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Abstract

We propose a model for portfolio optimization extending the Markowitz mean–variance model. Based on coop-

eration with Standard and Poor�s we use five specific objectives related to risk and return and allow consideration of

individual preferences through the construction of decision-maker specific utility functions and an additive global utility

function. Numerical results using customized local search, simulated annealing, tabu search and genetic algorithm

heuristics show that problems of practically relevant size can be solved quickly.
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1. Portfolio optimization

The Markowitz covariance model (Markowitz, 1952, 1959), the classical approach to portfolio optimi-

zation, is based on two conflicting optimization criteria: On one hand, the risk of a portfolio, represented by

its variance, is to be minimized, while on the other hand the expected return of the portfolio is to be

maximized. This naturally leads to the following bicriteria formulation of the problem:
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Here,M denotes the number of available assets; xi represents the investment portion in asset i 2 f1; . . . ;Mg;
where x ¼ ½x1; . . . ; xM �T 2 RM is the M-dimensional solution vector; li denotes the expected return of asset

i 2 f1; . . . ;Mg; rij denotes the covariance between the returns of assets i; j 2 f1; . . . ;Mg, and r ¼
ðrijÞi¼1;...;M ;j¼1;...;M denotes the corresponding M 	M covariance matrix.

To simplify further notation, we will often replace the minimization of the variance in (1) by the

equivalent maximization of the negative variance, using the equivalence
Fig. 1

approx
min xTrx ¼ 
maxð
xTrxÞ:

Note that the first objective, f1ðxÞ ¼

PM
i¼1 lixi, is a linear function while the second objective,

f2ðxÞ ¼ 
xTrx, is a quadratic function of x.
In the context of multicriteria programming, solving (1) is understood as generating its Pareto optimal

(efficient) solutions. If X ¼ fx 2 RM :
PM

i¼1 xi ¼ 1; xi P 0 8i ¼ 1; . . . ;Mg denotes the set of feasible solutions
of (1), a portfolio xe 2 X is said to be a Pareto optimal solution (an efficient portfolio) if there is no

other solution x 2 X such that f ðxÞ < f ðxeÞ, i.e. f1ðxÞ < f1ðxeÞ and f2ðxÞ6 f2ðxeÞ or f1ðxÞ6 f1ðxeÞ and
f2ðxÞ < f2ðxeÞ. In other words, Pareto optimal solutions are those solutions for which none of the criteria

can be improved without deterioration of the other criterion.

Let Xe denote the set of efficient solutions of (1) and let Ye denote the image of Xe in the objective space,

that is Ye ¼ f ðXeÞ, where f ¼ ½f1; f2�T . Ye is referred to as the set of efficient points or the efficient frontier

of (1).

Fig. 1 illustrates the shape of the efficient frontier of (1) for an example problem based on data for 40

investment funds (Standard and Poor�s Funds Services Database (1999), see also Schwehm (2000)). The

same data was used in the small real case studied in Section 6. Objective function f1 represents the expected
return and objective function f2 models the variance of the portfolio.

The tool proposed in Markowitz (1959) to find efficient portfolios is the critical line algorithm. Basically,

it solves a parametric quadratic programming reformulation
min xTrx
 klx
of (1) using Karush–Kuhn–Tucker optimality conditions. The main drawback of that original method was

the time needed to compute the covariance matrix from historical data and the difficulty of solving the large

scale quadratic programming problems. Of course, with modern soft- and hardware this is not an issue

anymore.
. Approximation of the non-dominated frontier of (1) for data consisting of 40 different investment funds. The piecewise linear

imation was constructed using the norm-based algorithm of Schandl et al. (2001).
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Nevertheless, various authors have proposed models which do not imply these problems. Konno (1990)
formulated a piecewise risk function to replace the covariance, thus reducing the problem to a linear

programming one. He could prove that his model is equivalent to the Markowitz model, when the vector of

returns is multivariate normally distributed. Markowitz et al. (1994) later described a method which avoids

actual computation of the covariance matrix, and Morita et al. (1989) applied a stochastic linear knapsack

model to the portfolio selection model.

In recent years, criticism of the basic model has been increasing because of its disregard for individual

investors� preferences. Konno (1990) observed that most investors do not actually buy efficient portfolios,

but rather those behind the efficient frontier. Ballestero and Romero (1996) first proposed a compromise
programming model for an ‘‘average’’ investor, which was modified to approximate the optimum portfolio

of an individual investor (Ballestero, 1998). A different approach was described in Arthur and Ghand-

foroush (1987), who propose the use of objective and subjective measures for assets. Their idea leads to a

simple linear programming model. Hallerbach and Spronk (1997) argue that most models do not incor-

porate the multidimensional nature of the problem and outline a framework for such a view on portfolio

management. For further references on the use of optimization models for portfolio selection the reader is

referred to Pardalos et al. (1994).

The rest of the paper is organized as follows. In Section 2 we present an objective hierarchy and for-
mulate a multicriteria optimization model which uses five objective functions. In Section 3 we show how to

construct decision maker specific utility functions using interpolation methods. The final model is described

in Section 4 as a mixed integer programming model. Section 5 gives an overview of the algorithms im-

plemented. Finally, in Section 6 we present numerical results on some test problems.
2. Multicriteria model and objective hierarchy

As discussed in Section 1 it is often found in portfolio optimization that investors prefer portfolios that

lie behind the non-dominated frontier of the Markowitz model (1) even though they are dominated by other

portfolios with respect to the two criteria expected return and risk. This observation can be explained by the

fact that not all the relevant information for an investment decision can be captured in terms of explicit

return and risk (see, for example, Hallerbach and Spronk, 1997). By considering additional and/or alter-

native decision criteria, a portfolio that is dominated with respect to expected return and risk may make up

for the deficit in these two criteria by a very good performance in one or several other criteria and thus be

non-dominated in a multicriteria setting. Moreover, investors may differ significantly in their perception of
the relative importance of different attributes like dividends, financial stability or future growth expecta-

tions.

As a result, a multicriteria model based on more than two objective functions allows for a higher

flexibility in modeling the objectives of investors, and, combined with an appropriate utility approach, is

likely to lead to better representations of their preferences. Fig. 2 shows an example of an objective hier-

archy extending the classical Markowitz model in the sense that the two classical criteria risk and return are

replaced by five more specific objective functions.

The model was found after several discussions with investors as well as analysts from Standard and
Poor�s Funds Services GmbH, Germany (see Schwehm, 2000). It was indicated that the expected return as

used in the Markowitz model should be broken down into the criteria 12-month performance, 3-year per-

formance and annual dividend in order to improve the possibilities of the individual investor to articulate

subjective preferences. This gain of flexibility seems to outweigh the additional time required for the

consideration of further objectives. The fourth objective, the Standard and Poor’s star ranking, describes to
what extent an investment fund follows a specific market index and is applied particularly in the case that a

portfolio consists exclusively of investment funds. It evaluates the out- or under-performance divided by the



Fig. 2. Example for an objective hierarchy based on the Markowitz model. The arcs indicate relations between the different criteria.
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tracking error over three years and rewards funds that closely follow the market index. The fifth attribute,

the 12-month volatility, is used as a measure of the risk of a portfolio.
The resulting model with the five objective functions f1; . . . ; f5 as specified above can be formulated as

follows:
max ½ f1ðxÞ; . . . ; f5ðxÞ�T ;

s:t:
PM
i¼1

xi ¼ 1;

xi P 0; i ¼ 1; . . . ;M :

ð2Þ
Based on the available data, the following implementations of the five objective functions were used (see,

for example, Gouri�eroux (1997), for a more detailed discussion of alternative implementations).

Let pt;i denote the price (value) of asset i in period t, for i ¼ 1; . . . ;M and t ¼ 1; . . . ; T , where T denotes

the present.

• 12-month performance

The 12-month performance r12i of an individual asset i 2 f1; . . . ;Mg measures the relative change of the
price of the asset over the last twelve months (in percent) and is therefore a measure for the short term

expected return. In particular,
r12i ¼ pT ;i 
 pT
1;i
pT
1;i

:

We assume that the returns follow some statistical distribution, so that the expected return (12-month

performance of a portfolio) can be obtained as a weighted sum of the expected return of the individual

assets in the portfolio. Thus we obtain objective function f1 as
f1ðxÞ ¼
XM
i¼1

r12i xi:
• 3-year performance
The long term performance (expected return) r36i of an asset is calculated, similarly to the 12-month

performance, as
r36i ¼ pT ;i 
 pT
3;i
pT
3;i

:
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Consequently, the 3-year performance of a portfolio is given by
f2ðxÞ ¼
XM
i¼1

r36i xi;
again assuming a statistical distribution of the r36i values.

• Annual dividend

Objective function f3 represents the relative annual dividend of a portfolio. It is calculated as the

weighted sum of the relative annual dividends di of the individual assets in the portfolio, where the total
dividend of an asset is set in relation to its highest sales price during the last twelve months. Alternatively,

the lowest price of an asset during the last twelve months or its current value could be used as a reference

value. We decided to use the highest price of an asset here since this approach, in general, underestimates

the relative annual dividend and is therefore a cautious value. Hence,
di ¼
dai
phi

;

where dai denotes the nominal annual revenue of asset i in the last year and phi denotes the highest price

(value) of asset i in the last year. The dividend of a portfolio is the weighted sum of dividends of individual

assets. Overall, we obtain
f3ðxÞ ¼
XM
i¼1

dixi:
• Standard and Poors Star Ranking

The Standard and Poor�s Fund Services GmbH evaluates the performance of most investment funds

contained in their data base on an annual basis which results in a performance ranking (star ranking). The

ranking is based on the performance of an investment fund in comparison to the sector index and assigns

between one star (for a relatively poor performance) and up to five stars (for a very good performance). We
will assume in the following that the ranking is additive in the sense that the ranking of a portfolio of

investment funds can be obtained as the weighted sum of the rankings of the individual investment funds in

the portfolio. Consequently, the fourth objective function can be written as
f4ðxÞ ¼
XM
i¼1

srixi;
where sri denotes the number of stars assigned to investment fund i.
• Volatility

The risk associated to a certain investment is often measured in terms of the standard deviation of the

time series reflecting the price of an asset in the past. The volatility of a portfolio can be found as the square

root of its variance which is given by xTrx, cf. (1). It relies on the length of the underlying time series and

can be calculated in various ways, yielding, for example, a 12-month volatility or a 3-year volatility. In the

following, a 12-month volatility is used to formulate the fifth objective function. The resulting value is

multiplied by ()1) to fit into the maximization framework of problem (2):
f5ðxÞ ¼ 

ffiffiffiffiffiffiffiffiffiffi
xTrx

p
¼ 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
i¼1

XM
j¼1

rijxixj

vuut :
As in the Markowitz model, rij denotes the covariance between the returns of assets i; j 2 f1; . . . ;Mg, based
on observations over the last twelve months and summarized in the covariance matrix r.
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It should be noted that the simultaneous consideration of highly correlated criteria like the 12-month
performance and the 3-year performance of an investment entails the risk of double counting, see, for example,

Jenkins and Anderson (2001) and Jenkins and Anderson (2003). This has to be taken into account when

deriving utility functions and an overall preference structure which will be discussed in detail in Section 3.

Moreover, many alternative objective hierarchies, incorporating other criteria like, for example, the

social responsibility of an investment fund, the number of securities in a portfolio or the mean absolute

deviation as an alternative measure of risk, can be formulated. While the models and methods discussed in

the following focus on the objective hierarchy specified in Fig. 2, the results directly transfer to other

choices of criteria and can be easily adapted to the preferences of the individual decision situation.
3. Utility functions and multiattribute utility theory

In Section 2 we introduced the five attributes by which we measure the performance of a portfolio. We

will combine these objectives using DM-specific utility functions for each of the attributes (see Section 3.1)

and an additive global utility function to derive our final model (see Section 4).

Keeney and Raiffa (1993) state that the set of attributes in an objective hierarchy should be complete,

operational, decomposable, non-redundant, and minimal. In this regard our hierarchy might be criticized for

not being non-redundant (as we have the correlated criteria of 1- and 3-year performance) and not being

completely decomposable, as the S&P star ranking is a measure relevant for both risk and return. We felt,

however, that this is justified, as the issue was discussed with the project partner and inclusion of all these
measures was considered important.

The other issue is the existence of an additive value (or utility function). Theoretically, the condition for

its existence is that the attributes are mutually preferentially independent (see Keeney and Raiffa (1993, p.

111), for a formal definition). Again, due to correlation among some of the attributes, this condition is not

completely satisfied. Nevertheless, the project partner accepted the assumption of the existence of an

additive global utility function.

3.1. Generation of DM-specific utility functions

Since generally neither utility functions for the different decision criteria nor a global utility function are

known explicitly, pointwise representations of the utility functions for the individual criteria or of the

global utility function are used to generate approximations of the respective utility functions. Utility points

can be either specified for the global utility function, thus combining all the individual decision criteria into

a single function, or an additive approach could be used in which utility points are given for all individual

decision criteria, yielding one utility function per criterion. In the latter case, the resulting utility functions

are combined into a global utility based on a weighting of the criteria according to their relative importance
for the decision maker, cf. Section 3.

While the knowledge of a global utility function would have many advantages, its generation and, in

particular, the specification of an appropriate number of utility points by the decision maker taking into

account all criteria and their interrelations, is very difficult in practice (see, for example, Keeney and Raiffa,

1993). Tangian (2001) (see also Tangian and Gruber, 1997) tries to overcome these difficulties by generating

a quadratic function representing level sets (i.e., sets of equally preferred solutions) of the global utility

function. Even though this leads to a relatively simple representation of the preference structure, utility

points interrelating all considered criteria are needed also in this model. Moreover, due to the simple
structure of the function (if more data points are given than needed to define the functional coefficients, an

approximating quadratic function is constructed using a least squares method) valuable preference infor-

mation may be lost.
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In the following we will focus on additive models since they can be viewed as a compromise between the
time required by the decision maker, the achieved accuracy and the simplicity of the model (see, for ex-

ample, Hallerbach and Spronk, 1997).

Given a finite set of n pairwise different utility points (data points) D ¼ fD1; . . . ;Dng with coordinates

Di ¼ ðsi; tiÞ, i ¼ 1; . . . ; n, satisfying 
1 < s1 < � � � < sn < 1 for each of the considered objective functions

(these points have to be provided by the decision maker), various different interpolation techniques can be

used to generate an approximation of the underlying utility functions. We will concentrate on piecewise

linear, piecewise quadratic and cubic spline interpolations since they appear to combine several desirable

properties like an easy representation and a sufficiently good approximation of the (unknown) correct
utility functions.

3.2. Interpolation methods

Perhaps the easiest way to combine a set of utility points D is by determining a piecewise linear function

with break points exactly at the utility points. This yields a utility function upl : ½s1; sn� ! R which can be

piecewise defined as
upli ðsÞ ¼ ti þ
tiþ1 
 ti
siþ1 
 si

ðs
 siÞ; s 2 ½si; siþ1Þ; i 2 f1; . . . ; n
 1g:
Edwards and Barron (1994) have classified different types of functions encountered in practical applica-

tions. In many of these cases piecewise linear utility functions are convenient. However, a relatively high

curvature of the utility function and/or a relatively small number of utility points may result in large ap-

proximation errors.
To account for the curvature of the approximated utility functions, piecewise quadratic functions may be

utilized. This approach can be additionally motivated by a general property of many utility functions, that

is, that the marginal utility is decreasing (see, for example, Keeney and Raiffa, 1993).

Let Di
1 ¼ ðsi
1; ti
1Þ, Di ¼ ðsi; tiÞ and Diþ1 ¼ ðsiþ1; tiþ1Þ be three consecutive utility points. Then a

piecewise quadratic interpolating function upq : ½s1; sn� ! R consists of segments
upqi ðsÞ ¼ ti
ðs
 siþ1Þðs
 siþ2Þ
ðsi 
 siþ1Þðsi 
 siþ2Þ

þ tiþ1
ðs
 siÞðs
 siþ2Þ

ðsiþ1 
 siÞðsiþ1 
 siþ2Þ
þ tiþ2

ðs
 siÞðs
 siþ1Þ
ðsiþ2 
 siÞðsiþ2 
 siþ1Þ
for s 2 ½si; siþ1Þ; i 2 f1; . . . ; n
 2g; and upqðsÞ ¼ upqn
1ðsÞ for s 2 ½sn
1; sn�:
One drawback of piecewise quadratic interpolations is that even if the set of utility points represents a

monotone (strictly increasing or strictly decreasing) function, the resulting piecewise quadratic approxi-

mation may fail to have the same monotonicity property (see, for example, Fig. 4). To overcome this
difficulty, non-monotone quadratic segments may be replaced by linear segments to obtain a combined

piecewise linear and quadratic, but monotone function.

The interpolation schemes above are relatively simple and allow for an easy implementation. A major

drawback, however, is that the approximations are in general not differentiable at the interpolation nodes,

whereas utility functions are often assumed to be differentiable. To obtain smooth approximating func-

tions, polynomials of higher order are needed which immediately leads to polynomial spline functions. To

keep the model simple, we will concentrate on cubic splines in the following, that is, on spline functions of

degree r ¼ 3. For a more detailed introduction to spline functions we refer, for example, to Boor (1978) or
Shikin and Plis (1995).

Cubic splines u : ½s1; sn� ! R consist of cubic polynomials pieced together in such a way that their values

and those of their first two derivatives coincide at the knots s1; . . . ; sn, and that one of the following ad-

ditional constraints at the boundaries are satisfied:
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(a) u00ðs1Þ ¼ u00ðsnÞ ¼ 0 (u is called natural),

(b) uðkÞðs1Þ ¼ uðkÞðsnÞ for k ¼ 0; 1; 2 (u is called periodic),

(c) u0ðs1Þ ¼ t01, u
0ðsnÞ ¼ t0n for given numbers t01 and t0n (u has the Hermite property).

Using condition (c) seems to be appropriate in the context of utility functions since it allows for a linear

continuation of the approximation outside the interval ½s1; sn� by setting
t01 :¼
t2 
 t1
s2 
 s1

and t0n :¼
tn 
 tn
1
sn 
 sn
1

:

At this point the cubic spline function approximating the utility function as ucsðsÞ :¼ uðsÞ is completely
determined and can be piecewise described as
ucsi ðsÞ ¼ aiðs
 siÞ3 þ biðs
 siÞ2 þ ciðs
 siÞ þ di; s 2 ½si; siþ1Þ; i 2 f1; . . . ; n
 1g;

with real coefficients ai, bi, ci, di, i ¼ 1; . . . ; n
 1. The explicit computation of these coefficients remains

a technical task and is described in detail, for example, in Stoer and Bulirsch (1993).

Note that, while the resulting function ucs is differentiable throughout its domain, the same problems as

in the case of the piecewise quadratic interpolation may be encountered with respect to the monotonicity of

the approximation.
3.3. Comparison of the interpolation methods

We consider the following two sets of utility points to compare the interpolation methods discussed in
the previous sections:

Note that the two data sets differ only in the coordinates of the point D3. Even though both data sets are

monotone in the sense that a higher objective value always results in a lower utility, the second data set
contains two points, namely the points D2 and D3, with only slightly different utility values. While all three

Objective value (si) Utility (ti)

D1 0 100

D2 2 80

D3 6 70

D4 12 40

D5 20 15

D6 30 10
D7 50 5

Objective value (si) Utility (ti)

D1 0 100

D2 2 80

D3 6 78

D4 12 40
D5 20 15

D6 30 10

D7 50 5



Fig. 3. The different interpolation methods applied to the first data set. The first graph shows a piecewise linear interpolation, the

second graph shows the piecewise quadratic interpolation and the third graph shows the cubic spline interpolation.

Fig. 4. The three interpolation methods applied to the second data set. The piecewise linear interpolation shown is the first graph is

monotone while the piecewise quadratic interpolation and the cubic spline interpolation shown in the second and third graph are non-

monotone.
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interpolation methods yield monotone functions if applied to the first data set (see Fig. 3), the piecewise
quadratic as well as the cubic spline interpolation yield non-monotone functions in case of the second data

set which is an unwanted property in most practical applications (see Fig. 4).

These simple examples show that no general preference can be given to any of the described methods,

but that an appropriate interpolation method should be selected according to the data set at hand.

However, since the cubic spline interpolation has several desirable properties and, in particular, since it

yields a continuously differentiable, smooth function, this approach will be used in the following to ap-

proximate the utility functions for the portfolio optimization problem. If a non-monotone utility function is

obtained with the cubic spline interpolation, this can be viewed as an indication that the selection of the
utility points needs further consideration. In any case, non-monotone segments can be replaced by linear

segments to obtain a monotone utility function.
4. The MAUT model

Based on the objective hierarchy developed in Section 2 and on the utility theory discussed in Section 3

we use an objective function to maximize the overall (individual) utility of the investor. In this way a single
criterion optimization problem is obtained, and a unique optimal objective value is generated according to

the preferences specified by the decision maker. The complete decision making phase is thus incorporated

into the development of the utility function while the Markowitz model (1) generates an efficient frontier

from which a preferred solution yet has to be selected (cf. Fig. 1).

Using positive weights wq > 0 for the five decision maker specific utility functions uqðfqðxÞÞ, where fqðxÞ
are the five objective functions described in Section 2 we obtain the following MAUT model for portfolio

optimization.
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max
P5
q¼1

wquqðfqðxÞÞ;

PM
i¼1

xi ¼ 1;

xi P 0 8i ¼ 1; . . . ;M :

ð3Þ
We now include further constraints in our model which extend the constraints of the Markowitz model (1)

in that they allow to specify both the number of assets to be included in the portfolio as well as lower and

upper bounds on the percentage of those assets selected to be included in the portfolio. Such constraints

were proposed in the context of the standard mean–variance model by Chang et al. (2000) to avoid im-

practical solutions that contain many assets with a very small percentage of the portfolio, a situation that

occurs frequently in the classical mean–variance model.

In order to accommodate the additional constraints, we use the binary variables
yi ¼
1; asset i is included in the portfolio;
0; otherwise:

�

We obtain the following non-linear mixed integer programming model for the portfolio optimization
problem:
maxUðxÞ ¼
X5
j¼1

wjujðxÞ; ð4Þ

XM
i¼1

xi ¼ 1; ð5Þ

xi 
 liyi P 0; i ¼ 1; . . . ;M ; ð6Þ
xi 
 riyi 6 0; i ¼ 1; . . . ;M ; ð7ÞXM
i¼1

yi ¼ m; ð8Þ

xi P 0; i ¼ 1; . . . ;M ;

yi 2 f0; 1g; i ¼ 1; . . . ;M ;
where the weights w1; . . . ;w5 of the global utility function (4) are specified by the decision maker such thatP5

j¼1 wj ¼ 1. In the case study discussed in Sections 2 and 6.1, these weights were chosen as w1 ¼ 0:12,
w2 ¼ 0:24, w3 ¼ 0:04, w4 ¼ 0:4 and w5 ¼ 0:2. Moreover,
u1ðxÞ ¼ ucs1 ðf1ðxÞÞ ¼ ucs1
XM
i¼1

r12i xi

 !
;

u2ðxÞ ¼ ucs2 ðf2ðxÞÞ ¼ ucs2
XM
i¼1

r36i xi

 !
;

u3ðxÞ ¼ ucs3 ðf3ðxÞÞ ¼ ucs3
XM
i¼1

dixi

 !
;

u4ðxÞ ¼ ucs4 ðf4ðxÞÞ ¼ ucs4
XM
i¼1

srixi

 !
;

u5ðxÞ ¼ ucs5 ðf5ðxÞÞ ¼ ucs5 ð

ffiffiffiffiffiffiffiffiffiffi
xTrx

p
Þ:
See Sections 2 and 3.2 for the details of the implementation.
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Constraint (5) in the above model corresponds to the general knapsack constraint (cf. problem (1)).
Constraints (6)–(8) are optional and can be added or dropped according to decision makers prefer-

ences. In particular, constraints (6) and (7) can be used to incorporate lower bounds li and upper

bounds ri on the investment in individual assets (06 li; ri 6 1 and li 6 ri, i ¼ 1; . . . ;M). In most ap-

plications, all lower bounds (upper bounds, respectively) will be equal, i.e., li ¼ l and ri ¼ r,
i ¼ 1; . . . ;M , with fixed values 06 l6 r6 1. Implementing these bounds avoids large numbers of very

small investments (lower bounds) and at the same time ensures a sufficient diversification of the in-

vestment (upper bounds). Additionally, constraint (8) can be used to specify the total number m 2 N of

assets in a portfolio. Other constraints may be added as necessary, to ensure, for example, that a
certain asset is part of the portfolio, or that certain segments of the market are covered. Note that

lower and upper bounds have to be chosen carefully so that feasible solutions exist (e.g. li can be

positive for at most m assets,
PM

i¼1 li 6 1). For a similar discrete model where xi are integer variables

and represent numbers of lots of an asset bought, Mansini and Speranza (1999) proved that finding a

feasible solution is NP-hard.

It is also important to remark that the global objective function can be non-convex in general. With the

combination of continuous and binary variables the resulting problem will usually be a very difficult non-

convex mixed integer programming problem. Even if the utility functions uq are monotone (as was the case
in our case study), which implies UðxÞ to be quasi-convex, the cardinality constraints (6) and lower and

upper bounds (7) and (8) imply that the feasible set of the problem is not connected, and the problem

remains a non-convex optimization problem on the boundary of the feasible set.
5. Solution methods

Since the model formulated in Section 4 is a generally very complex, non-convex optimization

problem in a large number of variables, exact solution methods seem to be inapplicable. Moreover,

due to the fuzziness of input parameters like, for example, the utility points and the approximated

utility functions as well as their respective weighting, the notion of an ‘‘exact optimum’’ appears to be

inadequate.
Consequently, four different heuristic solution methods, including a local search approach (particularly

designed for the given problem context) and three metaheuristics (simulated annealing, tabu search and an

implementation of a genetic algorithm) were applied to the problem and compared on different classes of

problem instances.

All methods are based on two neighborhood structures of a given portfolio, which we describe in the

context of the local search algorithm.
5.1. Two phase local search algorithm

The two phase local search algorithm is based on a local improvement method that searches for the best

alternative to a given portfolio x within a certain neighborhood of x. We used two neighborhood structures

based on the following definitions.

• The member neighborhood N1ðxÞ of a portfolio x including m different assets is the set of all portfolios

consisting of the same percentage distribution of assets and differing in at most one asset (one member)

from the portfolio x. This is essentially a neighborhood based on the 0–1 variables yi.
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• The percentage neighborhood N2ðxÞ of a portfolio x including m different assets is the set of all those port-

folios that consist of the same assets and differ in at most two percentage values from the portfolio x.
Here, the differing percentage values may be one unit higher or one unit lower than those in x. This
neighborhood is based on changing the xi variables, whereas yi variables are kept constant. (Note that
this definition leads to a discretization of the solution set.)

Using these neighborhood structures facilitates both the control over lower and upper bounds on the

investments in individual assets (constraints (6) and (7)) and over the total number of assets in a portfolio
(constraint (8)). Furthermore, due to its simplicity it supports efficient implementations.

The basic steps of the algorithm can be described as follows: Starting from an initial portfolio x, the
neighborhood of x is searched for that portfolio yielding the maximal improvement. This process is then

repeated until no further improvement is possible. During the iterations, on one hand the set of assets in the

portfolio and on the other hand their percentage values are adapted by alternately exploring the neigh-

borhoods N1ðxÞ and N2ðxÞ of the current portfolio P . As these changes alternate, we call the algorithm two

phase local search.

Since both improvement processes only lead to small changes in the portfolio, the search procedure is
restricted to a relatively small neighborhood of the current portfolio. To avoid an early termination of the

procedure at a local maximum, an additional searching process is incorporated that allows the exchange of

more than one asset at a time. In this process a subset of assets from the current portfolio is randomly

selected and removed from the portfolio. Then new assets are successively added in a greedy fashion, and

the modified portfolio is accepted if it yields a higher global utility value. Even though this extended search

procedure is rather time consuming, it turns out to lead to significant improvements of the achieved

solutions.

The initial portfolio may be found either by a deterministic approach, where new assets are suc-
cessively added to the portfolio following a greedy strategy until the number of assets m is reached, or in

a random approach which randomly selects an initial portfolio in accordance with the problem con-

straints.
5.2. Metaheuristics

In addition to the two phase local search discussed in the previous section, three metaheuristics were

implemented and compared in the context of the portfolio optimization problem. We refer for example, to
the texts by Reeves (1993), Rayward-Smith et al. (1996), or Aarts and Lenstra (1997) for details on

metaheuristics.

For the simulated annealing algorithm as well as the tabu search algorithm, the same neighborhood

structures were used as for the two phase local search.

• Simulated annealing

The simulated annealing algorithm starts from a randomly generated feasible solution. In each iteration

a random member of the portfolio is exchanged. If this change deteriorates the objective value, it is ac-
cepted with a certain probability depending on the state of the process, represented by a parameter ci. In
particular, ci is the expected value of accepted deteriorations and is reduced after a predefined number of nl
iterations following a standard cooling scheme (c.f. Section 6 for the specification of the parameters).

The corresponding parameter for acceptance of deteriorations due to percentage changes is set to

0.1ci. If a change is accepted, the percentages of two assets in the portfolio are changed by one per-

centage point.
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• Tabu search

The tabu search algorithm uses two tabu lists Tn of length tn and T0 of length t0. These contain the assets
most recently added respectively removed from the portfolio. The member neighborhood N1ðxÞ is searched
repeatedly, allowing for a maximum of nmd (a predefined number) deteriorations of the objective value

during the search procedure. Starting from the best solution found during this search process, the per-

centage neighborhood N2ðxÞ is searched as in the local search algorithm. The algorithm iterates by alter-

nately using these two neighborhood structures.

As a way of diversification, the second best solution found in each search of the membership neigh-
borhood is stored, and a new search process is started from there. In this diversification phase nmd is set to
zero. The initial (feasible) solution is chosen randomly.

• Genetic algorithm

The genetic algorithm creates an initial population of g feasible portfolios randomly. In every one of a

fixed number of iterations, the g 
 r best members of the population survive. For the remaining r, one
parent is chosen from the total population, the other from among the g 
 r surviving individuals. Then m
assets with their percentages present in the parents are chosen randomly for the offspring. In addition to

that, a mutation process slightly perturbing the percentages of the funds in the new solution can be applied:
A mutation operator multiplies the percentage of a randomly chosen asset by a fixed value < 1 or > 1 (or 1

if no mutation is desired).

Note that, in order to obtain feasibility of the newly generated portfolios, the percentage values of the

individual assets may have to be adapted and normalized.

Metaheuristics have also been used in Chang et al. (2000) to generate the efficient frontier of cardinality

constrained portfolio optimization problems (in fact, this study also considered a tabu search, a simulated

annealing, and a genetic algorithm implementation). With the constraints of our MAUT model of Section 4
being the same as those in Chang et al. (2000) these could also be adapted for use with our model by

including our objective function.
6. Computational results

The performance of the algorithms described in Section 5 was tested on two different problem classes. In

the first, we used data from the Standard and Poor�s database of 1108 funds of which we selected 190 non-

dominated assets. Dominance of assets is understood as dominance of single asset portfolios. A non-

dominated asset is therefore not dominated by any other asset with respect to all five criteria, where

criterion f5 in the case of a single asset portfolio is only based on the variance of this asset. Even though an
optimal portfolio of (3) may contain dominated assets due to the non-linearity of the volatility (objective
f5), this approach is based on the wish for a portfolio consisting of assets that are also individually strong.

For evaluation we used decision maker specific utility functions and the five objective functions described in

Section 2.

To compare the performance of the different algorithms on other and more general problem instances,

we additionally generated 10,000 assets with uniformly distributed random values for seven (linear) ob-

jective values. Of those, the 1416 non-dominated assets were selected. The utility functions used in this case

were monotone or random (non-monotone) and equal weights wq ¼ 1=7 were applied to get the global

utility function. Because in the randomly generated problem instances we exclusively work with additive
(linear) criteria dominated assets can be ignored without changing the optimal solution value in the case of

monotone utility functions.
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The main attributes of the problem instances are summarized in the table below:

Since some of the internal parameters of the implemented algorithms have a considerable impact on the

quality of the generated solutions and at the same time their optimal choice depends on the given problem

instance, different program specifications were compared. These include:

(1) For the two phase local search heuristic:

nmc, the number of consecutive iterations based on the member neighborhood,

npc, the number of consecutive iterations based on the percentage neighborhood,

nsmc, the number of consecutive iterations between application of the extended neighborhood,

and the procedure used for the generation of the initial solution.

(2) For the simulated annealing algorithm:

The cooling schedule of the algorithm is controlled by the parameters b1 and b3 where b1 determines the
probability of accepting deteriorating objective values and b3 influences the speed of the cooling process.

Moreover, the termination of the algorithm is controlled by the specification of the total number of iterations.

(3) For the tabu search algorithm:

tn, the length of the tabu list Tn containing assets added to the portfolio in the preceding iterations,

t0, the length of the tabu list T0 containing assets removed from the portfolio in the previous iterations,

and

nmd, the maximal number of consecutive deteriorations of the objective value.
(4) For the genetic algorithm:

The performance of the genetic algorithm depends on the number of genotypes g in the initial popula-

tion, on the number of replaced genotypes r per iteration, and on the total number of iterations (or genera-

tions) gen.

All experiments were run on an Intel Pentium III PC with 600 MHz. In the following sections we

summarize the best results obtained by each of the algorithms for the four test problems. Each run was

repeated ten times. Here, 2PLS ¼ 2 phase local search, SA ¼ simulated annealing, TS ¼ tabu search,

GA ¼ genetic algorithm. Below we report the results of our tests.

Partially approximated

large real case

Small real case Large monotone

case

Large random case

# of assets M ¼ 190 M ¼ 40 M ¼ 1416 M ¼ 1416

# of criteria 5 5 7 7

Generation
method

S&P database (with
incomplete covariance

matrix)

S&P database
(with complete co-

variance matrix)

Uniformly ran-
dom in the set

f0; 1; . . . ; 1000g

Uniformly random
in the set

f0; 1; . . . ; 1000g
Utility

functions

Section 6.1 Section 6.1 Monotone, cubic

splines

Random, piecewise

linear

Weighting of

the criteria

Section 6.1 Section 6.1 wq ¼ 1=7 wq ¼ 1=7

Bounds

(constr. (6,7))

li ¼ 4, ri ¼ 30 li ¼ 4, ri ¼ 30 li ¼ 4, ri ¼ 30 li ¼ 4, ri ¼ 30

# of assets

(constr. (8))

m ¼ 10 m ¼ 10 m ¼ 10 m ¼ 10
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6.1. Results on fund database

Investors were asked to specify utility points for the five criteria 12-month performance, 3-year per-

formance, annual dividend, Standard and Poor�s star ranking and volatility. The resulting utility values

were normalized to lie in the interval ½0; 100�. We used the cubic spline interpolation described in Section

3.2. The utility points and corresponding functions are shown below.
12-month performance Assigned utility

0 0
5 20

8 30

13 50

20 80

40 100
3-year performance Assigned utility

10 10

20 30

30 40

40 50

50 60

80 75

150 100
Annual dividend (in %) Assigned utility

0 0

0.5 5

1 10

2 20

4 70
6 100
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S&P star ranking (# of stars) Assigned utility

1 0
2 20

3 40

4 75

5 100
12-month volatility Assigned utility

0 100

2 80

5 65

10 45

20 15

30 10

50 5
Note that the first four utility functions are strictly increasing while the last one, modeling the volatility,

is strictly decreasing, i.e here we consider objective function 
f5ðxÞ which is to be minimized. All generated

functions are monotone.

In addition to the specification of the five utility functions, a relative weighting of the criteria is needed

accounting for their relative importance to the decision maker (cf. Section 3). In the case study, the relative

weight of the 12-month performance (objective function f1) was set to w1 ¼ 0:12 while the 3-year perfor-

mance (objective function f2) was considered more relevant and was assigned a weight of w2 ¼ 0:24. This
yields a total weight of w1 þ w2 ¼ 0:36 for these two closely related criteria. The relative weight for the
annual dividend (objective function f3) was set to w3 ¼ 0:04.

Moreover, the Standard and Poor�s star ranking (objective f4) was assigned a relatively high weight of

w4 ¼ 0:4. Since part of the risk associated with a portfolio is already captured by the Standard and Poor�s
star ranking, the relative weight of the volatility (objective f5) was set to a comparably low value of

w5 ¼ 0:2, yielding an overall weight of w4 þ w5 ¼ 0:6 for these risk-related criteria.

It was not possible to obtain a full covariance matrix for the 190 non-dominated funds in this example

due to limited capabilities of the S&P database. We used covariance values randomly generated in the

interval ½
0:4; 1�.
Table 1 shows that the two phase local search heuristic has a good and stable performance, yielding

satisfactory solution values. The simulated annealing algorithm produces stable results which are slightly

better than those of the two phase local search. The tabu search algorithm appears to be less stable on this

problem class than the other three algorithms. A long tabu-list appears to be advantageous particularly for

the newly added assets in a portfolio. The genetic algorithm seems to have the least difficulties with this

problem class and produces the best results and runs most stable.



Table 2

Results for the small real case

Algorithm UðxÞ Standard

deviation

Function

evaluations

CPU time Parameters

2PLS 86.870 0.325 20,400 0.363 npc ¼ 25, nmc ¼ 50, nsmc ¼ 20, initial solution random

SA 86.841 0.242 56,500 1.417 b1 ¼ 1, b3 ¼ 1, 20,000 iterations

TS 86.353 0.664 41,900 1.027 tn ¼ 8, t0 ¼ 8, nmd ¼ 3

GA 86.787 0.102 75,200 3.367 g ¼ 200, r ¼ 150, gen ¼ 500

Table 1

Results for the partially approximated large real case

Algorithm UðxÞ Standard

deviation

Function

evaluations

CPU time Parameters

2PLS 91.197 0.127 105,000 1.291 npc ¼ 30, nmc ¼ 60, nsmc ¼ 25, initial solution random

SA 91.413 0.093 282,800 7.226 b1 ¼ 0:25, b3 ¼ 0:25, 100,000 iterations

TS 90.399 1.504 151,100 3.932 tn ¼ 8, t0 ¼ 2, nmd ¼ 3

GA 92.336 0.002 150,500 7.124 g ¼ 500, r ¼ 300, gen ¼ 500

768 M. Ehrgott et al. / European Journal of Operational Research 155 (2004) 752–770
For a smaller data set containing only 40 funds, all of which where non-dominated, we had a complete
covariance matrix available.

Obviously, the smaller size of the problem leads to a reduction in computational effort, see Table 2. The

lower utility values might be partly due to the fact, that for this problem we had a complete covariance

matrix and did not have to rely on randomly generated covariances, and partly due to the smaller feasible

set.

The two phase local search heuristic and the simulated annealing algorithm lead to similar results that

appear to be good and sufficiently stable. Different from the partially approximated real case, tabu search

produces satisfying results for the small data set, however, it is still outperformed by the other three
methods. The genetic algorithm performs nearly as well as the two phase local search and the simulated

annealing method, and the standard deviation of the achieved results is smaller than for the other two

procedures.

6.2. Results on randomly generated instances

The six utility points ðsi; tiÞ for each objective in the large monotone case were selected to represent a

monotone sequence ti < tiþ1, with si ¼ 200ði
 1Þ; i ¼ 1; . . . ; 6. We used the cubic spline interpolation de-
scribed in Section 3.2 to compute the seven utility functions.

The utility points for the large random case were randomly generated (the objective values si are uni-
formly distributed in the set f0; 1; . . . ; 1000g while the utility values ti are uniformly randomly distributed in
the set f0; 1; . . . ; 100g). A piecewise linear interpolation seems most suitable for this data set (cf. Section

3.2). It yields seven non-monotone piecewise linear utility functions.

As might be expected from the more difficult (highly non-convex) structure of this instance, in general

computation times, variability of results, and function evaluations increased whereas UðxÞ values de-

creased, see Tables 3 and 4.
The two phase local search heuristic performs well also on the randomly generated problem instances.

The high standard deviation particularly in the second case indicates multiple restarts from different

starting solutions.

Maybe due to the relatively narrow neighborhood structure, the simulated annealing and tabu search

algorithms do not produce as good results for this hard problem instance.



Table 4

Results for the large random case

Algorithm UðxÞ Standard

deviation

Function

evaluations

CPU time Parameters

2PLS 86.914 1.077 926,600 11.073 npc ¼ 30, nmc ¼ 60, nsmc ¼ 30, initial solution greedy

SA 80.720 2.342 680,200 8.723 b1 ¼ 0:5, b3 ¼ 0:5, 200,000 iterations

TS 80.111 2.771 676,500 7.783 tn ¼ 2, t0 ¼ 2, nmd ¼ 2

GA 86.083 0.349 241,000 7.904 g ¼ 1000, r ¼ 800, gen ¼ 300

Table 3

Results for the large monotone case

Algorithm UðxÞ Standard

deviation

Function

evaluations

CPU time Parameters

2PLS 84.909 0.001 344,000 5.180 npc ¼ 20, nmc ¼ 60, nsmc ¼ 10, initial solution greedy

SA 84.501 0.808 126,200 2.016 b1 ¼ 0:25, b3 ¼ 1, 50,000 iterations

TS 83.906 0.923 797,000 11.897 tn ¼ 8, t0 ¼ 2, nmd ¼ 2

GA 84.204 0.895 81,000 5.333 g ¼ 1000, r ¼ 400, gen ¼ 200
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The strength of the genetic algorithm may be seen in the fact that solutions in very different parts of the
solution space are generated in each iteration of the procedure, thus allowing a much broader view of the

solution space. This observation is in accordance with results of Deb (2001) who describes very successful

applications of evolutionary algorithms to multicriteria optimization problems.
7. Conclusions

In this paper we propose a model for portfolio optimization based on multiattribute utility theory and
the classical mean–variance model of Markowitz. We address criticism of the Markowitz model and extend

it by formulating a hierarchy of objectives, which decomposes risk and return into five sub-objectives. For

each of the five objectives, decision-maker specific utility functions are generated from utility values

specified by the user. Various methods for interpolation are used, depending on the nature of the points

specified. In this way, we allow individual investors preferences to be taken into account.

Our final model also includes constraints on lower and upper bounds on percentages of assets included

in the portfolio as well as a specification of the number of assets. Consequently, we formulate a non-convex

mixed-integer programming model. We implemented several heuristics to solve this problem. Numerical
results show, that good solutions can be obtained for problem sizes relevant in practical applications in just

a few seconds of CPU time.
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