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Abstract. We consider the problem of selecting a portfolio of assets that provides the investor a
suitable balance of expected return and risk. With respect to the seminal mean-variance model of
Markowitz, we consider additional constraints on the cardinality of the portfolio and on the quantity
of individual shares. Such constraints better capture the real-world trading system, but make the
problem more difficult to be solved with exact methods.

We explore the use of local search techniques, mainly tabu search, for the portfolio selection
problem. We compare the combine previous work on portfolio selection that makes use of the local
search approach and we propose new algorithms that combine different neighborhood relations. In
addition, we show how the use of randomization and of a simple form of adaptiveness simplifies the
setting of a large number of critical parameters. Finally, we show how our techniques perform on
public benchmarks.
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1. Introduction

The portfolio selection problem consists in selecting a portfolio of assets or securi-
ties that provides the investor a given expected return and minimizes the risk. One
of the main contributions on this problem is the seminal work by Markowitz (1952),
who introduced the so-called mean-variance model, which takes the variance of the
portfolio as the measure of risk. According to Markowitz, the portfolio selection
problem can be formulated as an optimization problem over real-valued variables
with a quadratic objective function and linear constraints.

The basic Markowitz’ model has been modified in the recent literature in vari-
ous directions. First, Konno and Yamazaki (1991) propose a linear versions of the
objective function, so as to make the problem easier to be solved using available
software tools, such as the simplex method. On the other hand, with the aim of bet-
ter capturing the intuitive notion of risk, Konno and Suzuki (1995) and Markowitz
et al. (1993) studied more complex objective functions, based on the notions of
skewness and semi-variance, respectively. Furthermore, several new constraints
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have been proposed, in order to make the basic formulation more adherent to the
real world trading mechanisms.

Among others, there are constraints on the maximal cardinality of the portfolio
(Chang et al., 2000; Bienstock, 1996) and on the minimum size of trading lots
(Mansini and Speranza, 1999). Finally, Yoshimoto (1996) and Glover et al. (1996)
consider multiperiod portfolio evolution with transaction costs.

In this paper we consider the basic objective function introduced by Markowitz,
and we take into account two important additional constraints, namely the cardinal-
ity constraint and the quantity constraint, which limit the number of assets and the
minimal and maximal shares of each individual asset in the portfolio, respectively.

The use of local search techniques for the portfolio selection problem has been
proposed by Rolland (1997) and Chang et al. (2000). In this paper, we depart from
the above two works, and we try to improve their techniques in various ways. First,
we propose a broader set of possible neighborhood relations and search techniques.
Second, we provide a deeper analysis on the effects of the parameter settings and
employ adaptive evolution schemes for the parameters. Finally, we show how the
interleaving of different neighborhood relations and different search techniques can
improve the overall performances.

We test our techniques on the benchmarks proposed by Chang et al., which
come from real stock markets.

2. Portfolio Selection Problems

We introduce the portfolio select problem in stages. First, we introduce the ba-
sic unconstrained version of Markowitz. Subsequently, we introduce the specific
constraints of our formulation.

Given is a set of n assets, A = {ay, ..., a,}. Each asset a; has associated a real-
valued expected return (per period) r;, and each pair of assets (a;, a;) has a real-
valued covariance o;;. The matrix o,, is symmetric and each diagonal element
o;; represents the variance of asset a;. A positive value R represents the desired
expected return.

A portfolio is a set of real values X = {x|, ..., x,,} such that each x; represents
the fraction invested in the asset a;. The value Z?Zl Z';:l 0;jXx;X; represents the
variance of the portfolio, and it is considered as the measure of the risk associated
with the portfolio. Consequently, the problem is to minimize the overall variance,
still ensuring the expected return R. The formulation of the basic (unconstrained)
problem is thus the following.

n n

ming E OijXiX;

i=1 j=1
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Figure 1. UEF and ACEF for instance no. 4.
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This is a quadratic programming problem, and nowadays it can be solved
optimally using available tools' despite the NP-completeness of the underlying
decision problem.

By solving the problem as a function of R, we obtain the socalled unconstrained
efficiency frontier (UEF), that gives for each expected return the minimum associ-
ated risk. The UEF for one of the benchmark problems of Chang et al. (2000) is
provided in Figure 1 (solid line).

In our formulation, we consider the following two additional constraint types:

Cardinality constraint: The number of assets that compose the portfolio is
limited. That is, a value k < n is given such that the number of i’s for
which x; > 0 is at most k.

Quantity constraints: The quantity of each asset i that is included in the
portfolio is limited within a given interval. Specifically, a minimum e;
and a maximum §; for each asset i are given, and we impose that either
x; =0o0r¢ <x; <3§6;.
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These two constraint types can be modeled by adding n binary variables
Z1, ..., 2 and the following constraints.

Yousk )
i=1

€7, <x; <&z @(=1,...,n) (5

The variable z; equals to 1 if asset g; is included in the portfolio, z; = 0 other-
wise. The resulting problem is now a mixed integer programming problem, and iis
it much harder to be solved using conventional techniques.

We call CEF the analogous of the UEF for the constrained problem. Given that
we do not solve the problem with an exact method, we do not actually compute
the CEF, but what we call the ACEF (approximate constrained efficiency frontier.
Figure 1 shows the ACEF (dashed line) we computed for the same instance for the
values ¢, =0.01,8§ =1 (fori =1,...,n),and k = 10.

Notice that when the return is high, the distance to UEF is very small because
typically large quantities of a few assets are used, and thus Constraints (4) and (5)
don’t come into play.

3. Local Search

Local search is a family of non-exhaustive general-purpose techniques for opti-
mization problems. A local search algorithm starts from an initial state sy, which
can be obtained with some other technique or generated randomly, and enters a loop
that navigates the search space, stepping from one state s; to one of its neighbors
s;+1- The neighborhood is usually composed by the states that are obtained by some
local change (called move from the current one.

The most common local search techniques are hill climbing (HC), simulated
annealing (SA), and tabu search (TS). We describe here very briefly TS which is
the technique that gave best results for one application (a full description of TS is
out of the scope of this paper. see, e.g., Gover and Laguna, 1997)

At each state s;, TS explores exhaustively the current neighborhood N(s;).
Among the elements in N(s;), the one that gives the minimum value of the cost
function becomes the new current state ;. 1, independently of the fact whether the
cost of s; is less or greater than the cost of §;;.

In order to escape from local minima, the so-called tabu list is used, which
determines the forbidden moves. This list stores the most recently accepted moves.
The inverses of the moves in the list are forbidden.

The stop criterion is based on the so-called idle iterations: The search terminates
when it reaches a given number of iterations elapsed from the last improvement.

Different local search techniques can be combined and alternated to give rise to
complex algorithms.
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In particular, we explore what we call the token-ring strategy: Given an initial
state sy and a set of basic local search techniques #, ..., ,, that we call runners,
the token-ring search makes circularly a run of each #;, always starting from the
best solution found by the previous runner ;_; (or , if i = 1).

The full run stops when it performs one round without an improvement by any of
the runners, whereas each component runner #; stops according to its own criterion.

4. Portfolio Selection by Local Search

In order to apply local search techniques to portfolio selection we need to define
the search space, the neighborhood structures, the cost function, and the selection
rule for the initial state.

4.1. SEARCH SPACE AND NEIGHBORHOOD RELATIONS

For representing a state, we make use of two sequences L = {a,...,q,} and
S = {xy,...,x,} such that @, € A and x;, is the fraction of a; in the portfolio.
All assets a; ¢ L have the fraction x; implicitly set to 0. With respect to the
mathematical formulation, having a; € L corresponds to setting z; to 1.

We enforce that the length p of the sequence L is such that p < k, that the sum
of x;, equals 1, and that ¢;, < §,, for all elements in L. Therefore, all elements of
the search space satisfy Constraints (2)—(5). Constraint (1) instead is not always
satisfied and it is included in the cost function as explained below.

Given that the problem variables are continuous, the definition of the neighbor-
hood relations refers to the notion of the step of a move m, which is a real-valued
parameter g, with 0 < g < 1, that determines the quantity of the move. Given a
step g, we define the following three neighborhood relations:

idR ([ilncrease, [d]ecrease, [R]eplace):

Description: The quantity of a chosen asset is increased or decreased. All
other shares are changed accordingly so as to maintain the feasibility
of the portfolio. If the share of the asset falls below the minimum it is
replaced by a new one.

Attributes: (a;,s,a;) witha; € A, s e {1, ]},a; € A

Preconditions: ¢; € Landa; ¢ L

Effects: If s =1 then x; := x; - (1 +¢), otherwise x; := x; - (1 —g). All values
X — €, are renormalized so as to maintain the property that x;’s add up to
1. We renormalize x;, — €, and not x; to ensure that no asset rather than a;
can fall below the minimum.

Special cases: If s = | and x; (1 — q) < ¢;, then g; is deleted from L and a; is
inserted with x; = €;. If s =1 and x;(1 + q) > §;, then x; is set to §;.

Reference: Revised version of Chang et al. (2000).
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idID ([ilncrease, [d]ecrease, [I]nsert, [D]elete):

Description: Similar to idR, except that the deleted asset is not replaced and
insertions of new assets are also considered.

Attributes: (a;, s) witha; € A,s € {1, |, =}

Preconditions: If s = | or 1 thena; € L. If s =< thena; ¢ L.

Effects: If s =1 thenx; :=x; - (1 4+¢q);ifs =] thenx; - (1 —q);if s =—
then a; : €; is inserted into L. The portfolio is repaired as explained above
for idR.

Special cases: If s = | and x; (1 — g) < ¢;, then g; is delected from L, and it
is not replaced. If s =1 and x; (1 4+ g) > §;, then x; is set to §;.

TID ([T]ransfer, [l]nsert, [D]elete):

Description: A part of the share is transferred from one asset to another one.
The transfer can go also toward an asset not in the portfolio, which is then
inserted. If one asset falls below the minimum it is deleted.

Attributes: (a;,a;) witha; € A,a; € A

Preconditions: a; € L

Effects: The share x; of asset g; is decreased by ¢ - x; and x; is increased by
the same quantity. If a; ¢ L than it is inserted in L with the quantity g - x;.

Special cases: The quantity transferred is larger than g - x; in the following
two cases: (i) If after the decrease of x; we have that x; < ¢; then also the
remaining part of x; is transferred to a;. (ii) If a; ¢ L and g - x; < €;
then the quantity transferred is set to ;.

Reference: Extended version of Rolland (1997).

Notice that idR moves never change the number of assets in the portfolio, and
thus the search space is not connected under idR. Therefore, the use of idR for the
solution of the problem is limited. The relation idID in fact is a variant of idR that
overcomes this drawback.

Notice also that under all three relations the size of the neighborhood is not
fixed, w.r.t. the size of L, but it depends on the state. In particular, it depends on the
number of assets that would fall below the minimum in case of a move that reduces
the quantity of that asset. For example, for idR, the size is linear, 2 - | L|, if no asset
a; is such that x; (1 — g) < €;, but becomes quadratic, |L| + |L| - (n — |L]), if all
assets are in such conditions.

We now define the inverse relations, which determines which moves are tabu.
Our definitions are the following: For idR and idID, the inversse of m is any move
with the same first asset and different arrow. For TID, it is the move with the two
assets exchanged.
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4.2. COST FUNCTION AND INITIAL STATE

Recalling that all constraints but Constraint (1) are automatically satisfied by all
elements of the search space, the cost function f(X) is composed by the objective
function and the degree of violation of Constraint (1). Specifically, we define two
components, f;(X) = max(0, Y ;_, r;x; — R) and fo(X) = 2?21 0;jx; X j, which
take into account the constraint and the objective function, respectively. The overall
cost function is a linear combination of them: f(X) = w; f1(X) + w, f2(X).

In order to ensure that a feasible solution is found, w is (initially) set to a much
larger value than w,. However, during the search, w; is let to vary according to
the so-called shifting penalty mechanism (see e.g., Gendreau et al., 1994): If for
K consecutive iterations Constraint (1) is satisfied, w, is divided by a factor y
randomly chosen between 1.5 and 2. Conversely, if it is violated for H consecutive
iterations, the corresponding weight is multiplied by a random factor in the same
range (where H and K are parameters of the algorithm).

Notice that evaluation of the cost change associated to a move is computationally
quite expensive for both idR and idID, due to the fact that a move changes the
fraction of all assets in L. The computation of the cost is instead much cheaper for
TID.

The initial state is selected as the best among / = 100 random portfolios with k
assets. However, experiments show that the results are insensitive to 1.

4.3. LOCAL SEARCH TECHNIQUES

We implemented all the three basic techniques, namely HC, SA, and TS, for all
neighborhood relations. HC, which performs only improving and sideways moves,
is implemented both using a random move selection and searching for the best
move at each iteration (steepest descent). SA, which for the sake of brevity is not
described in this paper, is implemented in the ‘standard” way described in (Johnson
et al., 1989). TS is implemented using a tabu list of variable size and the shifting
penalty mechanism.

We also implemented several token-ring procedures. The main idea is to use
one technique #;, with a large step ¢, in conjunction with another #,, with a smaller
step. The technique #; guarantees diversification, whereas t, provides a ‘finer-grain’
intensification.

The step ¢ is not kept fixed for the entire run, but it is allowed to vary according
to a random distribution. Specifically, we introduce a further parameter d and for
each iteration the step is selected with equal distribution in the interval ¢ — d and
q+d.

Due to its limited exploration capabilities, idR is used only for #,. Other com-
binations, of two or three techniques, have also been tested as described in the
experimental results.
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Table I. The benchmark instances.

No.  Origin Assets UEF % Diff.

1 Hong Kong 31 1.55936 0.00344745
2 Germany 85 0.412213  2.53845

3 UK 89 0.454259  1.92711

4 USA 98 0.502038  4.69426

5 Japan 225 0.458285  0.204786

4.4. BENCHMARKS AND EXPERIMENTAL SETTING

We experiment our techniques on 5 instances taken from real stock markets.> We
solve each instance for 100 equally distributed values for the expected return R.

We set the constraint parameters exactly as Chang et al. (2000): ¢ = 0.1 and
8; =1fori =1,...,n,and k = 10 for all instances.

Given that the constraint problem has never been solved exactly, we cannot pro-
vide an absolute evaluation of our results. We measure the quality of our solutions
in average percentage loss w.r.t. the UEF (available from the web site). We also
refer to the ACEF, which we obtain by getting, for each point, the best solution
found by the set of all runs using all techniques. The ACEF has been computed
using a very large set of long runs, and reasonably provides a good approximation
of the optimal solution of the constrained problem.

Table I illustrates, for all instances the original market, the average variance
of UEF (multiplied by x 10 for convenience), and the percentage average of the
difference between ACEF and UEF.

Notice that the problem for which the discrepancy between UEF and ACEF is
highest is no. 4 (with 4.69%). For this reason we illustrate our results for no. 4, in
which the differences are more tangible.

Except for no. 1, all other instances give qualitatively similar results and they
require almost the same parameter settings. Instance no. 1 instead, whose size is
considerably smaller than the others, shows peculiar behaviors and requires com-
pletely different settings. Specifically, it requires shorter tabu list and much smaller
steps.

5. Experimental results

In the following experiments, we run 4 trials for every point. For each parameter
setting, we therefore run 2000 trials (4 trials x 100 points x5 instances). Except for
the first point of the UEF, in one of the four trials the initial state is not random, but
it is the final state of the previous solved point of the UEF. The number of iterations
is chosen in such a way that each single trial takes approximately 2 seconds (on a
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Table 11. Comparison of simple solvers.

Tech. Nhb Fixed step Random step

Step % Diff. Base step % Diff.
TS idiD 0.5 6.31568 0.4 5.60209
TS TID 05 5.42842 0.3 4.85423
TS idR 0.4 5.4743 0.4 5.4621
SA TID 04 53.7006 0.4 56.5798
SA idD 0.2 118.698 0.5 113.735
HC TD 0.2 29.2577 0.2 29.039
HC idD 0.2 41.4734 0.1 41.0438

300 MHz Pentium II, using the C++ compiler egcs-2.91.66), and therefore each
test runs for approximately and hour.

We experimented with 20 different values of the step g. Regarding the step
variablility d, preliminary experiments show that the best value is g, which means
the step varies between 0 and 2¢. In all the following experiments, d is either set
to O (fixed step) or is set to g (random step).

Regarding the parameters related to the shifting penalty mechanism, the exper-
iments show that the performances are quite insensitive to their variations as far
as they are in a given interval. Therefore, we set such parameters to fixed values
throughout all our experiments (2 = 1, K = 20).

5.1. SINGLE SOLVERS

The first set of experiments regards a comparison of algorithms using the three
neighborhood relations idID, idR, and TID in isolation. Given that the search space
is not connected under idR, the relation idR is run for initial states of all sizes from
2 to 10 (it is therefore granted a much longer running time). For the other two, idID
and TID, we start always with an initial state of 10 assets.

Table II shows the best results for TS for both fixed and random steps, and the
corresponding step valuse. For TS, the tabu list length is 10-25, and the maximum
number of idle iterations is set to 1000.

The table shows also also the best performance of HC and SA for TID and idID.
For the sake of fairness, we must say that the parameter setting of SA has not been
investigated enough.

The results in Table II show that T'S works much better than the others, and TID
works better than idR and idID. They also show that the randomization of the step
improves the results significantly.
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Table 11I. Comparison of composite solvers.

Runner 1 Runner 2 Runner 3 % Diff

Nbh  Step Nbh  Step Nbh  Step % Diff

TD 04 TID 0.05 - - 4.70872
TID 04 TID 0.04 TID  0.004 4.70866
TD 04 idR  0.05 - - 4.70804
TID 04 idR  0.05 TID 0.01 4.71221
idD 04 idiD  0.04 - - 5.06909
idiD 0.3 idiD  0.03 idiD  0.003 4.99406
idD 04 idR  0.05 - - 4.99206
idiD 0.4 idR  0.04 idiD  0.004 5.16368

5.2. COMPOSITE SOLVERS

Table III shows the best results for token-ring with various combinations of two
or three neighborhoods all using TS and random steps. Notice that we consider as
token-ring solver also the interleaving of the same technique with differnt steps.

The table shows that the best results are obtained using the combination of TID
and idR, but TID with different steps performs almost as good. This results are very
close to the ACEF (4.69426%), which is obtained using also much longer runs (24
hours each).

In conclusion, the best results (around 4.7%) are obtained by token ring solvers
with random steps. Further experiments show that the most critical parameter is
the size of the step of ¢, which must be in the range [0.3, 0.6]. They also show that
using alternation of fixed steps the best result obtained is 4.84883.

5.3. EFFECTS OF CONSTRAINTS ON THE RESULTS

We conclude with a set of experiments that highlights the role played by constraints
4 and 5 on the problem. Figure 2 shows the best results for instance no. 4 for
different values of the maximum number of assets k (¢; and §; are fixed to the
values 0.01 and 1).

The results show that the effect of the constraint decreases quite steeply when
increasing k. The effect is negligible for k£ > 30.

Figure 3, instead, shows how the quality of the portfolio decreases while in-
creasing the minimum quantity (¢;). In order to focus on the minimum quantity
constraint, we use a high value for the maximum cardinality (k = 20) so as to
make the effect of the corresponding cardinality constraint less visible.

We don’t show the results for different values of §; because the constraint on
maximum quantity is less important from the practical point of view.
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6. Related Work

This problem has been previously considered by Chang et al. (2000), who im-
plemented three solvers based on TS, SA, and genetic algorithms (GA). Their
experimental results that GA and SA work better than TS. Even though the TS
procedure is not completely explained in the paper, we believe that this ‘defeat’
of TS in favor of SA and GA is due to the fact that their version of TS is not
sufficiently optimized.

The neighborhood relation used by Chang et al. is a variant of idR. The differ-
ence stems from the fact that in their case a move m is represented by only the pair
(a;, s) and the replacing asset a; is not considered part of m, but it is randomly
generated whenever necessary. This definition makes incomplete the exploration
of the full neighborhood because the quality of a move (a;, | ) may depends of the
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randomly generated a;. In our work, instead, all possible replaces a; are analized.
In addition, the application of a move m = (a;, |) is non-deterministic, and there-
fore it is not clear which is the definition of the inverse of m, and the definition
of the tabu mechanism. Finally, with respect to our version, their TS misses the
following important features: shifting penalty mechanism, random step (they use
the fixed value 0.1), and variable-size tabu list.

Even though Chang et al. solve the same problem instances, a fair comparison
between their and our results is not possible for two reasons:

First, they formulate Constraint (4) with the equality sign, i.e. Y ._; z; = k,
rather than as an inequality. As the authors themselves admit, constraining the
solution to an exact number of assets in the portfolio is not meaningful by itself, but
it is a tool to solve the inequality case. They claim that the solution of the problem
with the inequality can be found solving their problem for all values from 1 to k.
Unfortunately, though, they provide results only for the problem with equality.

Second, they do not solve a different instance for each value of R, but (following
Perold, 1984), they reformulate the problem without Constraint (1) and with the
following objective function: f(X) = Af1(X) + (1 — A) f>(X). The problem is
then solved for different values of A. The quality of each solution is measured not
based on the risk difference w.r.t. the UEF for the same return R, but using a metric
that takes into account the distance to both axis. The disadvantage of this approach
is that they obtain the solution for a set of values for R which are not an homo-
geneously distributed. Therefore their quality cannot be measured objectively, but
it depends on how much they cluster toward the region in which the influence of
Constraints (4) and (5) is less or more strong. In addition, these sets of points are
not provided, and thus the results are not reproducible and not comparable.

Rolland (1997) considers the unconstrained problem therefore his results are not
comparable. He introduces the TID neighborhood which turned out to be the most
effective. Although, the definition of Rolland is different because he considers only
transfers and no insertions and deletions. This is because, for the unconstrained
problem, all assets can be present in the portfolio at any quantity, and therefore
there is no need of inserting and deleting. The introduction of insert and delete
moves is our way to adapt his (successful) idea to the constrained case.

Rolland makes use of a tabu list of fixed length equal to 0.4 - n, thus linearly
related to the number of assets. He alternates the fixed step value 0.01 with the fized
value 0.001, shifting every 100 moves. Our experiments confirm the need for two
(and no more than two) step values, but they show that those values are too small
for the constrained case. In addition, for the constrained problem, randomization
works better than alternating two fixed values.

7. Conclusions and Future Work

We compared and combined different neighborhood relations and local search
strategies to solve a version of the portfolio selection problem which involves
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a mixed-integer quadratic problem. Rather than exploring all techniques in the
same depth, we focussed on TS that turned out to be the most promising from
the beginning.

This work shows also how adaptive adjustments and randomization could help
in reducing the burden of parameter setting. For example, the choice of the step
parameter turned out to be particularly critical.

We solved public benchmark problems, but unfortunately no comparison with
other results is possible at this stage.

In the future, we plan to adapt the current algorithms to different versions of the
portfolio selection problem, both discrete and continuous, and to related problems.
Possible hybridization of local search with other search paradigms, such as genetic
algorithms, will also be investigated.
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Notes

! For example, an online portfolio selection solver is available at http://www-fp.mcs.anl.gov/otc/
Guide/CaseStudies/port/
2 Available at the URL http://mscmga.ms.ac.uk/jeb/orlib/portfolio.html
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