i n f o

Article history:
Received 26 February 2008
Accepted 24 April 2008

Keywords:
Particle swarm optimization
Portfolio optimization
Efficient frontier

a b s t r a c t

The survey of the relevant literature showed that there have been many studies for
portfolio optimization problem and that the number of studies which have investigated
the optimum portfolio using heuristic techniques is quite high. But almost none of these
studies deals with particle swarm optimization (PSO) approach. This study presents a
heuristic approach to portfolio optimization problemusing PSO technique. The test data set
is the weekly prices fromMarch 1992 to September 1997 from the following indices: Hang
Seng in Hong Kong, DAX 100 in Germany, FTSE 100 in UK, S&P 100 in USA and Nikkei in
Japan. This study uses the cardinality constrainedmean-variancemodel. Thus, the portfolio
optimization model is a mixed quadratic and integer programming problem for which
efficient algorithms do not exist. The results of this study are compared with those of the
genetic algorithms, simulated annealing and tabu search approaches. The purpose of this
paper is to apply PSO technique to the portfolio optimization problem. The results show
that particle swarm optimization approach is successful in portfolio optimization.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The particle swarm optimization (PSO) approach is a heuristic technique introduced comparatively recently by Kennedy
and Eberhart [1]. There are very few studies on PSO in the literature, and almost none of them deals with portfolio
optimization (PO). This study presents a new approach to PO using PSO.

PO consists of the portfolio selection problem inwhichwewant to find the optimumway of investing a particular amount
of money in a given set of securities or assets [5]. Although the task of yielding minimum risk and maximum return looks
simple, there is more than one way of establishing an optimum portfolio. Markowitz [2,6] formulated the fundamental
theorem of a mean–variance portfolio framework, which explains the trade-off between mean and variance, representing
expected returns and risk of a portfolio, respectively. An advanced model was introduced by Konno and Yamazaki [3] in
which a mean-absolute deviation (MAD) model and absolute deviation are utilized as a measure of risk. However, it was
insensitive to some extremes, which could be the source of serious error, contrary to the suggestion that the MAD model
is suitable under all circumstances [7]. As Mansini and Sprenza stated [8], most of the portfolio selection models assume a
perfect fractionability of the investments; however, securities are negotiated as multiples of a minimum transaction lot in
the real world, and they suggested amixed integer programmingmodel withminimum lot constraint for portfolio selection.

Some researchers have investigated the multi-period PO case, in which investors invest continuously rather than at
intervals or only once. Celikyurt and Ozekici [15] accomplished this, assuming that there are some economic, social, political
and other factors affecting the asset returns. They formed their stochasticmarketwith respect to these factors, and they used
a Markov chain approach in their study.

This study basically employs the Markowitz mean–variance model. However, the standard model does not contain any
cardinality or bounding constraints, which restrict the number of assets and, the upper and the lower bounds of proportion
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of each asset in the portfolio, respectively. Chang et al. [9] and Fernandez and Gomez [5] used a modified Markowitz model
called a “cardinality constrained mean–variance (CCMV) model”. Here, the CCMV model is used and is solved by a PSO
approach.

There are some reports of solving the PO problem using heuristic methods. These methods consist of genetic algorithms
(GA) [9,6,10], tabu search (TS) [9], simulated annealing (SA) [9,11,12], neural networks [5] and others [13,8,14]. The results
of this study are compared with those of the GA, SA and TS approaches [9]. The test data set is the weekly prices fromMarch
1992 to September 1997 from the following indices: Hang Seng in Hong Kong, DAX 100 in Germany, FTSE 100 in UK, S&P
100 in USA and Nikkei in Japan. The number of different assets for each of the test problems is 31, 85, 89, 98, and 225,
respectively.

2. CCMVmodel for PO

This study uses the CCMV model [9] and [5], which is derived from the well-known Markowitz standard model, which
is:

min
N∑

i=1

N∑
j=1

xixjσij (1)

subject to
N∑

i=1
xiµi = R∗, (2)

N∑
i=1

xi = 1, (3)

0 ≤ xi ≤ 1. i = 1, . . . ,N (4)

where N is the number of different assets, σij is the covariance between returns of assets i and j, xi is the proportion of asset
i in the portfolio, µi is the mean return of asset i and R∗ is the desired mean return of the portfolio.

In order to observe the different objective function values for varying R∗ values, standard practice introduces a risk
aversion parameter λ ∈ [0, 1]. With this new parameter, the model can be described as:

minλ
[

N∑
i=1

N∑
j=1

xixjσij

]
− (1 − λ)

[
N∑

i=1
xiµi

]
(5)

subject to
N∑

i=1
xi = 1, (6)

0 ≤ xi ≤ 1 i = 1, . . . ,N. (7)

When λ is zero, themodel maximizes themean return of the portfolio, regardless of the variance (risk). In contrast, when
λ equals unity, themodelminimizes the risk of the portfolio regardless of themean return. So, we can say that the sensitivity
of the investor to the risk increases as λ approaches unity, while it decreases as λ approaches zero.

Each case with different λ value would have a different objective function value, which is composed of mean return and
variance. Tracing the mean return and variance intersections, we draw a continuous curve that is called an efficient frontier
in the Markowitz theory [2]. Since every point on an efficient frontier curve indicates an optimum, the PO problem is a
multi-objective optimization problem. So, a definition must be adopted for the concept of optimal solution. This study used
the Pareto optimality definition, which questions whether a feasible solution of the PO problem will be an optimal solution
(or non-dominated solution) if there is no other feasible solution improving one objective without making the other worse
[5]. For the problem defined in Eqs. (5)–(7), the efficient frontier is a curve that gives the best trade-off betweenmean return
and risk. Fig. 1 shows such a curve corresponding to the smallest benchmark problem (Hang Seng) described in Section 4.
This efficient frontier has been computed taking 2000 different λ values; that is, there have been 2000 distinct objective
function values for the resulting solutions. Thus, each of the solutions corresponds to a point in the efficient frontier. This
curve was called a standard efficient frontier by Fernandez and Gomez [5].

Some additional variables have to be included in the standardmodel in order to describe the CCMVmodel. As mentioned
above, there are two constraints in the CCMV model in addition to those of the original model. The first one is to restrict K,
the number of assets in the portfolio. If the decision variable zi ∈ {0, 1} is 1, asset iwill be included in the portfolio, otherwise
it will not be. The second constraint is that an included asset’s proportion is within the lower and the upper bounds, εi and
δi, respectively. Thus, the CCMV model is:

minλ
[

N∑
i=1

N∑
j=1

xixjσij

]
− (1 − λ)

[
N∑

i=1
xiµi

]
(8)

subject to
N∑

i=1
xi = 1, (9)
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Fig. 1. Standard efficient frontier corresponding to Hang Seng benchmark problem.

N∑
i=1

zi = K, (10)

εizi ≤ xi ≤ δizi, i = 1, . . . ,N (11)
zi ∈ {0, 1} i = 1, . . . ,N. (12)

In the presence of cardinality and bounding constraints, the resulting efficient frontier, which was called a general
efficient frontier by Fernandez and Gomez [5], can be different from that obtained with the standard model.

3. PSO approach for optimization of the CCMVmodel

The formulation in Eqs. (8)–(12) is a mixed quadratic and integer programming problem for which efficient algorithms
do not exist [5]. Thus, this study, for solving a PO problem, introduces a PSO heuristic method, which is one of the latest
evolutionary optimization methods and is based on the metaphor of social interaction and communication such as bird
flocking and fish schooling. The swarm in PSO consists of a population and eachmember of the population is called a particle,
which represents a portfolio in this study.

This study follows the “gbest neighborhood topology” described by Kennedy et al. [4], according to which, each particle
remembers its best previous position and the best previous position visited by any particle in the whole swarm. In other
words, a particle moves towards its best previous position and towards the best particle.

We can consider that there should be N dimensions, each representing an asset, for each particle. Indeed, this
consideration will organize the swarm formation in this study with two modifications: First, each particle includes
proportion variables denoted by xpi (p = 1, . . . , P, where P is the number of particles in the swarm); Second, each particle
includes decision variables denoted by zpi. Thus, the number of dimensions that a particle owns will be 2 × N.

3.1. Fitness function

Kennedy and Eberhart [1] suggested a fitness value associatedwith each particle. Thus, a particlemoves in solution space
with respect to its previous position where it has met the best fitness value, and the neighbor’s previous position where the
neighbor has met the best fitness value. In this study, the fitness function is defined as:

fp = λ

[
N∑

i=1

N∑
j=1

zpixpizpjxpjσij

]
− (1 − λ)

[
N∑

i=1
zpixpiµi

]
(13)

where fp is the fitness value of particle p.
At each one of the iterations, a particle’s personal best position and the best neighbor in the swarm are updated if an

improvement in any of the best fitness values is observed.
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3.2. Moving a particle

We have mentioned that a particle moves towards its personal best position and towards the best particle of the swarm
at each one of the iterations. Indeed, this movement depends on its current velocity, which is defined as:

vzt+1
pi = vztpi + ω1 × (Gzbi − ztpi) + ω2 × (Gzpi − ztpi) (14)

vxt+1
pi =

{
vxtpi + ω1 × (Gxbi − xtpi) + ω2 × (Gxpi − xtpi) if zt+1

pi = 1,
vxtpi otherwise, (15)

where both ω1 and ω2 denote uniform random numbers between 0 and 2, t and b denote the iteration number and the
best particle in the swarm respectively, vxtpi denotes the velocity of particle p on dimension xi, and vztpi denotes the velocity
of particle p on dimension zi. As seen in Eq. (15), vxt+1

pi will be updated if asset i is selected by particle (or portfolio) p at
iteration t + 1, which means zt+1

pi = 1, and zt+1
pi is described in Eq. (16). Gxpi denotes the best previous position of particle p

on dimension xi, and Gzpi denotes the best previous position of particle p on dimension zi. Thus, particle pmoves at iteration
t + 1 as follows:

zt+1
pi = round

( 1
1 + e−ς

− α

)
(16)

xt+1
pi =

{
xtpi + vxt+1

pi if zt+1
pi = 1,

xtpi otherwise (17)

where ς = ztpi + vzt+1
pi and α is set to 0.06. For a given particle, if the velocity on dimension zti is zero, this particle will not

move in that dimension at iteration t + 1. Suppose vzt+1
pi = 0 and ztpi = 0, hence 1/(1 + e0) = 0.5 and round(0.5) = 1, which

means that particle p will move in dimension zi(z
t+1
pi = 1) at iteration t + 1. In order to avoid such an unwanted move, we

can use α as seen in Eq. (16).

3.3. Constraint satisfaction

As we discussed above, each particle would have been repositioned in 2 × N dimensional search space at the end of any
iteration. We know that particles represent candidate solutions, and each particle must be feasible and satisfy Eqs. (9)–(11).
Usually, the constraints appear in the fitness (energy) function with some penalty weights. Inspired by the similar approach
taken by [9], this study employs the arrangement algorithm shown in Fig. 2 in order to guarantee that any repositioned
particle is feasible.

To explain this representation further, suppose particle p has distinct K∗

p =
∑N

i=1 zpi assets, and Q is the set of assets which
are held by p. If K∗

p < K, then some assets must be added to Q; if K∗

p > K, then some assets must be removed from Q until
K∗

p = K. Let us consider the case where K∗

p < K. We need to decide which of the remaining assets is to be added. This study
suggests exploiting one of the two arrangements with equal probabilities. That is, if a random number between 0 and 1 is
less than 0.5, we select an asset i at random, such that i 6∈ Q , then we add i to Q . Otherwise, we select the maximum c-valued
asset i such that i 6∈ Q and then add i to Q .

θi = 1 + (1 − λ)µi i = 1, . . . ,N (18)

ρi = 1 + λ

N∑
j=1
σij

N
i = 1, . . . ,N (19)

Ω = −1 × min(0, θ1, . . . , θN) (20)
Ψ = −1 × min(0, rho1, . . . , rhoN) (21)

ci =
θi + Ω

ρi +ψ
i = 1, . . . ,N. (22)

For a given asset, c-value basically gives the proportion between mean return and mean risk with respect to aversion
parameter. Thus, this value may give an idea about which asset may be added to or removed from Q . Eqs. (20) and (21) are

used to avoid miscomputation of ci in the extraordinary case(s) of (1 − λ)µi < −1 and/or λ
∑N

j=1 σij
N

< −1.
In the case of K∗

p > K, we need to decide which of the assets is to be removed. This study suggests one of the two
arrangements with equal probabilities, which are (1) randomly selecting an asset in Q then removing it or (2) selecting the
minimum c-valued asset in Q and then eliminating it.

As mentioned above, the xi dimensions of a particle (a candidate solution) give the proportions. Due to Eq. (9), the sum
of xi dimensions where i ∈ Q must be equal to 1. Let χ be the current sum of xi. If we reposition xpi = xpi/χ for all i ∈ Q , then
Eq. (9) will be satisfied.
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Fig. 2. Arrangement algorithm for particle p.

According to Eq. (11), we need to satisfy εi ≤ xpi ≤ δi for all i ∈ Q as well. Let ti = δi − xpi and δ∗ be the sum of ti, where
i ∈ Q and ti > 0. Let ei = xpi − εi and ε∗ be the sum of ei, where i ∈ Q and ei > 0. Let η be the sum of (−1 × ti) where iEQ
and ti < 0, let O(Φ) be the sum of (−1× ei) where i ∈ Q , and ei < 0. If particle p exceeds the upper bound or goes below the
lower bound on any dimension then it will be arranged as follows:

xpi =


xpi +

ti
δ∗
η if ti > 0

δi if ti < 0
xpi −

ei
ε∗
φ if ei > 0

εi otherwise

∀i ∈ Q. (23)

3.4. PSO heuristic

Bringing together all that we have discussed until now, the PSO heuristic used in this study is shown in Fig. 3.

4. Computational experiments

In this section, we present the results obtained when searching the general efficient frontier that provides the
solution of the problem formulated in Eqs. (8)–(12). The PSO approach of this study has been compared to three other
approaches, GA, TS and SA [9]. The test data, which have been used elsewhere ([5] and [9]), were obtained from
http://people.brunel.ac.uk/%7Emastjjb/jeb/orlib/portinfo.html. These data correspond to weekly prices between March
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Table 1
The experimental results of four heuristics

Index Assets GA TS SA PSO

Hang Seng 31 Mean Euclidian distance 0.0040 0.0040 0.0040 0.0049
Contribution percentage (%) 64.7059 19.6078 5.8824 9.8039
Variance of return error (%) 1.6441 1.6578 1.6628 2.2421
Mean return error (%) 0.6072 0.6107 0.6238 0.7427
Time (s) 18 9 10 34

DAX 100 85 Mean Euclidian distance 0.0076 0.0082 0.0078 0.0090
Contribution percentage (%) 31.3725 19.6078 19.6078 29.4118
Variance of return error (%) 7.2180 9.0309 8.5485 6.8588
Mean return error (%) 1.2791 1.9078 1.2817 1.5885
Time (s) 99 42 52 179

FTSE 100 89 Mean Euclidian distance 0.0020 0.0021 0.0021 0.0022
Contribution percentage (%) 45.0980 15.6863 11.7647 27.4510
Variance of return error (%) 2.8660 4.0123 3.8205 3.0596
Mean return error (%) 0.3277 0.3298 0.3304 0.3640
Time (s) 106 42 55 190

S&P 100 98 Mean Euclidian distance 0.0041 0.0041 0.0041 0.0052
Contribution percentage (%) 27.4510 17.6471 27.4510 27.4510
Variance of return error (%) 3.4802 5.7139 5.4247 3.9136
Mean return error (%) 1.2258 0.7125 0.8416 1.4040
Time (s) 126 51 66 214

Nikkei 225 Mean Euclidian distance 0.0093 0.0010 0.0010 0.0019
Contribution percentage (%) 43.1373 23.5294 21.5686 11.7647
Variance of return error (%) 1.2056 1.2431 1.2017 2.4274
Mean return error (%) 5.3266 0.4207 0.4126 0.7997
Time (s) 742 234 286 919

Fig. 3. PSO heuristic for PO.

1992 and September 1997 from the indices: Hang Seng in Hong Kong, DAX 100 in Germany, FTSE 100 in UK, S&P 100 in USA
and Nikkei 225 in Japan. For each set of test data, the number, N, of different assets is 31, 85, 89, 98 and 225, respectively.

All the results have been computed using the values K = 10, εi = 0.01 (i = 1, . . . ,N) and δi = 1 (i = 1, . . . ,N) for the
problem formulation, and ∆λ = 0.02 for the implementation of the algorithms. Since ∆λ = 0.02, the number of different λ
values, denoted by ξ, is 51. The algorithms used the same test data andwere run on the same PentiumM2.13 GHz computer
with 1 GB RAM. Each of the four heuristics has evaluated 1000N portfolios without counting the initializations.

Taking the sets of Pareto optimal portfolios obtainedwith each heuristic, we trace out their heuristic efficient frontier. This
study compared the standard efficient frontiers and the corresponding heuristic efficient frontiers. For comparison of the
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Fig. 4. Heuristic efficient frontiers for Hang Seng and DAX 100.

standard efficient frontier and the heuristic efficient frontier, this study has used mean Euclidian distance, contribution
percentage, variance of return error, mean return error and execution time (in units of seconds). Table 1 shows the
comparative results, and Figs. 4–6 show the comparison of efficient frontiers.

Let the pair (vsi , rsi ) (i = 1, . . . , 2000) represent the variance andmean return of the point in the standard efficient frontier,
and let the pair (vhj , r

h
j ) (j = 1, . . . , ξ) represent the variance and mean return of the point in the heuristic efficient frontier.
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Fig. 5. Heuristic efficient frontiers for FTSE 100 and S&P 100.

Thus, let
(
vsij , r

s
ij

)
be the closest standard point to the heuristic point (vhj , r

h
j ), where ij is defined as:

ij = argmin
i=1,...,2000

(√(
vsi − vhj

)2
+

(
rsi − rhj

)2)
j = 1, . . . , ξ. (24)
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Fig. 6. Heuristic efficient frontiers for Nikkei.

Thus, we have defined mean Euclidian distance as:(
ξ∑

j=1

√(
vsij − vhj

)2
+

(
rsij − rhj

)2)/
ξ.

Inspired by the analysis described by Fernandez and Gomez [5], we have merged the heuristic efficient frontiers into
one (see Fig. 7), and we have removed the dominated solutions from it. Thus, the contribution percentage measure, for
any given result of the heuristic algorithms, gives us the proportion of the surviving points to the entire merged heuristic
efficient frontier. Note that, the neural network approach [5] gives similar solutions to those of this study. In other words, it
finds better solutionswhen dealingwith portfolios that demand low risk of investment policies as well. However, the neural
network approach cannot find better solutions for the Hang Seng benchmark problem.

The other two measures, which are variance of return error and mean return error, have been defined as:(
ξ∑

j=1
100

∣∣∣vsij − vhj

∣∣∣ /vhj
)

×
1
ξ

and (
ξ∑

j=1
100

∣∣∣rsij − rhj

∣∣∣ /rhj
)

×
1
ξ

respectively.

5. Conclusion

This studywas focused on solving the portfolio selection problemand tracing out its efficient frontier. AMarkowitz-based
cardinality constrained mean–variance model that includes cardinality and bounding constraints was used to develop a
particle swarm optimization-based heuristic method. The results were compared to those obtained from heuristic methods
based on (1) genetic algorithms, (2) tabu search and (3) simulated annealing.

The experimental results have shown that none of the four heuristics has clearly outperformed the others in all kinds of
investment policies. However, Fig. 7 shows that, when dealing with problem instances that demand portfolios with a low
risk of investment, the particle swarm optimization model gives better solutions than the other heuristic methods.
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Fig. 7. Contributions to the merged efficient frontiers.
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