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Abstract—A portfolio optimisation problem involves allocation

of investment to a number of different assets to maximize yield
and minimize risk in a given investment period. The selected assets
in a portfolio not only collectively contribute to its yield but also
interactively define its risk as usually measured by a portfolio
variance. In this paper we apply various techniques of
multiobjective genetic algorithms to solve portfolio optimization
with some realistic constraints, namely cardinality constraints,
floor constraints and round-lot constraints. The algorithms
experimented in this paper are Vector Evaluated Genetic
Algorithm (VEGA), Fuzzy VEGA, Multiobjective Optimization
Genetic Algorithm (MOGA) , Strength Pareto Evolutionary
Algorithm 2" version (SPEA2) and Non-Dominated Sorting
Genetic Algorithm 2™ version (NSGA2). The results show that
using fuzzy logic to combine optimization objectives of VEGA (in
VEGA_Fuzl) for this problem does improve performances
measured by Generation Distance (GD) defined by average
distances of the last generation of population to the nearest
members of the true Pareto front but its solutions tend to cluster
around a few points. MOGA and SPEA2 use some diversification
algorithms and they perform better in terms of finding diverse
solutions around Pareto front. SPEA2 performs the best even for
comparatively small number of generations. NSGA2 performs
closed to that of SPEA2 in GD but poor in distribution.
Index Terms— Portfolio optimisation, Investment management,
Multiobjective Genetic Algorithms, Vector Evaluated Genetic
Algorithm, VEGA, Strength Pareto Evolutionary Algorithm,
SPEA2, Fuzzy VEGA.

I. INTRODUCTION

Different exact techniques have been used to solve the portfolio
optimisation problems. These techniques usually involve the
exploration of the large number of combinations of states which
increases exponentially with the size of problem becoming
computationally intractable [1]. Furthermore, many of these
techniques are inept in handling the nonlinear objective and
constraint functions and several assumptions are generally
required to make the problem solvable using reasonable
computational ~ resources  [2].  Alternatively,  some
heuristic-based and evolutionary techniques can approximate
solutions for problem instances of NP-hard problems in a
reasonable time [3]. Those techniques can tackle the
optimisation problems in polynomial time with a traded-off of
their optimality. In some circumstances of the real world
problems, the speed to reach acceptable approximate solutions
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is very critical. Feasible near-optimum solutions are acceptable
but untimely are not. Simple heuristics, based on greedy search
algorithms, tend to stop in inferior local optima.

Genetic Algorithms (GA) are population based heuristic
algorithms. In GA, solutions are represented as chromosomes
that to be breed by crossover or modified by mutation.
Selection processes are used to find optimal or near-optimal
solutions imitating the natural selection of survival of the fittest
[2]. Busetti [4] compared GA with tabu search and found that
GA performs better for portfolio optimization problems for the
problem setting considered. Streichart et al. [5] applied the
Multi-Objective Evolutionary Algorithm (MOEA) to solve
portfolio optimization problem. Earlier Tettamanzi et al. (cited
in [6]-[8] ) transformed the multi objective optimization
problem into a single-objective problem by using a trade-off
function (therefore not a true multi-objective). Mukherjee et al.
[9] also solved the risk-return trade off problem that similar to
portfolio optimisation problem by MOEA. The paper compared
performance of different GA representations of portfolio
optimization with several combinations of real world
constraints on the Hang Seng data set with 31 assets. The
representations are binary bit-string based genotypes or
gray-code encoding and real-valued genotype. The constraints
imposed on the optimisation problems are cardinality and
integer (discrete) constraints. In another paper Streichert et al.
[10] introduced an alternative hybrid encoding for evolutionary
algorithms, which combines both ‘continuous’ real value and
‘discrete’ binary value together. The algorithm then compared
with the different EA representations. When the algorithm and
the other EAs without Larmarckism (the genetic encoding can
be adapted and changed not only by mating and mutations but
also during evaluations). was applied on the problem with only
cardinality constraints, the algorithms performed better than
those of standard EAs. Subbu et al. [11] presented a new hybrid
evolutionary multi-objective portfolio optimisation problem
algorithm called Pareto Sorting Evolutionary Algorithm (PSEA)
that integrates evolutionary computation with linear
programming. However, the aim of the paper was only to design
algorithm and architecture for portfolio optimization not to
measure or compare performance of the algorithm.

In this paper we propose to investigate the performance of
various multi-objective genetic algorithms to solve portfolio
optimization problem with some realistic constraints. We also
extend genetic algorithms for multi-objective optimization by
applying fuzzy logic into their evaluation and selection which
are tested along with other standard multi-objective genetic
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algorithms. The paper is organized as follow. The next section
presents the structure of portfolio optimization problem.
Section III describes the algorithms to be tested in this paper.
Section V gives details of the problems and experiment setting.
Section V is to report the results, and the last section concludes
the paper.

I'l. THEPROBLEM

Modern portfolio theory originated in a paper by Harry M.
Markowitz in 1952 [12]]. The theory stated that an investor
should not select assets due to only characteristics that are
particular to the assets but she/he need to consider how each
asset co-moved with all other assets. Moreover, by taking into
account of these co-movements, an investor can construct a
portfolio that has less risk given the same expected yield than a
portfolio constructed by ignoring the interaction between
securities [13].

The Markowitz model is a well-defined optimisation model
and with some modification later by Black [14]] to allow
short-selling (allowing negative weights of assets) the model
has a closed form solution. By removing some realistic
assumptions such as the non-negativity constraints (i.e. no short
sell on any assets are allowed); the integer constraints (i.e.
shares of assets cannot be divided into lower than their trading
units,) etc., the model has a general form which has only the
assets’ expected yields, the variance and covariance of the
assets are parameters. On the other hand, if we impose the
non-negativity constraint, there exists no general form (closed
form) solution for the optimisation problem. Although the
model with non-negativity constraint can be solved efficiently
by specialised algorithms and other ad hoc methods, imposing
other constraints (e.g. the integer constraint or maximum
number of asset constraint) will cause large-scale problems
became unable to be solved by mixed integer non-linear
programming or other exact solution algorithms, within a
reasonable time [4] . The portfolio optimisation problems with
realistic constraints are NP hard problem especially for those of
exact solutions. The methods require complete enumeration
where all possible and valid values for the decision variables
are tested.

The Markowitz model assumes that investors make their
decision in portfolio construction by choosing assets that
maximise their portfolio yields at the end of investment period
(expected yields). By assuming that investors are risk averse,
the simplest model with a number of unrealistic constraints
namely, perfect market without taxes, no transaction costs, no
short sales, assets are infinitely divisible, the Markowitz
portfolio optimisation can be stated mathematically as follows:
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Where ojis covariance between asset i and j, if i = j, it is
variance of asset i.
o is variance of the portfolio of assets.
r; is expected yield of asset i
rp is the expected yield of the portfolio
1" is a predefined level of yield

These additional conditions must hold so that the
optimisation has a solution:
min ; r, < rp < omax ;7 (7)
o, > 0 Vi (8)
py; >-1 VG, J) )
3(i# j) such that T 10)

Where o;is standard deviation (square root of variance) of
asset i.
pjjis correlation coefficient of asset i and asset
1j is expected yield of asset j

The Markowitz model is a simplified model to focus only a
theoretical point of view. In the real world of investment
management, portfolio managers face a number of realistic
constraints those arise from normal business practices, practical
matters and industry regulations. The realistic constraints that
are of practical importance include (not exhaustively) round-lot
constraints, cardinality constraints, floor constraints, turnover
constraints, trading constraints, buy-in threshold and
transaction cost inclusions. For this paper, we will concern only
round-lot constraint, cardinality constraint and buy-in (floor)
constraint.

Round-lot constraint make the number of any asset include
in the portfolio must be multiples of normal trading lot. The

round-lot constraints can be expressed as

X, = - (i)

>

i=1

and

n,mod I, = 0 Vi

12)

Where »;is number of unit of asset (share) and /;is trading lot
of the asset 1.
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Cardinality constraints are the maximum number and
minimum number of assets that a portfolio manager wishes to
include in the portfolio due to monitoring reasons or
diversification reasons or transaction cost control reasons [14].
The constraints can be expressed as follows

N
G<3n<C 13
i=1

whereb, =1 if x, >0 and b, =0, otherwise

where C; and C, are the lowest number of assets and the highest
number of assets required to include in a portfolio respectively.

Floor constraint defines lower limits on the proportion of
each asset, which can be hold in a portfolio. These constraints
may result from institutional policy in order to diversify
portfolio and to rule out negligible holding of assets for the ease
of control [1]. They can be expressed mathematically as follows

f<x, Vi (14)

Where f;is the lowest proportion and the highest proportion that
asset 1 can be held in the portfolio.
In this paper, we are to solve multi-objective portfolio
optimization problem by using genetic algorithm as follow:
Max Portfolio Expected Yield
Min  Portfolio Variance of Yield
Max Sampling Distance (only VEGA Fuz2)
Subject to:
Y x; =1 and x; >= 0 for all i;
Cardinality Constraint (max only) according to (13)
Floor Constraint according to (14)
Round-lot Constraint according to (11) and (12)

For all constraints handling, we use repair algorithms as
described in section III A, so there are only two objectives for
multi-objective genetic algorithms to optimize. Sampling
Distance is adopted to be one of objective functions as a
mechanism to preserve distribution along the Pareto front.

I'1l. THE ALGORITHMS

Four GA based approaches are implemented to solve the
portfolio optimization model discussed in the previous section..
We first experiment with Vector Evaluated Genetic Algorithm
(VEGA) which is an extended version of single objective GA to
handle multi-objective in a single run. Although VEGA is
usually outperformed by other newer algorithms such as
MOGA, SPEA and SPEA2, it is the best in term of complexity
and easy to implement [17],[20]. We aim to improve VEGA by
using Fuzzy Logic to enable joint evaluation of the both
objectives as well as try to integrate a simple distribution
preservation mechanism which does not increase complexity,
as described in subsection C. We compare the results to
MOGA which is wildly used multi-objective GA and SPEA2
which is recently considered among the best of multi-objective
GAs for its performances.
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A.  Algorithms Design

Problem representation: The problem is represented by
hybrid encoding [10],[15] A pair of genetic strings stands for a
particular portfolio (an individual of population). The binary
value string represents which stocks (or assets) are included in
portfolio (0 stands for not included and 1 stands for included.)
The real value string represents weights of each stock in
portfolio. So, the lengths of both strings are equal to the number
of stocks in the market (or the stocks of interest.) Before, repair
process by the repair algorithm begins both strings combine by
scalar product of the Binary string and the Real value string.
Then after the repair process ended, the combined string
separates into new and normalized Binary string and Real value
string.

1 0 0 1 0 1 1 0 0 Binary String

+

Real Value String

Combined String

Fig 1: Problem Representation: Binary String, Real Value String
and Combined String

GA operators: Crossover and mutation operations are
performed independently for both strings. But before
evaluation both strings need to be combined so that the
objective values can be calculated. Crossover operation for all
GAs is three-point crossover by randomly select three points for
the string independently. Mutation operation for all algorithms
in this paper is one-point mutation by randomly selecting the
mutation point. For Binary strings, the mutation is flip-flop
mutation by changing from 1 to 0 and 0 to 1 respectively. For
Real value strings, the mutation point is added by random
number (between 0 and 1) multiply by 0.05 (5% weight).

Repair  Algorithms and Constraint Handling: All
constraints are handled through a repair algorithm. The
algorithms were proposed and used in [5],[10] and [15]. The
constraints in this setting are unity constraint (the sum of
weights must be equal to one), cardinality constraints, floor
(buy-in) constraints and round-lot constraints.

The repair algorithm first handles the cardinality constraints
by setting smaller (S-K) values (from S values) of combined
string to zero, where S is the number of selectable stocks (equal
to the length of the strings) and K is the maximum number of
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stocks permitted in a portfolio (cardinality constraint.) Then, it
handles floor constraint (buy-in threshold) by setting stocks
whose weights below the buy-in threshold to zero. Next, it
normalizes those remaining non-zero weights to make all
weight sum to 1 by setting w,-/ =L+ wi—1)/2(w;—1;), where
w; is non-zero weight of stock i and 1; is the buy-in threshold
(the minimum weight amount that can be purchase) for stock i.
Then, the round-lot constraints are handled by rounding the
non-zero weights to the next round-lot level such that w! =w/!-
(w,~/ mod c;), where, c; is the smallest volumes can be normally
purchased from the stock market for stock i. The remainder of
the rounding process (X w; mod ¢; ) is allocated in quantity of ¢;
to wi// which has the biggest value of w,-/ mod c; until all of the
remainder is depleted.

All pairs of strings first are filled with random number, so,
they need to be repaired by the repair algorithm. And since
crossover and mutation operations cause the string deformed,
the repair algorithm need to be applied again to preserve the
aforementioned constraints before the evaluations and
selections.

B Vector Evaluated Genetic Algorithm (VEGA)

The Vector Evaluated Genetic Algorithm is proposed by
[16] as an extension of a simple genetic algorithm to handle
multiple objectives in a single run. VEGA is a criterion-based
fitness assignment, which is filling equal portions of mating
pool according to the different objectives [17]. For m
optimization objectives and a fixed population size as P, VEGA
randomly selects m subpopulations with the size of P/m each so
there are i = 1 to m subpopulation. Each individual in
subpopulation i will be evaluated based on the optimization
objective i.  After probabilistic selections based on relative
objective values (two for this experiment i.e. relative yield
which is defined by yield of asset i / maximum yield of any asset
in the population and relative variance which is defined by
variance of asset i / minimum variance of any asset in the
population), the selected individual from each subpopulation is
shuffled and pooled together to form a new population of size P.
The new population is then followed by crossover and mutation
operations. The whole process is repeated until the
predetermined condition is met (in this case, the total number of
generations has been reached. VEGA is usually has O (n)
complexity for each generation of population, where, n is the
number of individuals in a population. VEGA main routine is
exhibit in Figure 2.
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Initialize generation counter: # = 0
Create a population, Pop.
Repeat while stopping criteria is not met.
Initialize subpopulation counter: / = 1.
Repeat while / <=m
Generate / th subpopulation, SubPop (i), by randomly
selecting P/m individuals from Pop.

Remove any individuals SubPop (i) from Pop.
Generate the / th objective function values, F(7), for
individuals in SubPop (/).

Perform genetic selection on SubPop (/) based on

Fi).
f=7+ 1

End Repeat

Pop = Integrate all SubPop(i).

Shuffle the individual sequence in Pop.

N=N+1
End Repeat
Evaluate Pop for all objective function values for all F(i).
Return (Pop, all F(i),...)

Fig 2: VEGA Main Routine

C. Fuzzy VEGA

VEGA tends to converge towards one objective best solution,
thus it is quite incompatible with multiobjective optimization in
which we try to trade-oft between objectives. Introducing fuzzy
logic into VEGA may facilitate the traded-off between
objectives. We incorporate a fuzzy decision rule to combine
optimization objectives together. The fuzzy decision rule
dictates the probability of selection for each individual. For the
first Fuzzy VEGA (VEGA_Fuzl), Fuzzy decision rule
combines two objective functions i.e. portfolio yield and
portfolio variance of yield. The Fuzzy rule is exhibit in Table 1.
VEGA_Fuzl1 is then modified to incorporate distribution
preservation mechanism by setting Sampling distribution (with
25 samples for all populations) as an additional objective
function. We call this version as VEGA_Fuz2. Fuzzy logic with
3 objectives is quite cumbersome and unable to be displayed in
a 2 dimension table like Table 1. The Fuzzy logic is composed
of 6® or 216 rules (Sampling distribution is graded to max, very
high, high, moderate, low and very low). The main loop of
Fuzzy VEGA is exhibited in Figure 3 below.

INITIALIZE GENERATION COUNTER: ¥ = 0
Create a population, Pop.
Repeat while stopping criteria is not met.
Repeat while / <=m
Generate the / th objective function values, F(7), for
individuals in Pop.
End Repeat
Fuzzify of the objective function values.
Apply Fuzzy rules to the Fuzzified objectives giving Fuzzy
value.
Defuzzify the Fuzzy value to get selecting probability p.
Perform genetic selection on Pop by probability p.
N=N~+1
End Repeat

Evaluate Pop for all objective function values for all F(i).
Raturn (Pnn all F(i) ]

Fig 3: Fuzzy VEGA Main Routine
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TABLE I
Fuzzy RULE FOR Fuzzy VEGA (VEGA_Fuzl)

Y | Var|Min Very Lo |Low Moderate |High Very
High
Max Certai |Highly |Highly Likely Likely |Probably
n Likely Likely
Very Highly | Highly | Likely Likely Probably | Probably
High Likely |Likely
High Highly | Likely  |Likely Likely Probably | Probably
Likely
Moderat | Likely |Likely Likely Probably |Unlikely | Highly
e Unlikely
Low Likely |Probably |Probably |Unlikely |Unlikely | Highly
Unlikely
Very Probab | Probably |Probably |Unlikely |[Highly |Never
Low ly Unlikely

In Table 1, we derive Fuzzy decision rules based on joint
optimality of the objective functions (yield and variance in
VEGA_Fuzl, and yield, variance and sampling distance inn
VEGA Fuz 2). The most desirable is when there are maximum
yield and minimum variance (and maximum sampling
distance) . While least desirable one is when there are very low
yield and very high variance (and very low sampling distance).
The subjective desirable of combined objective values is then
assigned probabilities of selection. The probabilities of
selection are set to 7 levels accordingly. Certain, Highly Likely,
Likely, Probably, Unlikely, Highly Unlikely and Never
represent probabilities of selection of 1.0, 0.9, 0.75, 0.5, 0.35,
01 and 0.0 accordingly. The second version of fuzzy VEGA
(VEGA_Fuz2) is different from VEGA Fuzl by combining an
additional objective, sampling distance by randomly selecting
25 different individuals from populations (we use sampling
instead of plain distance to reduce the complexity of the
algorithm.) into fuzzy rule. The sampling distance here is used
the same formula as Sharing Distance in MOGA as described in
subsection D but does not calculate from all individuals, only
25 randomly selected from all individuals in the population.
The fuzzy rule prefers more sampling distance to less to correct
clustering problems of both VEGA and VEGA Fuzl.

D. MOGA

MOGA employed in this paper is based on the algorithm
proposed by Fonseca and Flemming in 1993 [18] . MOGA uses
Pareto rankings to assign the smallest ranking value to all non-
dominated individuals. For dominated individuals, they are
ranked by how many individuals in the population dominate
them. Thus, the raw fitness of an individual is an inverse
function of its Pareto rank. In order to distribute the individual
in the population evenly along the Pareto front, the overall
fitness function is then adjusted by sum of sharing distance. The
sharing distance between individuals i and j is given by
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SF (i, j) otherwise

Where, d(X;, Xj) is a metric distance between two individuals in
objective domain, Gy, is @ predefined sharing distance. And,
the overall fitness is defined by

Sharing Fit (i) = _fu@®
2. SF (i, ))

where fit(i) is the inverse of Pareto rank(i) (1/rank(i) in this

test).

The overall fitness values of individuals are to be used in
the probabilistic selection process by the comparative overall
fitness to the individual that has maximum overall fitness. The
comparative fitness values are used to compare with random
number. If they exceed the random number, the individual will
be selected (roulette selection method.) MOGA usually has O
(n%) for a single round, because it needs to compute Pareto ranks
and the sharing distance for all individuals.

E.  Strength Pareto Evolutionary Algorithm 2 (SPEA2)

SPEA2 proposed by Zizler et al. [18] as an improvement of
the original SPEA. Like SPEA, SPEA 2 uses two population of
size P, the first (P) for the population and the second (P’) for the
archive. In SPEA, all non-dominated individuals in population
P are copied to the archive P’, so the size of the archive P’ is
varied from generation to generation. However, in SPEA2, the
size of P’ is fixed thus if the non-dominated individuals in a
generation exceeds the size of P’, they will be truncated, on the
other hand, if they is less than P’, some dominate individuals
need to be added in the archive P’. The truncation and addition
of dominated individuals are incorporate density information as
a strategy to make the solutions distribute along the Pareto front.
The density estimation of an individual i is defined as D(i) =
1/(d;+2), where d; is the distance of individual i from the nearest
neighbor.

SPEA?2 first selects all non-dominated individuals from the
population P in the first round and then selects the combined
population of P and archive of P’ in the subsequent rounds.
Unlike VEGAs and MOGA, the selection is deterministic rather
than probabilistic. If the number of non-dominated individuals
exceeds the fixed size of the archive P’, the excess individuals
will selects based on the density estimation. And if the
non-dominated individuals fall short of the size of P’, then the
remaining non-dominated individuals (the next best Pareto
front) will be selected until the archive has been filled. If
however, the last selected Pareto front that exceed the size, the
same truncation method will be employed. SPEA2 usually has
O (n® log n) a single round, due to the density estimation
calculation [17]
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F. Nondominated Sorting Genetic Algoerithm 2 (NSGA2)

NSGA2 proposed by Deb et al. [19] as an improvement of
the original NPGA. NPGA 2 uses two population of size P, the
first (P) for the parent population and the second (P’) for the
offspring population. The two populations are combined for the
selection process. All individuals in combined population are to
be pass through the Fast Non-dominate Sorting (for Pareto
ranking) and the Crowding Distance Assignment (for density
(for distribution preservation). The algorithm first select all
individuals that have Pareto rank smaller than P™ element in the
sorted vector of combined population (always less than P
individuals.) The remaining individuals need to fill up the
selected population to P individuals are to be selected based on
the Crowding Distance Assignment (more to less.) The Fast
Distance Assignment and the Crowding Distance Assignment
have the overall complexity of O(MP?) and O(MPlogP)
respectively, where M is the number of objective functions.

V. THE EXPERIMENTS

We run experiment on data from OR library that maintained
by Prof. Beasley as a public benchmark data set (derived from
Heng Seng data set with 31 stocks.) The data can be found at
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html
Two problem instances are considered for the experimentation:
the case of cardinality constraint is the number of stocks in a
portfolio is not larger than 10 (K = 10) and the case of
cardinality constraints is the number of stocks in a portfolio is
not larger than 5 (K = 5). For each case experiments have been
run using VEGA, VEGA_Fuzl, VEGA_Fuz2, MOGA SPEA2,
and NSGA2. The general approach adopted during the tests of
each of the GA was to conduct 10 runs until the stopping
criterion (a given number of generations) is reached. VEGA,
VEGA Fuzl, VEGA Fuz2, MOGA, SPEA2 and NSGA2
results were recorded for 500, 1000 and 5000 generations with
the number of population is 400.

The performance is measured by Generation Distance (GD)
[19] for the last generation of the tests. GD is given as follow:

1 & 2
Vnz?

Where, d; is the nearest distance between Pareto front of the
results (PF known) and Pareto front of the benchmark solutions
provided by the OR-library (PF true) and n is the number of
population.

GD = (17)

V. THE RESULTS

The graphical results of known Pareto fronts for VEGA,
VEGA_Fuzl, VEGA_Fuz2, MOGA, SPEA2 and NSGA2 (N =
5000) are shown in Figure 4. SPEA2 seems to be the best when
compare to the true Pareto front proximate by no constraint
efficient front (NC Eff. Front) both in the terms of the closeness
and distribution along the true front. VEGA does not perform
well both in closeness to the true Pareto front (NC_Eff Front)
and distribution along the known Pareto front. The results tend
to cluster in two separate areas and not forming a line. This is

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

caused by break up the population into subpopulations and each
subpopulation is selected based on only single subpopulation
alone. Also there is no any distribution preservation mechanism.
For VEGA Fuzl, the Fuzzy logic that combines the two
objective together help improving the performance, especially
for the closeness from the true Pareto front. In figure 4, the
results from VEGA_Fuzl tend to be clustered in a single area,
also not forming a line along the Pareto front. But they seem to
be quite close to the true Pareto front in its clustering area. Also,
when we consider the Generation Distance (GD), in
VEGA_Fuzl1 the results are better than VEGA and are closed to
those of MOGA. Thus, using Fuzzy logic to combine the two
objectives and make evaluation by using Fuzzy rules does
improve the performance in the term of the accuracy (as
measured by GD). On the other hand, make selections based on
Fuzzy rules of only two objective functions, the results tends to
be clustered on the moderate areas not to the extreme ends, the
two objectives are collapsed into a single combined objective.
VEGA Fuz2 is designed to make the results to be more
distributed along the true Pareto front by including a third
objective (sampling distance) into the Fuzzy rules of selection.
The results of VEGA_Fuz2 are more distributed along the
Pareto front than those of VEGA and VEGA Fuzl (see Fig 4).
However, its performances in the term of GDs are not
impressive, even though, they show some improvement from
those of VEGA. This can be concluded that the inclusion of
Sampling Distance into the Fuzzy rules helps to make the
results more distributed but compromises the accuracy of the
results. In figure 5, NSGA2’s performance is almost inline with
the Efficient Front but the distribution along the front is poor
because.only a few points exist. .

This supports the claim that SPEA2 is among the best
MOEAs. We can conclude that SPEA2 is also well applicable
to portfolio optimization problems with realistic constraints as
in this paper. Figure 6, 7 and 8 show GDs for all algorithms at
500, 1000 and 5000 populations (rounds) respectively, it also
confirms the graphical results and the conclusion above of
SPEA2.

0.006

0.005 !
0.004 3

+ NC Eff Front

3 _."7 - VEGA
S 0.003 ¥ VEGA_Fuz1
8 * e MOGA
> 0.002 t A e 2 * VEGA_Fuz2
- P - SPEA2
kXX X g
0.001 o A St S + NPGA2
: ——

0

0 0.002 0.004 0.006 0.008 0.01 0.012
Yield

Fig 4: The Results for N= 5000
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0.006

0.005

0.004 I
+ Eff Front
= N=500

0.003

N=1000
N=5000
0.002

Variance

0.001 ~
o -
o 0.002 0.004 0.006 0.008 0.01 0.012 ;;
Yield i
Fig 5: NSGA2 with N=500, 1000 and 5000 gi
Comparing performance by using Generational Distances gw
(GD) for different setting of cardinality constraint (K as the ] %@E
number of maximum stocks can be held in a portfolio), (see 4 1
figures 6 and 7) we found that for N= 500, SPEA2 performs the VEGA g-gggzg‘;
best for both of instances (K = 5 and K =10). MOGA and BVEGA Fuzi G000k
NSGA2 perform roughly the same. VEGA Fuz 1 performs [BVEGA_Fuzt 0.000467548
moderately. VEGA Fuz2 is the second worst and VEGA is the |mVEGA_Fuz2 0.001687194
worst. However, Figure 4 shows that VEGA Fuz 1 does not EIVEGA Fuz2 0.001652009
e\./en.ly .distributed while VEGA_Fuz 2 improves the zzggj g;zggfzzzz;
distributions but has to traded off with performance. E1SPEA2 0.000111895
The results can be concluded that Pareto selections (used in mSPEA2 0.000117332_
MOGA, NSGA2, SPEA2 and NSGA2) are among the ONSGA2 0.00017069
outperforming group vector selections as used in VEGA, M 0000228

however, incorporating Fuzzy logic into the vector selections
do make an improvement. By mixing distribution preservation
mechanism with objective functions (in the term of sharing fit in
MOGA and Fuzzy rule in VEGA_Fuzzy) worsens the closeness
performance (as measured by GD). Thus the distribution
preservation mechanism should be set as a separate mechanism
so that it will not interfere with the objective evaluation (as in
SPEA2). Although VEGA Fuzl is not appropriate for find a
Pareto front because of lacking distribution preservation
mechanism, it could still be fine for any problems that do not
require a set of traded off solutions. The advantage is that it has
only O (n) time complexity and subjectively flexible of setting
preferences for each objective.

mvEGA K=10 0.002209982
loveGak=5 0.002210911
B VEGA Fuz1 K=10 0.000467216
EVEGA Fuzt K= 0.000466008
lmvEGA_Fuz2 k=10 0.00192142
}QVEGA Fuz2 K= 0.001771447
EMOGA K=10 0.000190685
[BMOGA K=5 0.000168113
[m1 SPEA2 K=10 0.000109458
SPEA2K=5 0.000107645
ONSGA2 K=10

[DNsGA2 k=5

Fig 7: Generational Distance (GD) for N = 1000
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[mveca 0.0022085
|oVEGA 0.00221647
B VEGA_Fuzl 0.00047130
@ VEGA_Fuzi 0.00046998
@ VEGA_Fuz2 0.00171529
FVEGA_Fuz2 0.00176472
G MOGA 0.00031620
MOGA 0.00034251
@ SPEA2 0.0001137
8 SPEA2 0.0001137
|oNsGA2 0.00066712
|oNsGA 0.00018599

Fig 8: Generational Distance (GD) for N = 5000

VI. CONCLUSION

In this paper we apply various techniques of multiobjective
genetic algorithms to solve portfolio optimization with some
realistic constraints, namely cardinality constraints, floor
constraints and round-lot constraints. We apply fuzzy logic to
see whether it can improve performances of the Vector
Evaluated Genetic Algorithm (VEGA). The results show that
using fuzzy logic to combine optimization objectives of VEGA
(in VEGA Fuzl) for this problem does improve performances
especially in Generation Distance from the true Pareto front to
comparable of those of MOGA even though VEGA Fuz 1 is
basically O(n) while MOGA is O(n?) but its solutions are tends
to cluster around a few points. With additional fuzzy rules of
Sampling Distance to make VEGA solutions are more
distributed, the closeness performances are worsening. MOGA
and SPEA2 are more complex algorithms but they perform
better. SPEA2 perform the best even in comparatively small
numbers of generation (N) and also has a good distribution
along the Pareto front.
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