
A Survey of Constraint HandlingTechniques used with Evolutionary AlgorithmsCarlos A. Coello Coelloccoello@xalapa.lania.mxLaboratorio Nacional de Inform�atica AvanzadaR�ebsamen 80, Xalapa, Veracruz 91090, M�exicoAbstractDespite the extended applicability of evolutionary algorithms to a wide range of domains, the fact that these algo-rithms are unconstrained optimization techniques leaves open the issue regarding how to incorporate constraints ofany kind (linear, non-linear, equality and inequality) into the �tness function as to search e�ciently. The maingoal of this paper is to provide a detailed and comprehensive survey of the many constraint handling approachesthat have been proposed for evolutionary algorithms, analyzing in each case their advantages and disadvantages,and concluding with some of the most promising paths of research.Keywords: evolutionary algorithms, optimization, genetic algorithms, evolutionary optimization, constraint han-dling.1 IntroductionEarly analogies between the mechanism of natural selection and a learning (or optimization) process led to thedevelopment of the so-called \evolutionary algorithms" (EAs) [46], in which the main goal is to simulate theevolutionary process in a computer. There are 3 main paradigms within evolutionary algorithms, whose motivationsand origins were completely independent from each other: evolution strategies [123], evolutionary programming[47], and genetic algorithms [63].In general, evolutionary algorithms simulate evolution using 4 main elements [45]: (1) a encoding structure thatwill be replicated, (2) operators that a�ect the individuals of a population, (3) a �tness function that indicateshow \good" a certain individual is with respect to the others, and (4) a selection mechanism.The 3 main paradigms mentioned before di�er mainly in terms of the importance given to the operators (re-combination vs. mutation), the way in which selection is performed (stochastic vs. deterministic), the level ofabstraction at which evolution is modeled (species vs. individual), and consequently, the level at which the opera-tors are applied (phenotypic vs. genotypic).Regardless of their di�erences, evolutionary algorithms have been quite successful in a wide range of applications[56, 91, 83, 2, 108, 53, 45, 109, 124]. However, an aspect normally disregarded when using evolutionary algorithmsfor optimization (a rather common trend) is that these algorithms are unconstrained optimization procedures,and therefore is necessary to device ways of incorporating the constraints (normally existing in any real-worldapplication) into the �tness function.Despite the relative success of penalty functions [115, 56] in many optimization problems, researchers in evolu-tionary computing have developed a considerable amount of alternative approaches to handle constraints and haveproposed di�erent ways to automate the de�nition of good penalty factors, which remains as the main drawbackof using penalty functions.In this paper, we provide a comprehensive survey of contraint-handling techniques that have been adoptedover the years to handle all sorts of constraints (linear, non-linear, equality, inequality, explicit and implicit) in1

evolutionary algorithms. A brief criticism of each of them will also be provided, showing their advantages anddisadvantages, and we will conclude with some of the most promising paths of future research.It should be mentioned that despite the fact that there are other surveys on constraint handling techniquesavailable in the specialized literature (see for example [86, 85, 52, 23, 127]), they are either too narrow (i.e., theycover a single constraint handling technique) or they focus more on empirical comparisons and on the design ofinteresting test functions and do not attempt to be comprehensive as we pretend in this paper.Our main goal is to provide enough (mainly descriptive) information as to allow newcomers in this area to geta very complete picture of the research that has been done and that is currently under way. Since trying to beexhaustive is as fruitless as it is ambitious, we have focused on papers in which the main emphasis is the wayin which constraints are handled, and from this subset, we have selected the most representative work available(particularly, when dealing with very proli�c authors).2 Basic de�nitionsThe problem that is of interest to us is the general non-linear programming problem in which we want to:Find X which optimizes f(X) (1)subject to: gi(X) � 0; i = 1; : : : ; n (2)hj(X) = 0; j = 1; : : : ; p (3)where X is the vector of solutions (X = x1; x2; : : : ; xr), n is the number of inequality constraints and p is thenumber of equality constraints (in both cases, constraints could be linear or non-linear).If we denote with F to the feasible region and with S to the whole search space, then it should be clear thatF � S.For an inequality constaint that satis�es gi(X) = 0, then we will say that is active at X. All equality constraintshj (regardless of the value of X used) are considered active at all points of S.For simplicity, we will use �(X), i = 1; : : : ;m (m is the total number of constraints) to denote constraints ofboth kinds (inequality and equality), unless the approach analyzed makes a clear distinction between equality andinequality constraints.3 A Taxonomy of ApproachesFocusing only on numerical optimization, particularly regarding non-linear optimization problems, the constraint-handling techniques developed over the years can be roughly classi�ed as follows [23]:� Use of penalty functions.� Maintaining a feasible population by special representations and genetic operators.� Separation of objectives and constraints.� Hybrid methods.� Novel approaches.
2

4 Use of penalty functionsThe most common approach in the EA (mainly with genetic algorithms) community to handle constraints (partic-ularly, inequality constraints) is to use penalties. The basic approach is to de�ne the �tness value of an individuali by extending the domain of the objective function f(X) using [23]�tnessi(X) = fi(X)�Qi (4)where Qi represents either a penalty for an infeasible individual i, or a cost for repairing such an individual (i.e.,the cost for making it feasible). It is assumed that if i is feasible then Qi = 0 (i.e., we do not penalize feasibleindividuals). In genetic algorithms, we typically haveQi = c� mXi=1
[�i(X)] (5)where
[�i(X)] = �i(X)2 for all violated constraints i, and c is a penalty coe�cient de�ned by the user [56].Although evolution strategies normally use death penalties [123], there are also some proposals to incorporatepenalty functions into this approach. For example, Ho�meister & Sprave have proposed to use [62]:Qi =vuut mXi=0H(��i(X))�i(X)2 (6)where H : R! f0; 1g is the Heavyside function:H(y) = � 1 : y > 00 : y � 0 (7)Ideally, the penalty should be kept as low as possible, just above the limit below which infeasible solutions areoptimal (this is called, the minimum penalty rule [28, 116, 128]). This is due to the fact that if the penalty is toohigh or too low, then the problem becomes GA-hard [28, 116, 118]. However, although conceptually very simple, inpractice it is quite di�cult to implement this rule, because the exact location of the boundary between the feasibleand infeasible regions is unknown in most problems.It is known that the relationship between an infeasible individual and the feasible part of the search spaceplays a signi�cant role in penalizing such individual [115]. However, it is not completely clear how to exploit thisrelationship to guide the search in the most desirable direction.There are at least 3 main choices to de�ne a relationship between an infeasible individual and the feasible regionof the search space [23]:1. an individual might be penalized just for being infeasible (i.e., we do not use any information about how closeit is from the feasible region),2. the `amount' of its infeasibility can be measured and used to determine its corresponding penalty, or3. the e�ort of `repairing' the individual (i.e., the cost of making it feasible) might be taken into account.Several researchers have studied heuristics on the design of penalty functions. Probably the most well-known ofthese studies is the one conducted by Richardson et al. [115] from which the following guidelines were derived:1. Penalties which are functions of the distance from feasibility are better performers than those which are onlyfunctions of the number of violated constraints.2. For a problem having few constraints, and few fully feasible solutions, penalties which are solely functions ofthe number of violated constraints are not likely to produce any solutions.3. Good penalty functions can be constructed from two quantities: the maximum completion cost and theexpected completion cost. The completion cost is the cost of making feasible an infeasible solution.3

4. Penalties should be close to the expected completion cost, but should not frequently fall below it. Themore accurate the penalty, the better will be the solution found. When a penalty often underestimates thecompletion cost, then the search may fail to �nd a solution.Based mainly on these guidelines, several researchers have attempted to derive good techniques to build penaltyfunctions. The most important will be analized next. It should be kept in mind, however, that these guidelines aredi�cult to follow in some cases. For example, the expected completion cost sometimes has to be estimated usingalternative methods (e.g., doing a relative scaling of the distance metrics of multiple constraints, estimating thedegree of constraint violation, etc. [127]). Also, it is not clear how to combine the two quantities indicated byRichardson et al. [115] and how to design a �tness function that uses accurate penalties.4.1 Static PenaltiesHomaifar, Lai and Qi [64] proposed an approach in which the user de�nes several levels of violation, and a penaltycoe�cient is chosen for each in such a way that the penalty coe�cient increases as we reach higher levels of violation.This approach starts with a random population of individuals (feasible or infeasible).An individual is evaluated using [86]:�tnessi(X) = fi(X) + mXj=1Rk;j�2j (X) (8)where Ri;j are the penalty coe�cients used, m is the number of constraints, f(X) is the unpenalized objectivefunction, and k = 1; 2; : : : ; l, where l is the number of levels of violation de�ned by the user. The idea of thisapproach is to balance individual constraints separately by de�ning a di�erent set of factors for each of themthrough the application of a set of deterministic rules.CriticismThe main drawback of this technique is the high number of parameters required [84]. For m constraints, thisapproach requires m(2l+ 1) parameters in total. So, if we have for example 6 constraints and 2 levels, we wouldneed 30 parameters, which is a very high number considering the small size of the problem.Other researchers have used di�erent distance based static penalty functions [56, 4, 65, 102, 115, 13, 136],but in all cases these metrics rely on some extra parameter which is di�cult to generalize and normally remainsproblem-dependent.4.2 Dynamic PenaltiesJoines and Houck [68] proposed a technique in which dynamic penalties (i.e., penalties that change over time) areused. Individuals are evaluated (at generation t) using:�tnessi(X) = fi(X) + (C � t)� mXj=1 j�j(X)j� (9)where C, � and � are constants de�ned by the user, m is the number of constraints, and � is a constant (theauthors used � = 1 and 2) de�ned by the user. This dynamic function increases the penalty as we progress throughgenerations. In their experiments, Joines and Houck [68] used a real-coded GA with arithmetical crossover andnon-uniform mutation [83]. TheCriticismSome researchers [125] have argued that dynamic penalties work better than static penalties. However, it is di�cultto derive good dynamic penalty functions in practice as it is to produce good penalty factors for static functions.For example, in the approach proposed by Joines and Houck [68], the quality of the solution found was very sensitive4

to changes in the values of the parameters. Even when a certain set of values for these parameters (C = 0:5, � = 1or 2) were found by the authors of this method to be a reasonable choice, Michalewicz [84, 88] reported that thesevalues produced premature convergence most of the time in other examples. Also, it was found that the techniquenormally either converged to an infeasible solution or to a feasible one that was far away from the global optimum[84, 23].Apparently, this technique provides very good results only when the objective function is quadratic [89].4.3 Annealing PenaltiesMichalewicz and Attia [82] considered a method based on the idea of simulated annealing [72]: the penalty coe�-cients are changed once in many generations (after the algorithm has been trapped in a local optima). Only activeconstraints are considered at each iteration, and the penalty is increased over time (i.e., the temperature decreasesover time) so that infeasible individuals are hardly penalized in the last generations.The method of Michalewicz and Attia [82] requires that constraints are divided into 4 groups: linear equalities,linear inequalities, nonlinear equalities and nonlinear inequalities. Also, a set of active constraints A has to becreated, and all nonlinear equalities together with all violated nonlinear inequalities have to be included there. Thepopulation is evolved using [84]: �tnessi(X) = fi(X) + 12� Xj2A�2j (X) (10)where � is the cooling schedule [72].An interesting aspect of this approach is that the initial population is not really diverse, but consists of multiplecopies of a single individual that satis�es all the linear constraints (a single instance of this feasible individual isreally enough [89]). At each iteration, the temperature � is decreased and the new population is created using thebest solution found in the previous iteration as the starting point for the next iteration. The process stops when apre-de�ned �nal `freezing' temperature �f is reached.Another, similar proposal was made by Carlson et al. [126]. In this case, the �tness function of an individual iscomputed using: �tnessi(X) = A � fi(X) (11)where A depends on 2 parameters: M , which measures the amount in which a constraint is violated (it takes a zerovalue when no constraint is violated), and T , which is a function of the running time of the algorithm. T tends tozero as evolution progresses. Using the basic principle of simulated annealing, Carlson et al. [126] de�ned A as:A = e�M=T (12)so that the initial penalty factor is small and it increases over time so that infeasible solutions are totally discardedin the last generations.To de�ne T (the cooling schedule), Carlson et al. [126] use:T = 1pt (13)where t refers to the temperature used in the previous iteration.Finally, it should be mentioned that Joines and Houck [68] also experimented with a penalty function based onsimulated annealing: �tnessi(X) = fi(X) + e(C�t)��Pmj=1 j�j(X)j� (14)where t is the generation number, C = 0:05, and � = � = 1.This �tness function was proposed as another form of handling constraints in a GA, but their success wasrelative, mainly because they used unnormalized constraints.5

CriticismOne of the main drawbacks of Michalewicz and Attia's approach is its extreme sensitivity to the values of itsparameters, and it is also well known that it is normally di�cult to choose an appropriate cooling scheme whensolving a problem with simulated annealing [72]. Michalewicz and Attia [82] used �0 = 1 and �f = 0:000001 in theirexperiments, with increments �i+1 = 0:1 � �i. Carlson et al. [126] decided to use the mean constraint violation(�M) as the starting temperature value. For the �nal temperature, they decided to use one hundreth of the meanconstraint violation at the last generation. However, these values are empirically derived and although proved tobe useful in some engineering problems by Carlson et al. [126], their de�nition remains as the most critical issuewhen using simulated annealing.Also, the approach used to handle linear constraints in Michalewicz and Attia's technique (treated separatelyby them) is very e�cient, but it requires that the user provides an initial feasible point to the algorithm.Regarding Joines and Houck's approach [68], their main problems had to do with the over
ows produced by thefact that they did not normalize their constraints and therefore, the exponential function would sometimes fall outof the valid numerical range of the computer. Furthermore, the de�nition of C was not justi�ed, and the authorsadmitted that further experimentation regarding its e�ect was necessary.4.4 Adaptive PenaltiesBean and Hadj-Alouane [7, 57] developed a method of adapting penalties that uses a penalty function which takesa feedback from the search process. Each individual is evaluated by the formula:�tnessi(X) = fi(X) + �(t) mXj=1 �2j (X) (15)where �(t) is updated every generation t in the following way:�(t + 1) = 8<: (1=�1) � �(t); if case #1�2 � �(t); if case #2�(t); otherwise; (16)where cases #1 and #2 denote situations where the best individual in the last k generation was always (case#1) or was never (case #2) feasible, �1; �2 > 1, and �1 6= �2 (to avoid cycling). In other words, the penaltycomponent �(t+1) for the generation t+1 is decreased if all best individuals in the last k generations were feasibleor is increased if they were all infeasible. If there are some feasible and infeasible individuals tied as best in thepopulation, then the penalty does not change.Smith and Tate [128] proposed an approach later re�ned by Coit and Smith [20] and Coit et al. [21] in whichthe magnitude of the penalty is dynamically modi�ed according to the �tness of the best solution found so far. Anindividual is evaluated using the formula:�tnessi(X) = fi(X) + (Bfeasible � Ball) mXj=1� �j(X)NFT (t)�k (17)where Bfeasible is the best known objective function at generation t, Ball is the best (unpenalized) overall objectivefunction at generation t, �j(X) is the amount by which the constraint �j is violated, k is a constant that adjuststhe \severity" of the penalty (a value of k = 2 has been previously suggested by Coit and Smith [20]), and NFTis the so-called Near Feasibility Threshold, which is de�ned as the threshold distance from the feasible region atwhich the user would consider that the search is \reasonably" close to the feasible region [89, 52].Norman & Smith [101] further applied Coit & Smith's approach to facility layout problems, and apparently thetechnique has been used only in combinatorial optimization problems.Gen and Cheng [52] indicate that Yokota et al. [140] proposed a variant of Smith, Tate and Coit's approach inwhich they use a multiplicative form of the �tness function (instead of an addition as in Smith et al. [128]):�tnessi(X) = fi(X)� P (X) (18)6

where P (X) is de�ned as: P (X) = 1� 1m mXj=1��bj(X)bj �k (19)and �bj(X) = maxf0; �j(X)� bjg (20)In this case, �bj(X) refers to the violation of constraint j. Notice that this approach is really a special case ofSmith et al.'s approach in which NFT = bj , assuming that gj(X) � bj is required to consider a solution as fullyfeasible.Gen and Cheng [51] later re�ned their approach introducing a more severe penalty for infeasible solutions. Inthe new version of their algorithm, P (X) = 1� 1m mXj=1 �bj(X)�bmaxj !k (21)�bj(X) = maxf0; �j(X)� bjg (22)�bmaxj = maxf�;�bj(X);X 2 P (t)g (23)where �bj(X) is the value by which the constraint j is violated in the n-th chromosome. �bmaxj is the maximumviolation of constraint j in the whole (current) population, and � is a small positive number used to avoid dividingby zero [52]. The motivation of this technique was to preserve diversity in the population, avoiding at the sametime overpenalizing infeasible solutions which will constitute most of the population at early generations in highlyconstrained optimization problems [52].Eiben & van der Hauw [41], Eiben et al. [42] and Eiben & Ruttkay [40] proposed an adaptive penalty functionthat was successfully applied to the graph 3-coloring problem. They used a �tness function of the form�tnessi(X) = nXi=1 wi � �(X; i) (24)where wi is a weight (or penalty) assigned to node i of a graph, and�(X; i) = � 1 if node xi is left uncolored because of a constraint violation0 otherwise (25)In this approach, originally introduced by Eiben et al. [39], the weights used in the �tness function are changedduring the evolutionary process such that the search focuses on satisfying those constraints that are considered\harder" by giving higher rewards to the �tness function in those cases. This technique proved to be superior to apowerful (traditional) graph coloring technique called DSatur [11] and to a Grouping Genetic Algorithm [43].CriticismThe obvious drawback of Bean and Hadj-Alouane' approach [7, 57] is how to choose the generational gap (i.e., theappropriate value of k) that provides reasonable information to guide the search, and more important, how do wede�ne the values of �1 and �2 to penalyze fairly a given solution.The most obvious drawback of Smith and Tate's [128] approach is how to choose NFT , since this parameterwill be problem dependent. Coit and Smith [20] have proposed to de�ne NFT as:NFT = NFT01 + �� t (26)where NFT0 is an upper bound for NFT , t is the generation number, and � is a constant that assures thatthe entire region between NFT0 and zero (feasible region) is searched. Care should be taken that NFT does not7

approach zero either too quickly or too slowly [20]. Although Coit and Smith [20] have provided some alternativesfor de�ning NFT , its value remains as an additional parameter to be determined by the user.Additionally, the factor Bfeasible�Ball has some potential dangers: First, if Bfeasible is much greater than Ball,then the penalty would be quite large for all individuals in the population. Coit and Smith [20] claim that thisdoes not seem to happen too often in practice because they use selection strategies that preclude the possibility ofselecting solution vectors su�ciently far from the feasible region for this to happen, but in any case, they proposechanging the values of Bfeasible and Ball for the initial generations.The second potential danger is that if they are identical, then the penalty would be zero, which means that allinfeasible individuals would go unpenalized in that generation. The underlying assumption here is that the bestunpenalized individual in fact lies on the feasible region, but that might not be the case, and it could introduce astrong bias towards infeasible solutions.The approach proposed by Gen and Cheng [52] assigns a relatively mild penalty with respect to Coit et al. [21],but the authors of this method argue that their approach is problem-independent [52]. However, no informationis provided by Gen and Cheng [52] regarding the sort of problems used to test this technique, and apparently theapproach was used only in one combinatorial optimization problem, which does not constitute enough evidence ofthis statement.Similarly, the approach of Eiben & van der Hauw [41] also requires the de�nition of additional parameters(the weights wi assigned to each node of the graph), and it has been applied only to combinatorial optimizationproblems. The use of adaptive penalties, therefore, remains to be extended to numerical optimization problems.4.5 Self-Adaptive penaltiesMichalewicz et al. [86] have recognized the importance of using adaptive penalties in evolutionary optimization,and considered this approach as a very promising direction of research on evolutionary optimization. Followingthis idea, Coello [19, 16] proposed the use of a penalty function of the form:�tnessi(X) = fi(X)� (coef �w1 + viol �w2) (27)where fi(X) is the value of the objective function for the given set of variable values encoded in the chromosomei; w1 and w2 are 2 penalty factors (considered as integers in this paper); coef is the sum of all the amounts bywhich the constraints are violated (only inequality constraints were considered):coef = pXi=1 �i(X) 8�i(X) > 0 (28)viol is an integer factor, initialized to zero and incremented by one for each constraint of the problem that isviolated, regardless of the amount of violation (i.e., only the number of constraints violated is counted with thisvariable, but not the magnitude in which each constraint is violated).In Coello's approach, the penalty is actually split into two values (coef and viol), so that the GA has enoughinformation not only about how many constraints were violated, but also about the amounts in which such con-straints were violated. This follows Richardson's suggestion [115] about using penalties that are guided by thedistance to feasibility.Coello [19] used 2 di�erent populations P1 and P2 with corresponding sizes M1 and M2. The second of thesepopulations (P2) encoded the set of weight combinations (w1 and w2) that would be used to compute the �tnessvalue of the individuals in P1 (i.e., P2 contained the penalty factors that would be used in the �tness function).The idea of Coello's approach is to use one population to evolve solutions (as in a conventional genetic algorithm),and another to evolve the penalty factors w1 and w2. A graphical representation of this approach may be seenin Figure 1. Notice that for each individual Aj in P2 there is an instance of P1. However, the population P1 isreused for each new element Aj processed from P2.Each individual Aj (1 � j � M2) in P2 is decoded and the weight combination produced (i.e., the penaltyfactors) is used to evolve P1 during a certain number (Gmax1) of generations. The �tness of each individual Bk(1 � k � M1) is computed using Equation (27), keeping the penalty factors constant for every individual in theinstance of P1 corresponding to the individual Aj being processed.8

B1

B1

B2

B2

B3

B3

Bk

Bk.

.

.B B BB1 2 3 k

A1

A 2

A j

P2

P1

P1

P1

Figure 1: Graphical representation of approach to handle constraints proposed by Coello [19].After evolving each P1 corresponding to every Aj in P2 (there is only one instance of P1 for each individual inP2), the best average �tness produced is computed using:average fitnessj = M1Xi=1 � �tnessicount feasible�+ count feasible 8X 2 F (29)In Equation (29), the �tnesses of all feasible solutions in P1 are added, and an average of them is computed(the integer variable count feasible is a counter that indicates how many feasible solutions were found in thepopulation). The reason for considering only feasible individuals is that if infeasible solutions are not excludedfrom this computation, the selection mechanism of the GA may bias the population towards regions of the searchspace where there are solutions with a very low weight combination (w1 and w2). Such solutions may have good�tness values, and still be infeasible. The reason for that is that low values of w1 and w2 may produce penaltiesthat are not big enough to outweight the value of the objective function.Notice also the use of count feasible to avoid stagnation (i.e., loss of diversity in the population) at certainregions in which only very few individuals will have a good �tness or will be even feasible. By adding this quantityto the average �tness of the feasible individuals in the population, the GA is encouraged to move towards regionsin which lie not only feasible solutions with good �tness values, but there are also lots of them. In practice, itmay be necessary to apply a scaling factor to the average of the �tness before adding count feasible, to avoid thatthe GA gets trapped in local optima. However, such scaling factor is not very di�cult to compute because Coello[19] assumes populations of constant size (such size must be de�ned before running the GA), and the range of the�tness values can be easily obtained at each generation, because the maximum and minimum �tness values in thepopulation are known at each generation.The process indicated above is repeated until all individuals in P2 have a �tness value (the best average fitnessof their corresponding P1). Then, P2 is evolved one generation using conventional genetic operators (i.e., crossoverand mutation) and the new P2 produced is used to start the same process all over again. It is important to noticethat the interaction between P1 and P2 introduces diversity in both populations, which keeps the GA from easilyconverging to a local optimum. 9

CriticismThe problem with this approach is that it introduces the de�nition of four additional parameters: Gmax1, Gmax2,M1 and M2. Coello [19, 18] argues that those parameters have to (empirically) determined for a GA in anyparticular application, and showed that the approach was really more sensitive to changes in the parameters of P1than to changes in the parameters of P2. However, the de�nition of these parameters remains as an additionalissue to be settle. Furthermore, if these parameters are not carefully chosen, a lot of �tness function evaluationsmight be required due to the nested loops involved in the optimization process. A parallel algorithm may be aviable solution to this problem, but such an alternative has not been implemented yet.4.6 Segregated genetic algorithmLe Riche et al. [118] designed a (segregated) genetic algorithm which uses two penalty parameters (for eachconstraint) instead of one; these two values aim at achieving a balance between heavy and moderate penaltiesby maintaining two subpopulations of individuals instead of one. Even when individulas of the two populationsinterbreed, they are \segregated" in terms of satisfaction of a certain constraint.The population is split into two cooperating groups, where individuals in each group are evaluated using eitherone of the two penalty parameters. Then, the best individuals of each group are chosen as parents for the nextgeneration, which aims to combine feasible and infeasible individuals (if one of the penalties chosen is large andthe other is small), and to help each other out of local minima.Linear ranking was used to decrease the selection pressure that could cause premature convergence. Thisapproach was used to solve a laminated design problem, providing excellent results [118].CriticismThe problem with this approach is again the way of choosing the penalties for each of the 2 sub-populations, andeven when some guidelines have been provided by the authors of this method [118] to de�ne such penalties, theyalso admit that it is di�cult to produce generic values that can be used in any problem for which no previousinformation is available.4.7 Penalty function based on feasibilityDeb [31] proposed an interesting approach in which an individual is evaluated using:�tnessi(X) = � fi(X) if �j(X) � 0; 8j = 1; 2; : : : ;mfworst +Pmj=1 �j(X) otherwise (30)where fworst is the objective function value of the worst feasible solution in the population, and �j(X) refersonly to inequality constraints (equality constraints can be transformed to inequality constraints using a tolerance).If there are no feasible solutions in the population, then fworst is set to zero.Using binary tournament selection, Deb uses the following rules to compare two individuals [31]:1. A feasible solution is always preferred over an infeasible one.2. Between two feasible solutions, the one having better objective function is preferred.3. Between two infeasible solutions, the one having smaller constraint violation is preferred.No penalty factor is required, since the selection procedure only performs pairwise comparisons. Therefore,feasible solutions have a �tness equal to their objective function value, and the use of constraint violation in thecomparisons aims to push infeasible solutions towards the feasible region. Due to the fact that constraints arenormally non-commensurable (i.e., they are expressed in di�erent units), Deb normalized them to avoid any sortof bias toward any of them.Deb [31] used a real-coded GA with simulated binary crossover (SBX) [32] and a parameter-based mutationoperator [34]. 10

CriticismDeb's results [31] are very encouraging, but the technique seems to have problems to maintain diversity in thepopulation, and the use of niching methods [33] combined with higher than usual mutation rates is apparentlynecessary when using this approach.4.8 Death penaltyThe rejection of infeasible individuals (also called \death penalty") is probably the easiest and most e�cient wayto handle constraints, because when a certain solution violates a constraint, it is assigned a �tness of zero, andno further calculations are necessary to estimate the degree of infeasibility of the solution. The normal approachtaken is to iterate recursively, generating a new point at each recursive call, until a feasible solution is found [62].This might be a rather lengthy process in problems in which is very di�cult to approach the feasible region.An interesting death penalty approach has been used by Kuri [94]. Fitness of an individual is determined using:�tnessi(X) = � f(X) if the solution is feasibleK �Psi=1 �Km� otherwise (31)where s is the number of constraints satis�ed, and K is a large constant (it was set to 1�109 [93]in the experimentsreported in [94]). Notice that when an individual is infeasible, its �tness is not computed (as in evolution strategies)and all the individuals that violate the same number of constraints receive the same penalty, regardless of howclose they are from the feasible region.CriticismDeath penalty is very popular within the evolution strategies community [123, 3], but it is limited to problems inwhich the feasible search space is convex and constitutes a reasonably large portion of the whole search space. Thisapproach has the drawback of not exploiting any information from the infeasible points that might be generated bythe evolutionary algorithm to guide the search. Michalewicz [84, 88, 89] has shown that the use of death penaltyis inferior to the use of penalties that are de�ned in terms of the distance to the feasible region.Kuri's approach does not use information about the amount of constraint violation, but only about the numberof constraints that were violated. Although this contradicts one of the basic rules stated by Richardson [115] aboutthe de�nition of good penalty functions, apparently the self-adaptive GA used by Kuri (called Eclectic GeneticAlgorithm or EGA for short) could cope with this problem and was able to optimize several di�cult nonlinearoptimization problems. In one of the functions used, however, it was necessary to initialize the population withanother EGA because no feasible solutions were present in the �rst generation. This problem was obviouslyproduced by the lack of diversity in the population (not having a single feasible individual in the population, theyall had the very similar or equal �tness), which seriously limits its applicability in highly constrained search spaces.It is interesting to mention that this is exactly the same problem that arises with death penalty, and that in somesense this sort of high penalty can be seen as a more elaborate form of death penalty, since infeasible individualsare not evaluated.5 Special representations and operatorsSome researchers have decided to develop special representation schemes to tackle a certain (particularly di�cult)problem for which the conventional binary representation used in the GA might not be appropriate. Due to thechange of representation, it is necessary to design special genetic operators that work in a similar way than thetraditional operators used with a binary representation.A change of representation is aimed at simplifying the shape of the search space and the special operators arenormally used to preserve the feasibility of a certain solution at all times. The main application of this approachis naturally in problems in which it is extremelly di�cult to locate at least a single feasible solution.11

5.1 Davis' applicationsLawrence Davis' Handbook of Genetic Algorithms [29] contains several examples of GAs that use special repre-sentations and operators to solve complex real-world problems. For example, Yuval Davidor [26] (see also [25])used a varying-length GA to generate robot trajectories, and de�ned a special crossover operator called analogouscrossover [24], which uses phenotypic similarities to de�ne crossover points in the parent strings. Davidor also usedLamarckian probabilities for crossover and mutation. This means that the crossover and mutation points werechosen according to the error distribution along the string, which was relatively easy to estimate in the applicationpresented by Davidor.Other applications included in Davis' book are: schedule optimization [134], synthesis of neural networks archi-tecture [61], and conformational analysis of DNA [80], among others.CriticismThe use of special representations and operators is, with no doubt, quite useful for the intended application forwhich they were designed, but their generalization to other (even similar) problems is by no means obvious.5.2 GENOCOPAnother example of this approach is GENOCOP (GEnetic algorithm for Numerical Optimization for COnstrainedProblems), developed by Michalewicz [83], which handles linear constraints by eliminating equalities and designingspecial genetic operators which guarantee to keep all chromosomes within the constrained solution space. Due tothe complexity of this approach, the interested reader is referred to Michalewicz [83] for details.CriticismGENOCOP assumes a feasible starting point (or feasible initial population), which implies that the user must havea way of generating (in a reasonable time) such starting point. Also, since GENOCOP assumes the existence ofonly linear constraints, it is inherently restricted to convex search spaces [23].5.3 Constraint Consistent GAsKowalczyk [73] proposed the use of constraint consistency [76] to prune the search space by preventing variableinstantiations that are not consistent with the constraints of the problem (i.e., making sure that variables produceonly feasible solutions).Kowalczyk used real-coded GAs and de�ned special genetic operators and a special initialization procedure thatincorporated the concept of constraint consistency. He indicated that his approach can be used in combinationwith any other constraint-handling technique, and was fully aware that in many cases partially feasible solutionsmay be preferred because they contain better building blocks or because they are much easier to �nd.CriticismThe main drawback of this approach is the extra computational cost required to propagate constraints, which maybecome a process more exprensive than the optimization itself. In any case, the approach deserves some attentionand more experimentation is required, since Kowalczyk only illustrated its performance with two optimizationproblems.5.4 Locating the boundary of the feasible regionThe main idea of this technique is to search areas close to the boundary of the feasible region. Since in manynonlinear optimization problems at least some constraints are active at the global optimum, it is perfectly justi�edto focus the search to the boundary between the feasible and infeasible regions.The idea was originally proposed in an Operations Research technique known as strategic oscillation [54] andhas been used in combinatorial and nonlinear optimization problems [55]. The basic approach is to use adaptive12

penalties or other similar mechanism (e.g., gradients) to cross the feasibility boundary back and forth by relaxingor tightening a certain factor that determines the direction of movement [89].The two basic components of this approach are: (a) an initialization procedure that can generate feasible points,and (b) genetic operators that explore the feasible region.Additionally, the genetic operators must satisfy the following conditions [111, 83]: (1) crossover should be able togenerate all points \between" the parents, (2) small mutations must result in small changes in the �tness function.In the work done by Schoenauer and Michalewicz [120], several examples are presented and special geneticoperators are designed for each using geodesical curves and plane-based operators. In a further paper, Schoenauerand Michalewicz [121] analyze in more detail the use of sphere operators in convex feasible search spaces.CriticismThe main drawback of this approach is that the operators designed are either highly dependent on the chosenparameterization [120], or more complex calculations are required to perform crossover and mutation. Also, theuse of such operators is limited to a single problem, although some of the concepts involved can be generalized.Whenever applicable, however, the approach is quite e�cient and produces very good results.5.5 DecodersIn this case, a chromosome \gives instructions" on how to build a feasible solution. Each decoder imposes arelationship T between a feasible solution and a decoded solution [23]. When using decoders, however, it isimportant that several conditions are satis�ed [105]: (1) for each feasible solution s there is a decoded solution d,(2) each decoded solution d corresponds to a feasible solution s, and (3) all feasible solutions should be representedby the same number of decodings d. Additionally, it is reasonable to request that (4) the transformation T iscomputationally fast and (5) it has locality feature in the sense that small changes in the decoded solution resultin small changes in the solution itself [23].Koziel and Michalewicz [74, 75] have recently proposed a homomorphous mapping between an n-dimensionalcube and a feasible search space (either convex or non-convex). The main idea of this approach is to transform theoriginal problem into another (topologically equivalent) function that is easier to optimize by the GA.Kim and Husbands [69, 70] had an earlier proposal of a similar approach that used Riemann mappings totransform the feasible region into a shape that facilitated the search for the GA.CriticismDespite the several advantages of Koziel and Michalewicz's approach [75], it also has some disadvantages [75]:� It uses an extra parameter v which has to be found empirically, performing a set of runs.� It is expensive (computationally speaking), because of the sort of computations involved in the technique.However, in the experiments reported by Koziel and Michalewicz [75], this technique provided much better resultsthan those reported with any other constraint-handling method, and seems a very promising area of research.Kim and Husbands' approach [69, 70] could only be used with problems of low dimensionality (no more than 4variables) and required the objective function to be given in explicit (algebraic) form. The mapping proposed byKoziel and Michalewicz [74, 75], however, can be used with problems of any dimensionality and does not requirethat the objective function is given in algebraic form.5.6 Repair algorithmsIn many combinatorial optimization problems (e.g., traveling salesman problem, knapsack problem, set coveringproblem, etc.) is relatively easy to `repair' an infeasible individual (i.e., to make feasible an infeasible individual).Such a repaired version can be used either for evaluation only, or it can also replace (with some probability) theoriginal individual in the population. 13

Liepins et al. [78, 79] have shown, through an empirical test of GA performance on a diverse set of constrainedcombinatorial optimization problems, that a repair algorithm is able to surpass other approaches in both speedand performance.GENOCOP III [88] also uses repair algorithms. The idea is to incorporate the original GENOCOP [87] system(which handles only linear constraints) and extend it by maintaining two separate populations, where results inone population in
uences evaluations of individuals in the other population. The �rst population consists of the so-called search points which satisfy linear constraints of the problem; the feasibility (in the sense of linear constraints)of these points is maintained by specialized operators. The second population consists of fully feasible referencepoints. Since these reference points are already feasible, they are evaluated directly by the objective function,whereas search points are \repaired" for evaluation.Xiao et al. [90, 139, 138] used a repair algorithm to transform an infeasible path of a robot trying to movebetween two points in the presence of obstacles, such that the path would become feasible (i.e., collision-free). Therepair algorithm was implemented through a set of carefully designed genetic operators that used knowledge aboutthe domain to bring infeasible solutions into the feasible region in an e�cient way.Other authors that have used repair algorithms are Orvosh and Davis [104], M�uhlenbein [95], Le Riche andHaftka [117], and Tate and Smith [135].There are no standard heuristics for the design of repair algorithms: normally, it is possible to use a greedyrepair (a greedy algorithm is an optimization algorithm that proceeds through a series of alternatives by makingthe best decision, as computed locally, at each point in the series), a random repair or any other heuristic whichwould guide the repair process, and the success of this approach relies mainly on the ability of the user to come upwith such a heuristic.Another interesting aspect of this technique is that normally an infeasible solution that is repaired is only usedto compute its �tness, but the repaired version is returned to the population only in certain cases (using a certainprobability). The question of replacing repaired individuals is related to the so-called Lamarckian evolution, whichassumes that an individual improves during its lifetime and that the resulting improvements are coded back intothe chromosome. Some researchers like Liepins et al. [78, 79] have taken the never replacing approach (that is,the repaired version is never returned to the population), while other authors such as Nakano [99] have taken thealways replacing approach.Orvosh and Davis [103, 104] reported a so-called 5% rule for combinatorial optimization problems, which meansthat genetic algorithms (applied to combinatorial optimization problems) with a repairing procedure provide thebest result when 5% of the repaired chromosomes replace their infeasible originals. Michalewicz et al. [86] havereported, however, that a 15% replacement rule seems to be the best choice for numerical optimization problemswith nonlinear constraints.CriticismWhen an infeasible solution can be easily (or at least at a low computational cost) transformed into a feasiblesolution, repair algorithms are a good choice. However this is not always possible1 and in some cases repairoperators may severely disturb the good building blocks of the parent solutions carried in the children, harming theevolutionary process itself [127]. Furthermore, this approach is problem-dependant, since a speci�c repair algorithmhas to be designed for each particular problem.6 Separation of constraints and objectivesThere are several approaches that handle constraints and objectives separately and we will review in this sectionsome of the most representative proposals.1In fact, in some cases the task of �nding a feasible solution is by itself an NP-hard problem [127].14

6.1 Co-evolutionParedis [106] proposed a technique based on a co-evolutionary model in which there are two populations: the �rstcontains the constraints to be satis�ed (in fact, this is not a population in the general sense of the term, sinceits contents does not change over time) and the second contains potential (and possibly invalid) solutions to theproblem to be solved. Using an analogy with a predator-prey model, the selection pressure on members of onepopulation depends on the �tness of the members of the other population [106].An individual with high �tness in the second population represents a solution that satis�es a lot of constraintswhereas an individual with high �tness in the �rst population represents a constraint that is violated by a lot ofsolutions.Solutions and constraints have encounters in which individuals belonging to both populations are evaluated.Each individual keeps a history of its encounters, and its �tness is computed according to the sum of the last nencounters (Paredis [106] used n = 25). The idea of the approach is to increase the �tness of those constraintsthat are harder to satisfy so that the evolutionary search concentrates on them. In fact, the relevance of a certainconstraint can be changed over time using this approach.CriticismParedis [106] indicated that his approach was similar to a self-adapting penalty function in which the relevanceof a certain constraint can be changed over time, according to its di�culty. The results reported by Paredis [106]are very impressive, and the approach seems very e�cient because not all constraints have to be checked at alltimes. One problem with this approach is that the use of a historical record to compute �tness of an invidualmight introduce \stagnation" (i.e., the search may not progress anymore) if all the constraints (or at least mostof them) are equally di�cult to satisfy. Also, there is no further evidence of the e�ectivity of the approach inother combinatorial optimization problems, and apparently, it has not been extended to numerical optimizationproblems either.6.2 Superiority of feasible pointsPowell and Skolnick [110] incorporated a heuristic rule (suggested by Richardson et al. [115]) for processinginfeasible solutions: evaluations of feasible solutions are mapped into the interval (�1, 1), and infeasible solutionsinto the interval (1, 1). Individuals are evaluated using [110]:�tnessi(X) = � fi(X) if feasible1 + rPmj=1 �(X) otherwise (32)fi(X) is scaled into the interval (�1,1), �(X) is scaled into the interval (1, 1), and r is a constant.Powell and Skolnick [110] used linear ranking selection [5, 6, 29] in such a way that at early generations therewould be slow convergence, and later on convergence could be forced by increasing the number of copies of thehighest ranked individuals.CriticismAlthough some might think that the de�nition of r introduces the traditional problems of using a penalty function,this is not true, since the linear ranking selection scheme used makes irrelevant the value of this constant. Theapproach has, however, other problems.The key concept of this approach is the assumption of the superiority of feasible solutions over infeasible ones,and as long as such assumption holds, the technique is expected to behave well [110]. However, in cases where theratio between the feasible region and the whole search space is too small (for example, when there are constraintsvery di�cult to satisfy), the technique will fail unless a feasible point is introduced in the initial population [86].15

6.3 Behavioral memorySchoenauer and Xanthakis [122] proposed to extend a technique called behavioral memory, which was originallyproposed for unconstrained optimization [30]. The main idea of this approach is that constraints are handled in aparticular order. The algorithm is the following [122]:� Start with a random population of individuals� Set j = 1 (j is the constraint counter)� Evolve this population to minimize the violation of the j-th constraint, until a given percentage of thepopulation (this is called the
ip threshold �) is feasible for this constraint. In this case�tness(X) =M � �1(X) (33)where M is a su�ciently large positive number which is dynamically adjusted at each generation.� j = j + 1� The current population is the starting point for the next phase of the evolution, minimizing the violation ofthe j-th constraint, �tness(X) =M � �j(X) (34)During this phase, points that do not satisfy at least one of the 1st, 2nd, : : : (j � 1)-th constraints areeliminated from the population. The halting criterion is again the satisfaction of the j-th constraint by the
ip threshold percentage � of the population.� If j < m, repeat the last two steps, otherwise (j = m) optimize the objective function f rejecting infeasibleindividuals.The idea of this technique is to satisfy sequentially (one by one) the constraints imposed on the problem. Once acertain percentage of the population (de�ned by the
ip threshold) satis�es the �rst constraint, an attempt to satisfythe second constraint (while still satisfying the �rst) will be made. Notice that in its last step of the algorithm,Schoenauer and Xanthakis [122] use death penalty, because infeasible individuals are completely eliminated fromthe population.CriticismThis method requires that there is a linear order of all constraints, and apparently, the order in which the constraintsare processed in
uences the results provided by the algorithm (in terms of total running time and precision) [86].Schoenauer and Xanthakis also recommended the use of a sharing scheme (to keep diversity in the population),which adds to the
ip threshold � and the order of the constraints as extra parameters required by the algorithm.Furthermore, since this approach violates the minimum penalty rule [116, 118], it has a high computational cost(increased by the use of sharing to keep diversity in the population). As Schoenauer and Xanthakis [122] admit,the extra computational cost of this approach is not justi�ed when the feasible region is quite large. However, it isparticularly suitable for applications in which constraints have a natural hierarchy of evaluation, like the problemof generating software test data used by Schoenauer and Xanthakis [122].6.4 Multiobjective Optimization TechniquesThe main idea is to rede�ne the single-objective optimization of f as a multiobjective optimization problem inwhich we will have m+1 objectives, where m is the number of constraints. Then, we can apply any multiobjectiveoptimization technique [49] to the new vector �v = (f; f1; : : : ; fm), where f1; : : : ; fm are the original constraints ofthe problem. An ideal solution X would thus have fi(X)=0 for 1 � i � m and f(X) � f(Y) for all feasible Y(assuming minimization). 16

Surry et al. [132] proposed the use of Pareto ranking [48] and VEGA [119] to handle constraints using thistechnique. In their approach, called COMOGA, the population was ranked based on constraint violations (countingthe number of individuals dominated by each solution). Then one portion of the population was selected based onconstraint ranking, and the rest based on real cost (�tness) of the individuals.Parmee and Purchase [107] implemented a version of VEGA [119] that handled the constraints of a gas turbineproblem as objectives to allow the GA to locate a feasible region within the highly constrained search space of thisapplication. However, VEGA was not used to further explore the feasible region, and instead Parmee and Purchase[107] opted to use specialized operators that would create a variable-size hypercube around each feasible point tohelp the GA to remain within the feasible region at all times.Camponogara & Talukdar [12] proposed the use of a procedure based on an evolutionary multiobjective opti-mization technique. Their proposal was to restate a single objective optimization problem in such a way that twoobjectives would be considered: the �rst would be to optimize the original objective function and the second wouldbe to minimize: �(X) = kXi=1max(0; �i(X)) (35)Once the problem is rede�ned, non-dominated solutions with respect to the two new objectives are generated.The solutions found de�ne a search direction d = (xi � xj)=jxi � xjj, where xi 2 Si, xj 2 Sj , and Si and Sj arePareto sets. The direction search d is intended to simultaneously minimize all the objectives [12]. Line search isperformed in this direction so that a solution x can be found such that x dominates xi and xj (i.e., x is a bettercompromise than the two previous solutions found). Line search takes the place of crossover in this approach, andmutation is essentially the same, where the direction d is projected onto the axis of one variable j in the solutionspace [12]. Additionally, a process of eliminating half of the population is applied at regular intervals (only the less�tted solutions are replaced by randomly generated points).Jim�enez and Verdegay [67] proposed the use of a min-max approach [14] to handle constraints. The main ideaof this approach is to apply a set of simple rules to decide the selection process:1. If the two individuals being compared are both feasible, then select based on the minimum value of theobjective function.2. If one of the two individuals being compared is feasible and the other one is infeasible, then select the feasibleindividual.3. If both individuals are infeasible, then select based on the maximum constraint violation (max �j(X); forj =1; : : : ;m). The individual with the lowest maximum violation wins.Notice the great similarity between this approach and the technique proposed by Deb [31] that was describedin a previous section. Jim�enez and Verdegay [67] used a real-coded GA with uniform crossover [133], nonuniformmutation [83], and tournament selection.Coello [17] proposed the use of a population-based multiobjective optimization technique such as VEGA [119]to handle each of the constraints of a single-objective optimization problem as an objective. The technique maybe better illustrated by Figure 2. At each generation, the population is split into m+ 1 sub-populations, where mrefers to the number of constraints of the problem (we have to add one to consider also the objective function).Using this scheme, a fraction of the population will be selected using the (unconstrained) objective function asits �tness; another fraction will use the �rst constraint as its �tness and so on.For the sub-population guided by the objective function, the evaluation of such objective function for a givenvector X is used directly as the �tness function (probably multiplied by (-1) if it is a minimization problem), withno penalties of any sort. For all the other sub-populations, the algorithm used was the following [17]:if �j(X) < 0:0 then �tness = �j(X)else if v 6= 0 then �tness = �velse �tness = f 17

f(x)

g (x)

g (x)

g (x)

1

f(x)

g (x)

g (x)

1

22

Sub-populations
Old

Sub-populations
New

m+1

3

1

2

1

2

3

m+1

genetic
operators

Apply

g (x)
mmFigure 2: Graphical representation of the approach introduced in this paper.where �j(X) refers to the constraint corresponding to sub-population j + 1 (this is assuming that the �rst sub-population is assigned to the objective function f), and v refers to the number of constraints that are violated(� m).There are a few interesting things that can be observed from this procedure. First, each sub-population associatedwith a constraint will try to reduce the amount in which that constraint is violated. If the solution evaluated doesnot violate the constraint corresponding to that sub-population, but it is infeasible, then the sub-population willtry to minimize the total number of violations, joining then the other sub-populations in the e�ort of driving theGA to the feasible region. This aims at combining the distance from feasibility with information about the numberof violated constraints, which is the same heuristic normally used with penalty functions.Finally, if the solution encoded is feasible, then this individual will be `merged' with the �rst sub-population,since it will be evaluated with the same �tness function (i.e., the objective function).It is interesting to notice that the use of the unconstrained objective function in one of the sub-populations mayassign good �tness values to infeasible individuals. However, because the number of constraints will normally begreater than one, the other sub-populations will drive the GA to the feasible region. In fact, the sub-populationevaluated with the objective function will be useful to keep diversity in the population, making then unnecessarythe use of sharing techniques. The behavior expected under this scheme is to have few feasible individuals at thebeginning, and then gradually produce solutions that may be feasible with respect to some constraints but notwith respect to others. Over time, the building blocks of these sub-populations will combine to produce individualsthat are feasible, but not necessarily optimum. At that point the direct use of the objective function will helpthe GA to approach the optimum, but since some infeasible solutions will still be present in the population, thoseindividuals will be responsible to keep the diversity required to avoid stagnation.CriticismCOMOGA compared fairly with a penalty-based approach in a pipe-sizing problem, since the resulting GA was lesssensitive to changes in the parameters, but the results achieved were not better than those found with a penaltyfunction [132]. It should be added that COMOGA [132] required several extra parameters, from which the so-calledpcost was the most important (this parameter regulates the proportion of feasible and infeasible individuals thatwill exist in the population at any given time). Also, due to the use of dominance to impose an order on theconstraints based on their violation, COMOGA involves the use of a more expensive process (in terms of CPU18

time).Parmee and Purchase's [107] approach was developed for a heavily constrained search space and it proved to beappropriate to reach the feasible region. However, this application of a multiobjective optimization technique doesnot aim at �nding the global optimum of the problem, and the use of special operators suggested by the authorscertainly limits the applicability of their approach.Camponogara& Talukdar's approach [12] has obvious problems to keep diversity (a common problem with usingevolutionary multiobjective optimization techniques), as it is indicated by the fact that the technique discards theworst individuals at each generation. Also, the use of line search increases the cost (computationally speaking) ofthe approach and it is not clear what is the impact of the segment chosen to search in the overall performance ofthe algorithm.Jim�enez and Verdegay's approach [67] can hardly be said to be using a multiobjective optimization techniquesince it only ranks infeasible individuals based on constraint violation. A subtle problem with this approach is thatthe evolutionary process �rst concentrates only on the constraint satisfaction problem and therefore it samplespoints in the feasible region essentially at random [132]. This means that in some cases (e.g., when the feasibleregion is disjoint) we might land in an inappropriate part of the feasible region from which we will not be able toescape. However, this approach (as in the case of Parmee and Purchase's [107] technique) may be a good alternativeto �nd a feasible point in a heavily constrained search space.The main drawback of Coello's approach [17] may be the number of sub-populations that may be needed inlarger problems, since they will increase linearly with the number of constraints. However, it is possible to deal withthat problem in two di�erent ways: �rst, some constraints could be tied; that means that two or more constraintscould be assigned to the same sub-population. That would signi�cantly reduce the number of sub-populationsin highly constrained problems. Second, the approach could parallelized, in which case a high number of sub-populations would not be a serious drawback, since they could be processed concurrently. The current algorithmwould however need modi�cations as to decide the sort of interactions between a master process (responsible foractually optimizing the whole problem) and the slave sub-processes (all the sub-populations responsible for theconstraints of the problem).Specialists in evolutionary multiobjective optimization may indicate that VEGA is not a very good choicebecause of its well-known limitations (it tries to �nd individuals that excel only in one dimension regardless ofthe others [119, 49]). However, that drawback turns out to be an advantage in the context of constraint-handling,because what we want to �nd are precisely solutions that are completely feasible, instead of good compromisesthat may not satisfy one of the constraints.7 Hybrid methodsWithin this category we are considering methods that are coupled with another technique (normally a numericaloptimization approach) to handle constraints in an evolutionary algorithm.7.1 Lagrangian multipliersAdeli and Cheng [1] proposed a hybrid GA that integrates the penalty function method with the primal-dualmethod. This approach is based on sequential minimization of the Lagrangian method, and uses a �tness functionof the form: �tnessi = fi(X) + 12 mXj=1
j �[�j(X) + �j]+	2 (36)where
i > 0, �i is a parameter associated with the ith constraint, and m is the number of constraints. Also:[�j(X) + �j]+ = max[0; �j(X) + �j] (37)The proposal of Adeli and Cheng [1] was to de�ne �j in terms of the previously registered maximum violationof its associated constraint and scale it using a parameter � which is de�ned by the user and has to be > 1.
j is19

increased using also the parameter �, whose value (kept constant through the entire process) is multiplied by theprevious value adopted for
j as to ensure that the penalty is increased over generations.Kim and Myung [71, 97] proposed the use of an evolutionary optimization method combined with an augmentedLagrangian function that guarantees the generation of feasible solutions during the search process. This proposalis an extension of a system called Evolian [98, 96], which uses evolutionary programming with a multi-phaseoptimization procedure in which the constraints are scaled. During the �rst phase of the algorithm, the objectiveis to optimize: �tnessi(X) = fi(X) + C2 mXi=1 �2j (X)! (38)where C is a constant. Once this phase is �nished (i.e., once constraint violations have been decreased as muchas the user wants), the second phase starts. During this second phase, the optimization algorithm of Maa andShanblatt [81] is applied to the best solution found during the �rst phase.The second phase uses Lagrange multipliers to adjust the penalty function according to the feedback informationreceived from the environment during the evolutionary process, in a way akin to the proposal of Adeli and Cheng[1].CriticismAdeli and Cheng's technique [1] provided them with good results, but the additional parameters needed to makeit work properly do not seem to overcome the most serious drawbacks of a traditional penalty function.The main drawback of Kim and Myung;'s approach [71, 97] is the same as before: despite the fact that theyprovide more guidelines regarding the de�nition of some of the extra parameters needed by their procedure, thereare still several values that have to be adjusted using an empirical procedure.7.2 Constrained optimization by random evolutionBelur [8] proposed a hybrid technique called Constrained Optimization by Random Evolution (CORE). The mainidea of this approach is to use random evolutionary search combined with a mathematical programming techniquefor unconstrained optimization (the author used the Nelder and Mead's simplex method [100], but any othersimilar technique should work as well). Whenever a solution is not feasible, the following constraint functional isminimized: C(X) = Xi2C1 h2i (X)� Xj2C2 gj(X) (39)where C1 = fi = 1; : : : ;m=jhi(X)j > "cg (40)C2 = fj = 1; : : : ; q=gj(X) < 0g (41)and "c is the tolerance allowed in the equality constraints hi(X).CriticismThis minimization process can be seen as a repair algorithm for numerical optimization, which implies that thistechnique has the same problems of this technique as we have seen in a previous section.
20

7.3 Fuzzy logicT. Van Le [77] proposed the use of a combination of fuzzy logic and evolutionary programming to handle constraints.The main idea was to replace constraints of the form �i(X) � bi by a set of fuzzy constraints C1; : : : ; Cm, i =1; : : : ;m de�ned as: �Ci(X) = ��(bi;�i)(�i(X)); i = 1; : : : ;m (42)where �i is a positive real number that represents the tolerable violation of the constraints, and:��(a;s)(X) = 8><>: 1 if x � a;e�p(x�as)2�e�p1�e�p if a < x � a+ s0 if x > a+ s (43)The rationale behind this fuzzi�cation process is to allow a higher degree of tolerance if �i(X) is (greater thanbi but) close to bi and then the tolerance decreases rapidly when the error increases.The �tness function is then rede�ned as:F (X) = f(X)�min(�C1 (X); : : : ; �Cm (X)) (44)CriticismThis approach seems very promising, but Van Le [77] provides very little empirical evidence of its performance,although this is certainly a research path that is worth exploring.8 Novel approachesThere are some other proposals that do not quite �t into any of the previous categories and that are, therefore,considered separately.8.1 Immune systemForrest and Perelson [50] and Smith et al. [129, 130] explored the use of a computational model of the immunesystem in which a population of antibodies is evolved to cover a set of antigens. In this proposal, binary stringswere proposed to model both antibodies and antigens, and an antibody was said to match an antigen if their bitstrings were complementary (maximally di�erent).Although Smith el al. [129, 128] proposed this approach as a way to keep diversity in multimodal optimizationproblems, Hajela and Lee [58, 59] extended it to handle constraints.The idea of Hajela and Lee's technique is to separate any feasible individuals in a population (the antigens) fromthose that are infeasible (the antibodies). By using a simple matching function that computes the similarity (on abit-per-bit basis, assuming binary encoding) between the two chromosomes, this approach co-evolves the populationof antibodies until they become su�ciently similar to their antigens by maximizing the degree of matching betweenthe antigens and the antibodies. Then, the two populations are mixed and evolved using a standard geneticalgorithm, but without the use of a penalty function, since all the individuals are feasible at that point, and thepopulation will be re-�lled at certain intervals, to eliminate any infeasible individuals generated by the geneticoperators.A simpler instance of this technique, called expression strategies was proposed by Hajela and Yoo [60]. Inthis case, feasible and infeasible individuals are combined using uniform crossover [133] in such a way that theirchromosomic material is exchanged.It is worth mentioning that Hajela and Yoo [60] proposed the use of the Kreisselmeir-Steinhauser function [131]to handle equality constraints. The idea is that if hi is the ith equality constraint, then it can be represented by apair of inequality constraints as: 21

hi � 0 � hi � 0 (45)The Kreisselmeir-Steinhauser function can then be used to fold these constraints into a cumulative measure
:
 = (1=�) ln(e�hi + e��hi)� (1=�) ln2 + c1 (46)where c1 represents the width of a band that replaces the original strict equaliy constraint, and � is a user-de�nedconstant. By reducing c1 the solutions are forced to move closer to the equality constraint. This approach is justa way of converting equality constraints into inequality constraints which should be easier to satisfy.CriticismSince the bit matching process does not require evaluating the �tness function, its computational cost is not reallysigni�cant. However, some other issues remain to be solved. For example, it is not clear what is the e�ect (in termsof performance) of mixing di�erent proportions of each population (antibodies and antigens), nor how to proceedwhen there are no feasible solutions in the initial population.8.2 Cultural algorithmsSome social researchers have suggested that culture might be symbolically encoded and transmitted within andbetween populations, as another inheritance mechanism [38, 112]. Using this idea, Reynolds [113] developed acomputational model in which cultural evolution is seen as an inheritance process that operates at two levels: themicro-evolutionary and the macro-evolutionary levels.At the micro-evolutionary level, individuals are described in terms of \behavioral traits" (which could be sociallyacceptable or unacceptable). These behavioral traits are passed from generation to generation using several sociallymotivated operators. At the macro-evolutionary level, individuals are able to generate \mappa" [112], or generalizeddescriptions of their experiences. Individual mappa can be merged and modi�ed to form \group mappa" using aset of generic or problem speci�c operators. Both levels share a communication link.Reynolds [113] proposed the use of GAs to model the micro-evolutionary process, and Version Spaces [92] tomodel the macro-evolutionary process of a cultural algorithm.The main idea behind this approach is to preserve beliefs that are socially accepted and discard (or prune)unacceptable beliefs. The acceptable beliefs can be seen as constraints that direct the population at the micro-evolutionary level [85]. Therefore, constraints can in
uence directly the search process, leading to an e�cientoptimization process. In fact, Reynolds et al. [114] and Chung & Reynolds [15] have explored this area of researchwith very encouraging results in numerical optimization.The approach taken by Chung and Reynolds [15] was to use a hybrid of evolutionary programming and GENO-COP [87] in which they incorporated an interval constraint-network [27, 66] to represent the constraints of theproblem at hand. An individual is considered as \acceptable" when it satis�es all the constraints of the problem.When that does not happen, then the belief space is adjusted (the intervals associated with the constraints areadjusted). This approach is really a more sophisticated repair algorithm in which an infeasible solution is madefeasible by replacing its genes by a di�erent value between its lower and upper bounds. Since GENOCOP assumesa convex search space, it is relatively easy to design operators that can exploit a search direction towards theboundary between the feasible and infeasible regions.CriticismAlthough interesting, the extension of the cultural operators to handle non-linear constraints is not obvious, since�nding the boundary between the feasible and infeasible regions is a much harder problem (we have discussedpreviously this problem with repair algorithms in general). However, this is an interesting application of domainknowledge to handle constraints that turns out to be relatively general in scope (within numerical optimization, inthis case). 22

8.3 Ant colony optimizationThis technique was proposed by Dorigo et al. [22, 37, 36, 35] and it consists of a meta-heuristic intended for hardcombinatorial optimization problems such as the traveling salesperson. The main algorithm is really a multi-agentsystem where low level interactions between single agents (i.e., arti�cial ants) result in a complex behavior of thewhole ant colony. The idea was inspired by colonies of real ants, which deposit a chemical substance on the groundcalled pheromone [35]. This substance in
uences the behavior of the ants: they will tend to take those paths wherethere is a larger amount of pheromone.Recently, some researchers [9, 137] have extended this technique to numerical optimization problems, with verypromising results. The main issue when extending the basic approach to deal with continuous search spaces is howto model a continuous nest neighborhood with a discrete structure. Bilchev and Parmee [10] for example, proposedto represent a �nite number of directions whose origin is a common base point called the nest. Since the idea is tocover eventually all the continuous search space, these vectors evolve over time according to the �tness values ofthe ants.To handle constraints, Bilchev and Parmee [9, 10] proposed to make a food source \unacceptable" in case itviolates a constraint regardless of the value of its objective function (i.e., death penalty). As evolution progresses,some food sources that were acceptable before, will vanish, as constraints are tightened. To make this modele�ective, 3 di�erent levels of abstraction were considered: (a) the individual search agent (the lowest level in whichany local search technique could be used), (b) the cooperation between agents (the middle level, which consists ina joint search e�ort in a certain direction), and (c) the meta-cooperation between agents (the highest level, whichdetermines cooperation among di�erent paths rather than just among di�erent individuals).In their model, Bilchev & Parmee [9, 10] used a real-coded GA with arithmetic crossover and non-uniformmutation [83]. Their results were very encouraging and showed clearly the high potential of this technique inmulti-modal and/or heavily constrained search spaces.CriticismThe �rst drawback of this approach is that it needs several parameters to work: �rst, an additional procedurehas to be used to locate the nest (Bilchev and Parmee [9] suggest the use of a niching GA), which implies extracomputational e�ort. Second, it requires a search radius R, which de�nes the portion of the search space that willbe explored by the ants and has an obvious impact on the performance of the algorithm. Third, it is necessaryto provide a model for the exhaustion of the food source to avoid that the ants pass through the same (alreadyexhausted) path more than once. Also, the use of non-uniform mutation introduces the need to de�ne a parameterb that indicates the degree of non-uniformity of the mutations performed.Finally, it is necessary to be very careful about the equilibrium between local and global exploration, becausein some cases (e.g., highly multi-modal landscapes), too much CPU time could be spent in local searches.9 Future research pathsThe most important issues that remain to be solved regarding constraint handling techniques for evolutionaryalgorithms are the following:� E�ciency. Any constraint-handling technique proposed must deal with e�ciency issues, since many real-world applications have �tness functions whose evaluation cost is very high (computationally speaking).� Generality. Ideally, constraint-handling techniques should be as general as possible, requiring only minor(or no) modi�cation to work in di�erent problems.� Ease of use. Most of the current approaches to handle constraints in evolutionary algorithms require the�ne tuning of some parameters. This makes their use highly dependant on the setting of these parametersand increases the (already tedious) parameter tuning process (i.e., population size, crossover and mutationrates, etc.) normally required with evolutionary algorithms (particularly with genetic algorithms).23

� Limitations of a technique. Since it is utopical to consider that a single constraint-handling techniquewill be able to deal with any sort of constraints e�ciently, then it should be clear when it is possible touse it. Michalewicz and Schoenauer [89] discussed this issue, but the question remains open regarding thecharacteristics that we could use from a problem to decide what technique to use.� Comparisons of approaches: Michalewicz [89, 83, 84, 85] has performed several (partial) comparisons ofconstraint-handling approaches, but more work in this area must be done. It is desirable, for example, tostudy in more detail the behavior of certain approaches under di�erent sorts of constraints (linear, non-linear,etc.), so that we can establish under what conditions is more convenient to use them.� Test suites: If it is necessary to compare more approaches, it is equally important to have good test suitespublicly available. Regarding this issue, there is some literature that can be used (see for example2 [44, 84]).Chung and Reynolds [15] have provided a test suite for cultural algorithms, and Michalewicz and Schoenauer[89] make reference to the construction of another (more general) test suite, but any other e�orts in thisdirection will certainly be useful as well.� Incorporation of knowledge about the domain. Even when it is well known that incorporating knowl-edge about an speci�c domain will reduce the generality of an evolutionary approach, in highly complexproblems (e.g., heavily constrained search spaces) such knowledge can bring great bene�ts in terms of perfor-mance, and it is desirable that a new constraint-handling approach has the capability to incorporate e�cientlysuch domain knowledge whenever available.10 ConclusionsIn this paper we have given a very comprehensive review of the most important constraint-handling techniquesdeveloped for evolutionary algorithms. The spectrum covered is quite wide, and it includes approaches that gofrom several variations of a simple penalty function to sophisticated mathematical techniques that aim at �ndingthe boundary between the feasible and the infeasible region, and biologically inspired techniques that emulate thebehavior of the immune system, culture, or even ant colonies. In the �nal section, we have provided some promisingresearch paths (in the author's opinion) that may be worth exploring.AcknowledgmentsThe author acknowledges support from CONACyT through project number I-29870 A.References[1] Hojjat Adeli and Nai-Tsang Cheng. Augmented lagrangian genetic algorithm for structural optimization.Journal of Aerospace Engineering, 7(1):104{18, jan 1994.[2] Thomas B�ack, editor. Proceedings of the Seventh International Conference on Genetic Algorithms. MorganKaufmann Publishers, San Mateo, California, July 1997.[3] Thomas B�ack, Frank Ho�meister, and Hans-Paul Schwefel. A Survey of Evolution Strategies. In R. K. Belewand L. B. Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages2{9, San Mateo, California, 1991. Morgan Kaufmann Publishers.[4] Thomas B�ack and Sami Khuri. An Evolutionary Heuristic for the Maximum Independent Set Problem. InZ. Michalewicz, J. D. Scha�er, H.-P. Schwefel, D. B. Fogel, and H. Kitano, editors, Proceedings of the FirstIEEE Conference on Evolutionary Computation, pages 531{535, Piscataway, New Jersey, 1994. IEEE Press.2The web page http://solon.cma.univie.ac.at/ neum/glopt/test.html also contains test problems from constrained optimiza-tion. 24

[5] James Edward Baker. Adaptive selection methods for genetic algorithms. In J. J. Grefenstette, editor,Proceedings of an International Conference on Genetic Algorithms and Their Applications, pages 100{111,Hillsdale, New Jersey, 1985. Lawrence Erlbaum.[6] James Edward Baker. An Analysis of the E�ects of Selection in Genetic Algorithms. PhD thesis, VanderbiltUniversity, Nashville, Tennessee, 1989.[7] J. C. Bean and A. B. Hadj-Alouane. A Dual Genetic Algorithm for Bounded Integer Programs. TechnicalReport TR 92-53, Department of Industrial and Operations Engineering, The University of Michigan, 1992.[8] Sheela V. Belur. CORE: Constrained Optimization by Random Evolution. In John R. Koza, editor, LateBreaking Papers at the Genetic Programming 1997 Conference, pages 280{286, Stanford University, Califor-nia, July 1997. Stanford Bookstore.[9] George Bilchev and Ian C. Parmee. The Ant Colony Metaphor for Searching Continuous Design Spaces.In Terence C. Fogarty, editor, Evolutionary Computing, pages 25{39. Springer VErlag, She�eld, UK, April1995.[10] George Bilchev and Ian C. Parmee. Constrained and Multi-Modal Optimisation with an Ant Colony SearchModel. In Ian C. Parmee andM. J. Denham, editors, Proceedings of 2nd International Conference on AdaptiveComputing in Engineering Design and Control. University of Plymouth, Plymouth, UK, March 1996.[11] D. Br�elaz. New methods to color vertices of a graph. Communications of the ACM, 22:251{256, 1979.[12] Eduardo Camponogara and Sarosh N. Talukdar. A Genetic Algorithm for Constrained and Multiobjec-tive Optimization. In Jarmo T. Alander, editor, 3rd Nordic Workshop on Genetic Algorithms and TheirApplications (3NWGA), pages 49{62, Vaasa, Finland, August 1997. University of Vaasa.[13] Susan E. Carlson. A General Method for Handling Constraints in Genetic Algorithms. In Proceedings of theSecond Annual Joint Conference on Information Science, pages 663{667, 1995.[14] V. Chankong and Y. Y. Haimes. Multiobjective Decision Making: Theory and Methodology. Systems Scienceand Engineering. North-Holland, 1983.[15] Chan-Jin Chung and Robert G. Reynolds. A Testbed for Solving Optimization Problems using CulturalAlgorithms. In Lawrence J. Fogel, Peter J. Angeline, and Thomas B�ack, editors, Evolutionary ProgrammingV: Proceedings of the Fifth Annual Conference on Evolutionary Programming, Cambridge, Massachusetts,1996. MIT Press.[16] Carlos A. Coello Coello. Self-Adaptive Penalties for GA-based Optimization. In Proceedings of the 1999Congress on Evolutionary Computation, Washington, D.C., July 1999. IEEE.[17] Carlos A. Coello Coello. Treating Constraints as Objectives for Single-Objective Evolutionary Optimization.Engineering Optimization, 32, 1999. (Accepted for publication).[18] Carlos A. Coello Coello. The use of a multiobjective optimization technique to handle constraints. InAlberto A. Ochoa Rodr��guez, Marta R. Soto Ortiz, and Roberto Santana Hermida, editors, Proceedings ofthe Second International Symposium on Arti�cial Intelligence (Adaptive Systems), pages 251{256, La Habana,Cuba, July 1999. Institute of Cybernetics, Mathematics and Physics, Ministry of Science, Technology andEnvironment.[19] Carlos A. Coello Coello. Use of a Self-Adaptive Penalty Approach for Engineering Optimization Problems.Computers in Industry, 1999. (Accepted for publication).[20] David W. Coit and Alice E. Smith. Penalty guided genetic search for reliability design optimization. Com-puters and Industrial Engineering, 30(4):895{904, September 1996. Special Issue on Genetic Algorithms.25

[21] David W. Coit, Alice E. Smith, and David M. Tate. Adaptive Penalty Methods for Genetic Optimization ofConstrained Combinatorial Problems. INFORMS Journal on Computing, 8(2):173{182, Spring 1996.[22] A. Colorni, M. Dorigo, and V. Maniezzo. Distributed optimization by ant colonies. In P. Bourgine andF. Varela, editors, Proceedings of the First European Conference on Arti�cial Life, Cambridge, Massachusetts,1991. MIT Press/Bradford Books.[23] Dipankar Dasgupta and Zbigniew Michalewicz, editors. Evolutionary Algorithms in Engineering Applications.Springer-Verlag, Berlin, 1997.[24] Yuval Davidor. Analogous Crossover. In J. David Scha�er, editor, Proceedings of the Third InternationalConference on Genetic Algorithms, pages 98{103, San Mateo, California, 1989. Morgan Kaufmann Publishers.[25] Yuval Davidor. Genetic Algorithms and Robotics : A Heuristic Strategy for Optimization. World Scienti�cPublishing Co., Singapore, 1990.[26] Yuval Davidor. A Genetic Algorithm Applied To Robot Trajectory Generation. In Lawrence Davis, editor,Handbook of Genetic Algorithms, chapter 12, pages 144{165. Van Nostrand Reinhold, New York, New York,1991.[27] Ernest Davis. Constraint propagation with interval labels. Arti�cial Intelligence, 32:281{331, 1987.[28] Lawrence Davis. Genetic Algorithms and Simulated Annealing. Pitman, London, 1987.[29] Lawrence Davis, editor. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, New York,1991.[30] Hugo de Garis. Genetic Programming: Building Arti�cial Nervous Systems using Genetically ProgrammedNeural Networks Modules. In R. Porter and B. Mooney, editors, Proceedings of the 7th International Con-ference on Machine Learning, pages 132{139. Morgan Kaufmann, 1990.[31] Kalyanmoy Deb. An E�cient Constraint Handling Method for Genetic Algorithms. Computer Methods inApplied Mechanics and Engineering, 1999. (in Press).[32] Kalyanmoy Deb and R. W. Agrawal. Simulated binary crossover for continuous search space. ComplexSystems, 9:115{148, 1995.[33] Kalyanmoy Deb and David E. Goldberg. An investigation of niche and species formation in genetic functionoptimization. In J. David Scha�er, editor, Proceedings of the Third International Conference on GeneticAlgorithms, pages 42{50, San Mateo, California, jun 1989. George Mason University, Morgan KaufmannPublishers.[34] Kalyanmoy Deb and Mayank Goyal. A Combined Genetic Adaptive Search GeneAS for Engineering Design.Computer Science and Informatics, 26(4):30{45, 1996.[35] M. Dorigo and G. Di Caro. The Ant Colony Optimization Meta-Heuristic. In D. Corne, M. Dorigo, andF. Glover, editors, New Ideas in Optimization. McGraw-Hill, 1989.[36] M. Dorigo and L. M. Gambardella. Ant Colony System: A Cooperative Learning Approach to the TravelingSalesman Problem. IEEE Transactions on Evolutionary Computation, 1(1):53{66, 1997.[37] M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: Optimization by a Colony of Cooperating Agents.IEEE Transactions on Systems, Man, and Cybernetics Part B, 26(1):29{41, 1996.[38] W. H. Durham. Co-evolution: Genes, Culture, and Human Diversity. Stanford University Press, Stanford,California, 1994. 26

[39] A. E. Eiben, P.-E. Rau�e, and Zs. Ruttkay. GA-easy and GA-hard constraint satisfaction problems. InM. Meyer, editor, Proceedings of the ECAI'94 Workshop on Constraint Processing, pages 267{284. Springer-Verlag, 1995.[40] A. E. Eiben and Zs. Ruttkay. Self-adaptivity for Constraint Satisfaction: Learning Penalty Functions. InProceedings of the 3rd IEEE Conference on Evolutionary Computation, pages 258{261, Piscataway, NewJersey, 1996. IEEE Service Center.[41] A. E. Eiben and J. K. van der Hauw. Adaptive penalties for evolutionary graph coloring. In Arti�cialEvolution'97, pages 95{106, Berlin, 1998. Springer-Verlag.[42] A. E. Eiben, J. K. van der Hauw, and J. I. van Hemert. Graph Coloring with Adaptive EvolutionaryAlgorithms. Journal of Heuristics, 4(1):25{46, 1998.[43] E. Falkenauer. A new representation and operators for genetic algorithms applied to grouping problems.Evolutionary Computation, 2(2):123{144, 1994.[44] C. A. Floudas and P. M. Pardalos. A Collection of Test PRoblems for Constrained Global OptimizationAlgorithms. Number 455 in Lecture Notes in Computer Science. Springer-Verlag, 1990.[45] David B. Fogel. Evolutionary Computation. Toward a New Philosophy of Machine Intelligence. The Instituteof Electrical and Electronic Engineers, New York, 1995.[46] David B. Fogel, editor. Evolutionary Computation. The Fossil Record. Selected Readings on the History ofEvolutionary Algorithms. The Institute of Electrical and Electronic Engineers, New York, 1998.[47] Lawrence J. Fogel. Arti�cial Intelligence through Simulated Evolution. John Wiley, New York, 1966.[48] Carlos M. Fonseca and Peter J. Fleming. Genetic Algorithms for Multiobjective Optimization: Formula-tion, Discussion and Generalization. In Stephanie Forrest, editor, Proceedings of the Fifth InternationalConference on Genetic Algorithms, pages 416{423, San Mateo, California, 1993. University of Illinois atUrbana-Champaign, Morgan Kau�man Publishers.[49] Carlos M. Fonseca and Peter J. Fleming. An overview of evolutionary algorithms in multiobjective optimiza-tion. Evolutionary Computation, 3(1):1{16, Spring 1995.[50] Stephanie Forrest and Alan S. Perelson. Genetic algorithms and the immune system. In Hans-Paul Schwefeland R. M�anner, editors, Parallel Problem Solving from Nature, Lecture Notes in Computer Science, pages320{325. Springer-Verlag, Berlin, Germany, 1991.[51] Mitsuo Gen and Runwei Cheng. Interval Programming using Genetic Algorithms. In Proceedings of the SixthInternational Symposium on Robotics and Manufacturing, Montpellier, France, 1996.[52] Mitsuo Gen and Runwei Cheng. A Survey of Penalty Techniques in Genetic Algorithms. In Toshio Fukuda andTakeshi Furuhashi, editors, Proceedings of the 1996 International Conference on Evolutionary Computation,pages 804{809, Nagoya, Japan, 1996. IEEE.[53] Mitsuo Gen and Runwei Cheng. Genetic Algorithms & Engineering Design. John Wiley & Sons, Inc, NewYork, 1997.[54] Fred Glover. Heuristics for integer programming using surrogate constraints. Decision Sciences, 8(1):156{166,1977.[55] Fred Glover and G. Kochenberger. Critical event tabu search for multidimensional knapsack problems. InProceedings of the International Conference on Metaheuristics for Optimization, pages 113{133, Dordrecht,The Netherlands, 1995. Kluwer Publishing. 27

[56] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-WesleyPublishing Co., Reading, Massachusetts, 1989.[57] A. B. Hadj-Alouane and J. C. Bean. A Genetic Algorithm for the Multiple-Choice Integer Program. TechnicalReport TR 92-50, Department of Industrial and Operations Engineering, The University of Michigan, 1992.[58] P. Hajela and J. Lee. Constrained Genetic Search via Schema Adaptation. An Immune Network Solution.In Niels Olho� and George I. N. Rozvany, editors, Proceedings of the First World Congress of Stuctural andMultidisciplinary Optimization, pages 915{920, Goslar, Germany, 1995. Pergamon.[59] P. Hajela and J. Lee. Constrained Genetic Search via Schema Adaptation. An Immune Network Solution.Structural Optimization, 12:11{15, 1996.[60] P. Hajela and J. Yoo. Constraint Handling in Genetic Search Using Expression Strategies. AIAA Journal,34(12):2414{2420, 1996.[61] Steven A. Harp and Tariq Samad. Genetic Synthesis of Neural Network Architecture. In Lawrence Davis,editor, Handbook of Genetic Algorithms, chapter 15, pages 202{221. Van Nostrand Reinhold, New York, NewYork, 1991.[62] Frank Ho�meister and Joachim Sprave. Problem-independent handling of constraints by use of metric penaltyfunctions. In Lawrence J. Fogel, Peter J. Angeline, and Thomas B�ack, editors, Proceedings of the Fifth AnnualConference on Evolutionary Programming (EP'96), pages 289{294, San Diego, California, February 1996. TheMIT Press.[63] John H. Holland. Adaptation in Natural and Arti�cial Systems. Ann Harbor : University of Michigan Press,1975.[64] A. Homaifar, S. H. Y. Lai, and X. Qi. Constrained Optimization via Genetic Algorithms. Simulation,62(4):242{254, 1994.[65] W.-C. Huang, C.-Y. Kao, and J.-T. Horng. A Genetic Algorithm Approach for Set Covering Problem. InProceedings of the First IEEE Conference on Evolutionary Computation, pages 569{573. IEEE Press, 1994.[66] E. Hyvoenen. Constraint reasoning based on interval arithmetic|The tolerance propagation approach. Ar-ti�cial Intelligence, 58:71{112, 1992.[67] Fernando Jim�enez and Jos�e L. Verdegay. Evolutionary techniques for constrained optimization problems. In7th European Congress on Intelligent Techniques and Soft Computing (EUFIT'99), Aachen, Germany, 1999.Springer-Verlag.[68] J. Joines and C. Houck. On the use of non-stationary penalty functions to solve nonlinear constrainedoptimization problems with GAs. In David Fogel, editor, Proceedings of the �rst IEEE Conference onEvolutionary Computation, pages 579{584, Orlando, Florida, 1994. IEEE Press.[69] Dae Gyu Kim and Phil Husbands. Riemann Mapping Constraint Handling Method for Genetic Algorithms.Technical Report CSRP 469, COGS, University of Sussex, UK, 1997.[70] Dae Gyu Kim and Phil Husbands. Mapping Based Constraint Handling for Evolutionary Search; Thurston'sCircle Packing and Grid Generation. In Ian Parmee, editor, The Integration of Evolutionary and Adap-tive Computing Technologies with Product/System Design and Realisation, pages 161{173. Springer-Verlag,Plymouth, United Kingdom, April 1998.[71] J.-H. Kim and H. Myung. Evolutionary programming techniques for constrained optimization problems.IEEE Transactions on Evolutionary Computation, 1:129{140, July 1997.[72] S. Kirkpatrick, Jr. C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated Annealing. Science, 220:671{680, 1983. 28

[73] Ryszard Kowalczyk. Constraint Consistent Genetic Algorithms. In Proceedings of the 1997 IEEE Conferenceon Evolutionary Computation, pages 343{348, Indianapolis, USA, April 1997. IEEE.[74] Slawomir Koziel and Zbigniew Michalewicz. A Decoder-based Evolutionary Algorithm for Constrained Pa-rameter Optimization Problems. In T. B�ack, A. E. Eiben, M. Schoenauer, and H.-P. Schwefel, editors,Proceedings of the 5th Parallel Problem Solving from Nature (PPSN V), pages 231{240, Amsterdam, Septem-ber 1998. Springer-Verlag.[75] Slawomir Koziel and Zbigniew Michalewicz. Evolutionary Algorithms, Homomorphous Mappings, and Con-strained Parameter Optimization. Evolutionary Computation, 7(1):19{44, 1999.[76] V. Kumar. Algorithms for Constraint-Satisfaction Problems: A Survey. AI Magazine, pages 32{44, Spring1992.[77] T. Van Le. A Fuzzy Evolutionary Approach to Constrained Optimization Problems. In Proceedings of theSecond IEEE Conference on Evolutionary Computation, pages 274{278, Perth, November 1995. IEEE.[78] G. E. Liepins and Michael D. Vose. Representational Issues in Genetic Optimization. Journal of Experimentaland Theoretical Computer Science, 2(2):4{30, 1990.[79] Gunar E. Liepins andW. D. Potter. A Genetic Algorithm Approach to Multiple-Fault Diagnosis. In LawrenceDavis, editor, Handbook of Genetic Algorithms, chapter 17, pages 237{250. Van NostrandReinhold, NewYork,New York, 1991.[80] C. B. Lucasius, M. J. J. Blommers, L. M. C. Buydens, and G. Kateman. A Genetic Algorithm for Confor-mational Analysis of DNA. In Lawrence Davis, editor, Handbook of Genetic Algorithms, chapter 18, pages251{281. Van Nostrand Reinhold, New York, New York, 1991.[81] C. Maa and M. Shanblatt. A two-phase optimization neural network. IEEE Transactions on Neural Networks,3(6):1003{1009, 1992.[82] Z. Michalewicz and N. Attia. Evolutionary Optimization of Constrained Problems. In Proceedings of the 3rdAnnual Conference on Evolutionary Programming, pages 98{108. World Scienti�c, 1994.[83] Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, secondedition, 1992.[84] Zbigniew Michalewicz. Genetic Algorithms, Numerical Optimization, and Constraints. In Larry J. Eshelman,editor, Proceedings of the Sixth International Conference on Genetic Algorithms, pages 151{158, San Mateo,California, July 1995. University of Pittsburgh, Morgan Kaufmann Publishers.[85] Zbigniew Michalewicz. A Survey of Constraint Handling Techniques in Evolutionary Computation Methods.In J. R. McDonnell, R. G. Reynolds, and D. B. Fogel, editors, Proceedings of the 4th Annual Conference onEvolutionary Programming, pages 135{155. The MIT Press, Cambridge, Massachusetts, 1995.[86] Zbigniew Michalewicz, Dipankar Dasgupta, R. Le Riche, and Marc Schoenauer. Evolutionary algorithms forconstrained engineering problems. Computers & Industrial Engineering Journal, 30(4):851{870, September1996.[87] Zbigniew Michalewicz and Cezary Z. Janikow. Handling Constraints in Genetic Algorithms. In R. K. Belewand L. B. Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages151{157, San Mateo, California, 1991. Morgan Kaufmann Publishers.[88] Zbigniew Michalewicz and G. Nazhiyath. Genocop III: A co-evolutionary algorithm for numerical optimiza-tion with nonlinear constraints. In David B. Fogel, editor, Proceedings of the Second IEEE InternationalConference on Evolutionary Computation, pages 647{651, Piscataway, New Jersey, 1995. IEEE Press.29

[89] Zbigniew Michalewicz and Marc Schoenauer. Evolutionary Algorithms for Constrained Parameter Optimiza-tion Problems. Evolutionary Computation, 4(1):1{32, 1996.[90] Zbigniew Michalewicz and Jing Xiao. Evaluation of Paths in Evolutionary Planner/Navigator. In Proceedingsof the 1995 International Workshop on Biologically Inspired Evolutionary Systems, pages 45{52, Tokyo,Japan, May 1995.[91] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, Massachusetts, 1996.[92] Tom Mitchell. Version Spaces: An Approach to Concept Learning. PhD thesis, Computer Science Depart-ment, Stanford University, Stanford, California, 1978.[93] Angel Fernando Kuri Morales. Personal Communication, 1999.[94] Angel Kuri Morales and Carlos Villegas Quezada. A Univeral Eclectic Genetic Algorithm for ConstrainedOptimization. In Proceedings 6th European Congress on Intelligent Techniques & Soft Computing, EUFIT'98,pages 518{522, Aachen, Germany, September 1998. Verlag Mainz.[95] Heinz M�uhlenbein. Parallel Genetic Algorithms in Combinatorial Optimization. In O. Balci, R. Sharda, andS. Zenios, editors, Computer Science and Operations Research, pages 441{456. Pergamon Press, New York,1992.[96] H. Myung and J.-H. Kim. Evolian: Evolutionary optimization based on Lagrangian with constraint scaling.In P.J. Angeline, R. G. Reynolds, J. R. McDonnell, and R. Eberhart, editors, Proceedings of the Sixth AnualConference on Evolutionary Programming, pages 177{188, Indianapolis, April 1997. Springer-Verlag.[97] H. Myung and J.-H. Kim. Hybrid Interior-Lagrangian Penalty Based Evolutionary Optimization. In V. W.Porto, N. Saravanan, D. Waagen, and A.E. Eiben, editors, Proceedings of the Seventh Anual Conference onEvolutionary Programming, pages 85{94. Springer-Verlag, 1998.[98] H. Myung, J.-H. Kim, and D. B. Fogel. Preliminary investigation into a two-stage method of evolutionaryoptimization on constrained problems. In J. R. McDonnell, R. G. Reynolds, and D. B. Fogel, editors,Proceedings of the Fourth Annual Conference on Evolutionary Programming, pages 449{463, Cambridge,Massachusetts, 1995. MIT Press.[99] Ryohei Nakano. Conventional Genetic Algorithm for Job Shop Problems. In R. K. Belew and L. B. Booker,editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages 474{479, San Ma-teo, California, 1991. Morgan Kaufmann Publishers.[100] A. Nelder and R. Mead. A Simplex Method for Function Minimization. Computer Journal, 7:308{313, 1965.[101] Bryan A. Normal and Alice E. Smith. Random Keys Genetic Algorithm with Adaptive Penalty Function forOptimization of Constrained Facility Layout Problems. In Thomas B�ack, Zbigniew Michalewicz, and XinYao, editors, Proceedings of the 1997 International Conference on Evolutionary Computation, pages 407{411,Indianapolis, Indiana, 1997. IEEE.[102] A. L. Olsen. Penalty Functions for the Knapsack Problem. In Proceedings of the First IEEE Conference onEvolutionary Computation, pages 554{558. IEEE Press, 1994.[103] David Orvosh and Lawrence Davis. Shall We Repair? Genetic Algorithms, Combinatorial Optimization andFeasibility Constraints. In Stephanie Forrest, editor, Proceedings of the Fifth International Conference onGenetic Algorithms, page 650. Morgan Kau�man Publishers, San Mateo, California, July 1993.[104] David Orvosh and Lawrence Davis. Using a Genetic Algorithm to Optimize Problems with FeasibilityContraints. In Proceedings of the First IEEE Conference on Evolutionary Computation, pages 548{553.IEEE Press, 1994. 30

[105] Charles C. Palmer and Aaron Kershenbaum. Representing Trees in Genetic Algorithms. In Z. Michalewicz,J. D. Scha�er, H.-P. Schwefel, D. B. Fogel, and H. Kitano, editors, Proceedings of the First IEEE Conferenceon Evolutionary Computation, pages 379{384, Piscataway, New Jersey, 1994. IEEE Press.[106] J. Paredis. Co-evolutionary Constraint Satisfaction. In Proceedings of the 3rd Conference on Parallel ProblemSolving from Nature, pages 46{55, New York, 1994. Springer Verlag.[107] I. C. Parmee and G. Purchase. The development of a directed genetic search technique for heavily constraineddesign spaces. In I. C. Parmee, editor, Adaptive Computing in Engineering Design and Control-'94, pages97{102, Plymouth, UK, 1994. University of Plymouth, University of Plymouth.[108] Ian Parmee, editor. The Integration of Evolutionary and Adaptive Computing Technologies with Prod-uct/System Design and Realisation. Springer-Verlag, Plymouth, United Kingdom, 1998.[109] V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben, editors. Evolutionary Programming VII: Proceedingsof the Seventh Annual Conference on Evolutionary Programming, volume 1447 of Lecture Notes in ComputerScience. Springer-Verlag, San Diego, California, March 1998.[110] David Powell and Michael M. Skolnick. Using genetic algorithms in engineering design optimization with non-linear constraints. In Stephanie Forrest, editor, Proceedings of the Fifth International Conference on GeneticAlgorithms, pages 424{431, San Mateo, California, jul 1993. University of Illinois at Urbana-Champaign,Morgan Kaufmann Publishers.[111] Nicholas J. Radcli�e. Equivalence class analysis of genetic algorithms. Complex Systems, 5:183{220, 1991.[112] A. C. Renfrew. Dynamic Modeling in Archaeology: What, When, and Where? In S. E. van der Leeuw,editor, Dynamical Modeling and the Study of Change in Archaelogy. Edinburgh University Press, Edinburgh,Scotland, 1994.[113] Robert G. Reynolds. An Introduction to Cultural Algorithms. In A. V. Sebald, , and L. J. Fogel, editors,Proceedings of the Third Annual Conference on Evolutionary Programming, pages 131{139. World Scienti�c,River Edge, New Jersey, 1994.[114] Robert G. Reynolds, Zbigniew Michalewicz, and M. Cavaretta. Using cultural algorithms for constraint han-dling in GENOCOP. In J. R. McDonnell, R. G. Reynolds, and D. B. Fogel, editors, Proceedings of the FourthAnnual Conference on Evolutionary Programming, pages 298{305. MIT Press, Cambridge, Massachusetts,1995.[115] Jon T. Richardson, Mark R. Palmer, Gunar Liepins, andMike Hilliard. Some guidelines for genetic algorithmswith penalty functions. In J. David Scha�er, editor, Proceedings of the Third International Conference onGenetic Algorithms, pages 191{197, George Mason University, 1989. Morgan Kaufmann Publishers.[116] Rodolphe G. Le Riche and Raphael T. Haftka. Optimization of Laminate Stacking Sequence for BucklingLoad Maximization by Genetic Algorithm. AIAA Journal, 31(5):951{970, 1993.[117] Rodolphe G. Le Riche and Raphael T. Haftka. Improved Genetic Algorithm for Minimum Thickness Com-posite Laminate Design. Composites Engineering, 3(1):121{139, 1994.[118] Rodolphe G. Le Riche, Catherine Knopf-Lenoir, and Raphael T. Haftka. A Segregated Genetic Algorithm forConstrained Structural Optimization. In Larry J. Eshelman, editor, Proceedings of the Sixth InternationalConference on Genetic Algorithms, pages 558{565, SanMateo, California, July 1995. University of Pittsburgh,Morgan Kaufmann Publishers.[119] J. David Scha�er. Multiple objective optimization with vector evaluated genetic algorithms. In GeneticAlgorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms,pages 93{100. Lawrence Erlbaum, 1985. 31

[120] Marc Schoenauer and Zbigniew Michalewicz. Evolutionary Computation at the Edge of Feasibility. In H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, editors, Proceedings of the Fourth Conference onParallel Problem Solving from Nature, pages 245{254. Springer-Verlag, Berlin, September 1996.[121] Marc Schoenauer and Zbigniew Michalewicz. Sphere Operators and Their Applicability for ConstrainedParameter Optimization Problems. In V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben, editors,Evolutionary Programming VII: Proceedings of the Seventh Annual Conference on Evolutionary Programming,volume 1447 of Lecture Notes in Computer Science, pages 241{250. Springer-Verlag, San Diego, California,March 1998.[122] Marc Schoenauer and Spyros Xanthakis. Constrained GA Optimization. In Stephanie Forrest, editor, Pro-ceedings of the Fifth International Conference on Genetic Algorithms, pages 573{580. Morgan Kau�manPublishers, San Mateo, California, July 1993.[123] Hans-Paul Schwefel. Numerical Optimization of Computer Models. John Wiley & Sons, Great Britain, 1981.[124] Hans-Paul Schwefel. Evolution and Optimum Seeking. John Wiley & Sons, New York, 1995.[125] W. Siedlecki and J. Sklanski. Constrained Genetic Optimization via Dynamic Reward-Penalty Balancing andIts Use in Pattern Recognition. In J. David Scha�er, editor, Proceedings of the Third International Conferenceon Genetic Algorithms, pages 141{150, San Mateo, California, jun 1989. George Mason University, MorganKaufmann Publishers.[126] Susan Carlson Skalak, Ron Shonkwiler, Sani Babar, and M. Aral. Annealing a Genetic Algorithm over Con-straints. Available at http://vlead.mech.virginia.edu/publications/shenkpaper/shenkpaper.html.[127] Alice E. Smith and David W. Coit. Constraint Handling Techniques|Penalty Functions. In Thomas B�ack,David B. Fogel, and Zbigniew Michalewicz, editors, Handbook of Evolutionary Computation, chapter C 5.2.Oxford University Press and Institute of Physics Publishing, 1997.[128] Alice E. Smith and David M. Tate. Genetic Optimization Using a Penalty Function. In Stephanie Forrest,editor, Proceedings of the Fifth International Conference on Genetic Algorithms, pages 499{503, San Mateo,California, July 1993. University of Illinois at Urbana-Champaign, Morgan Kaufmann Publishers.[129] Robert E. Smith, Stephanie Forrest, and Alan S. Perelson. Searching for diverse, cooperative populationswith genetic algorithms. Technical Report TCGA No. 92002, University of Alabama, Tuscaloosa, Alabama,1992.[130] Robert E. Smith, Stephanie Forrest, and Alan S. Perelson. Population Diversity in an Immune SystemModel:Implications for Genetic Search. In L. Darrell Whitley, editor, Foundations of Genetic Algorithms 2, pages153{165. Morgan Kaufmann Publishers, San Mateo, California, 1993.[131] J. Sobieszanski-Sobieski. A Technique for Locating Function Roots and for Satisfying Equality Constraintsin Optimization. Structural Optimization, 4(3{4):241{243, 1992.[132] Patrick D. Surry, Nicholas J. Radcli�e, and Ian D. Boyd. A Multi-Objective Approach to ConstrainedOptimisation of Gas Supply Networks : The COMOGA Method. In Terence C. Fogarty, editor, EvolutionaryComputing. AISB Workshop. Selected Papers, Lecture Notes in Computer Science, pages 166{180. Springer-Verlag, She�eld, U.K., 1995.[133] Gilbert Syswerda. Uniform Crossover in Genetic Algorithms. In J. David Scha�er, editor, Proceedings of theThird International Conference on Genetic Algorithms, pages 2{9, San Mateo, California, jun 1989. GeorgeMason University, Morgan Kaufmann Publishers.[134] Gilbert Syswerda. Schedule Optimization Using Genetic Algorithms. In Lawrence Davis, editor, Handbookof Genetic Algorithms, chapter 21, pages 332{349. Van Nostrand Reinhold, New York, New York, 1991.32

[135] David M. Tate and Alice E. Smith. A Genetic Approach to the Quadratic Assignment Problem. Computersand Operations Reseach, 22(1):73{78, 1995.[136] Sam R. Thangiah. An Adaptive Clustering Method using a Geometric Shape for Vehicle Routing Problemswith Time Windows. In Larry J. Eshelman, editor, Proceedings of the Sixth International Conference onGenetic Algorithms, pages 536{543, San Mateo, California, July 1995. University of Pittsburgh, MorganKaufmann Publishers.[137] M. Wodrich and G. Bilchev. Cooperative Distributed Search: The Ant's Way. Control and Cybernetics,26(3):413{446, 1997.[138] Jing Xiao, Zbigniew Michalewicz, and Krzysztof Trojanowski. Adaptive Evolutionary Planner/Navigator forMobile Robots. IEEE Transactions on Evolutionary Computation, 1(1):18{28, 1997.[139] Jing Xiao, Zbigniew Michalewicz, and Lixin Zhang. Evolutionary Planner/Navigator: Operator Performanceand Self-Tuning. In Proceedings of the 3rd IEEE International Conference on Evolutionary Computation,Nagoya, Japan, May 1996. IEEE Press.[140] T. Yokota, M. Gen, K. Ida, and T. Taguchi. Optimal Design of System Reliability by an Improved GeneticAlgorithm. Transactions of Institute of Electronics, Information and Computer Engineering, J78-A(6):702{709, 1995. (In Japanese).

33

