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The problem of portfolio selection is a standard problem in financial engineering and has received a lot of
attention in recent decades. Classical mean–variance portfolio selection aims at simultaneously maximiz-
ing the expected return of the portfolio and minimizing portfolio variance. In the case of linear con-
straints, the problem can be solved efficiently by parametric quadratic programming (i.e., variants of
Markowitz’ critical line algorithm). However, there are many real-world constraints that lead to a non-
convex search space, e.g., cardinality constraints which limit the number of different assets in a portfolio,
or minimum buy-in thresholds. As a consequence, the efficient approaches for the convex problem can no
longer be applied, and new solutions are needed.

In this paper, we propose to integrate an active set algorithm optimized for portfolio selection into a
multi-objective evolutionary algorithm (MOEA). The idea is to let the MOEA come up with some convex
subsets of the set of all feasible portfolios, solve a critical line algorithm for each subset, and then merge
the partial solutions to form the solution of the original non-convex problem. We show that the resulting
envelope-based MOEA significantly outperforms existing MOEAs.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

In finance, a portfolio is a collection of assets held by an institu-
tion or a private individual. The portfolio selection problem seeks
an optimal way to distribute a given budget on a set of available
assets.

The problem usually has two criteria: expected return (mean
profit) is to be maximized, while the risk is to be minimized. The
optimal solution depends on the user’s risk aversion. As it is often
difficult to weigh the two criteria before the alternatives are
known, it is common to search for the whole set of efficient or Par-
eto-optimal solutions, i.e., all solutions that can not be improved
upon in both objectives simultaneously. This set of solutions is of-
ten called ‘‘efficient frontier”, or ‘‘Pareto-optimal front”. Another
motivation for searching for the whole efficient frontier stems from
the fact that in many applications, a set of solutions with different
trade-offs with respect to the optimization criteria are desired, e.g.
because a bank wants to offer its customers different choices
depending on their risk aversion.

A natural measure for risk is the variance of the portfolio return.
Mean–variance optimization is probably the most popular ap-
proach to portfolio selection. It was introduced more than 50 years
ll rights reserved.
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ago in the pioneering work by Markowitz (1952, 1956). The basic
assumptions in his theory are a rational investor with either mul-
tivariate normally distributed asset returns or, in the case of arbi-
trary returns, a quadratic utility function (Huang and Litzenberger,
1988). It has been shown that if these assumptions are valid, the
optimal portfolio for the investor lies on the mean–variance effi-
cient frontier.

The basic mean–variance portfolio selection problem we con-
sider in this paper can be formalized as follows:

min VðwÞ ¼ wTQw ðminimize portfolio varianceÞ ð1aÞ

max wTl ¼ E ðmaximize expected returnÞ ð1bÞ

subject to wTe ¼ 1 ðbudget constraintÞ ð1cÞ
0 6 wi 6 1; i ¼ 1; . . . ;N; ð1dÞ

where N is the number of assets to choose from, Q denotes the
covariance matrix of all investment alternatives, li is the expected
return of asset i, and e is the unit vector. The decision variables wi

determine what share of the budget should be distributed to asset
i, and Eq. (1c) makes sure that the sum of all wi is equal to one,
i.e., that the whole budget is invested.

Computationally efficient algorithms that calculate a single
point or even the whole efficient frontier of this basic portfolio
selection problem have been discussed in a large number of publi-
cations. For a basic introduction to portfolio selection see, e.g.,
on with an envelope-based multi-objective ..., European Journal of
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Elton et al. (2003). The algorithm to compute the whole efficient
frontier (critical line algorithm) is described in detail in Markowitz
(1987). The result of this algorithm is a sequence of so-called corner
portfolios. These corner portfolios define the complete efficient
frontier as all other points on the frontier are convex combinations
of the two adjacent corner portfolios.

However, these highly efficient algorithms can not take into ac-
count more complex constraints that lead to a non-convex search
space, henceforth called non-convex constraints. Examples for
such constraints which are commonly used in mutual fund man-
agement include:

1. Cardinality constraints restrict the number of securities which
are allowed in the portfolio. Often, the maximal number of
securities in the portfolio is limited to reduce the management
cost, e.g., for monitoring the performance of the companies in
the portfolio.

2. The 5–10–40 constraint is based on §60(1) of the German invest-
ment law (InvG, 2005). It defines an upper limit for each indi-
vidual asset and for the sum of all ‘‘heavyweights” in the
portfolio. More specifically, securities of the same issuer are
allowed to amount to 5% of the net asset value of the mutual
fund. They are allowed to amount to 10%, however, if the total
share of all assets with a share between 5% and 10% is less than
40% of the net asset value.

3. Buy-in thresholds demand that if an asset is included in the port-
folio, at least some amount l should be bought. The main reason
for such a constraint is to reduce transaction costs. In principle,
this constraint could also be handled by our approach in a
straightforward manner, but is not considered further in this
paper.

For convex portfolio selection problems, the critical line algo-
rithm is able to generate the complete (continuous) efficient fron-
tier. In the presence of non-convex constraints, most approaches
found in the literature are based on the �-constraint method (see,
e.g., Miettinen, 1998): instead of optimizing both criteria simulta-
neously, they set the expected return to a constant (i.e., Eq. (1b) be-
comes a constraint), and solve the resulting quadratic optimization
problem to minimize the variance. Of course, this only generates a
single solution on the efficient frontier, and the algorithm has to be
applied many times with different expected returns to obtain a
reasonable approximation of the true efficient frontier. Further-
more, as the solution of each quadratic sub-problem is computa-
tionally complex in the presence of non-convex constraints,1

usually heuristics are used to solve the individual sub-problems,
which means that the generated solutions do not necessarily lie on
the true efficient frontier. Some heuristic approaches like evolution-
ary algorithms allow to consider multiple objectives simultaneously,
generating a set of solutions approximating the efficient frontier in
one run. However, they are still point-based, generating a finite set
of alternative portfolios.

In this paper, we propose to combine multi-objective evolution-
ary algorithms with an embedded critical line algorithm to solve
complex portfolio selection problems with non-convex constraints.
The basic idea is to let the EA handle the non-convex constraints
and to basically divide the problem into a set of problems with
convex constraints, which can be solved optimally with a critical
line algorithm. The overall solution to the problem is then the com-
bination of the solutions to the individual convex problems. As we
will demonstrate, the approach significantly outperforms other
state-of-the-art evolutionary algorithms. Furthermore, to our
1 In fact, some variants are NP-complete, e.g. the cardinality constrained portfolios
if the maximum cardinality is a fraction of the total number of assets (Bienstock,
1996).
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knowledge, this is the first approach to non-convex portfolio selec-
tion yielding a continuous solution set, as opposed to the discrete
solution set generated by the point based approaches.

Our paper is structured as follows. First, we provide a brief over-
view on approaches to portfolio selection subject to non-convex
constraints. A short introduction to multi-objective evolutionary
algorithms is provided in Section 3, followed in Section 4 by a short
description of a state-of-the-art point-based MOEA which will be
used as a reference later on. Our approach, called envelope-based
multi-objective evolutionary algorithm (E-MOEA) is presented in
Section 5. Section 6 reports on the empirical evaluation of our ap-
proach. The paper concludes in Section 7 with a summary and
some ideas for future work.

2. Related work

The work on non-convex portfolio selection problems can be
roughly divided into mixed integer approaches and metaheuristics
which will be discussed in turn.

2.1. Mixed integer approaches

By adding integer variables, the convex problem presented in
the previous section can be extended to take non-convex con-
straints into account. For example, buy-in thresholds and cardinal-
ity constraints can be modeled as follows:

min VðwÞ ¼ wTQw ð2aÞ
subject to wTl ¼ E ð2bÞ

wTe ¼ 1 ð2cÞ
Xn

i¼1

qi 6 N ð2dÞ

lqi 6 wi 6 uqi; i ¼ 1; . . . ;N ð2eÞ
qi 2 f0;1g; i ¼ 1 . . . N; ð2fÞ

where qi is the binary variable that specifies whether asset i should
be included in the portfolio, and l and u are the lower and upper
bounds for the weights if the corresponding asset is included.

The modeling of the 5–10–40 constraint as MIQP is not as
straightforward, and requires to triple the number of variables:

min VðwÞ ¼ wTQw ð3aÞ
subject to wTl ¼ E ð3bÞ

wTe ¼ 1 ð3cÞ
w� 0:05q 6 0:05e ð3dÞ
t � 0:1q 6 0 ð3eÞ
t �w 6 0 ð3fÞ
wþ 0:1q� t 6 0:1e ð3gÞ
tTe 6 0:4 ð3hÞ
w; t P 0 ð3iÞ
qi 2 f0;1g; i ¼ 1; . . . ;N: ð3jÞ

Thereby, qi = 1 implies that asset i is allowed up to 10%, while qi = 0
restricts asset i to 5%. If qi = 0, Inequality (3e) requires ti = 0, other-
wise ti = wi by Inequalities (3e)–(3g). Inequalities (3h) and (3i) re-
strict the ‘‘heavyweights” to 10% and their sum to 40%.

Once formulated appropriately, any of the available mixed inte-
ger quadratic programming (MIQP) solvers can be used to solve the
model. Software packages that contain such a solver can be found at
NEOS Guide (2006), although – compared to the number of avail-
able QP-solvers – there are by far fewer programs with the required
capability. In any case, there is no guarantee for getting the optimal
portfolio quickly. If there is not enough time to allow the algorithm
to terminate regularly, the best valid portfolio calculated so far can
be used instead – a normal practice when working with mixed inte-
ger solvers. Of course, this abandons the optimality guarantee.
on with an envelope-based multi-objective ..., European Journal of
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For further information about the mixed integer approach to the
cardinality constrained problem without using an external MIQP-
solver, the reader is referred to Bienstock (1996). Bienstock
examined the computational complexity of the problem, tested a
self-developed branch-and-cut algorithm using disjunctive cuts,
and discussed some of the implementation problems that occurred.

Jobst et al. (2001) use a branch-and-bound algorithm to solve
the cardinality constrained problem with buy-in thresholds as well
as an index tracking problem, where a portfolio subject to cardinal-
ity constraints should perform as closely as possible to an index in
terms of mean and variance. As they calculate many points on the
efficient frontier, the available time is too short for individually
solving each MIQP to optimality. Therefore, they limit the number
of nodes in the search tree of the branch-and-bound algorithm for
each given expected return E. To speed up the algorithm further, a
previously calculated solution for an adjacent point is used as a
warm start solution for the new value of expected return.

Advantages of the mixed integer approaches are certainly that
optimality is guaranteed if the algorithm terminates. On the other
hand, running time is difficult to predict, and modelling complex
constraints is not always straightforward. Finally, the efficient
frontier can only be calculated pointwise, a mixed integer version
of the critical line algorithm is not known.

2.2. Metaheuristics

Because of the potentially extensive running times of the mixed
integer approaches and their complex implementation, many
researchers have turned to metaheuristics. The term metaheuristic
usually describes a generic optimization principle that is widely
applicable to many different problem domains. Very often, the ba-
sic idea behind a metaheuristic is inspired by nature, be it a phys-
ical process like simulated annealing (SA) or biologically inspired
algorithms like ant colony optimization (ACO) or evolutionary
algorithms (EAs). Such metaheuristics do not guarantee optimality,
but it is hoped that they find reasonable solutions quickly.

There are several publications discussing the use of metaheuris-
tics to solve non-convex portfolio selection problems. Most of
them apply the metaheuristic just to solve the MIQP with a given
desired expected return, i.e., to generate a single point of the effi-
cient frontier in mean–variance objective space.

Chang et al. (2000) compare an EA, tabu search, and SA to solve
portfolio selection problems where each solution has to contain a
predetermined number of assets. Because none of the approaches
turned out to be a clear winner, they suggest to run all three and
combine the results. Schaerf (2002) improves on the work of Chang
et al. by testing several neighborhoods for tabu search. Crama and
Schyns (2003) apply simulated annealing to a portfolio selection
problem with cardinality constraints as well as turnover and trad-
ing restrictions. They particularly focus on ways to handle con-
straints, partially by enforcing feasibility, partially by introducing
penalties. A hybrid between SA and EA is proposed in Maringer
and Kellerer (2003). In Maringer (2002), ACO is used only to deter-
mine the relevant assets for a cardinality-constrained portfolio
selection problem, while the weights are determined with a con-
ventional QP solver. The only authors who, to our knowledge, ad-
dress the 5–10–40 constraint are Derigs and Nickel (2001). They
use SA for optimization, but do not provide details on how they en-
sure feasibility of solutions. In Derigs and Nickel (2003), they ex-
pand their previous work, but the focus is put on developing a
decision support system for portfolio selection. In Ehrgott et al.
(2004), a problem with five objectives and non-convex constraints
is considered, but the five objectives are accumulated into one
based on multiattribute utility theory. Then local search, SA, tabu
search and an EA are used to solve the resulting single-objective
mixed-integer problem.
Please cite this article in press as: Branke, J. et al., Portfolio optimizati
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Eddelbüttel (1996) uses a QP solver within a genetic algorithm
to solve the index-tracking problem. Here, the GA determines
which assets should be included in the portfolio, while the optimal
weights are calculated by the QP solver.

Instead of setting the expected return E as constant and then
solving a separate single-objective optimization problem for sev-
eral E as do all of the above methods, Streichert et al. (2003,
2004a,b), apply a multi-objective evolutionary algorithm (MOEA).
MOEAs are variants of EAs that exploit the fact that EAs work with
a population of solutions, and simultaneously search for a set of
efficient alternatives in a multi-objective setting, see also the fol-
lowing section. Note that while this approach generates several
solutions along the efficient frontier in one run, it is still point-
based (i.e. it only generates a discrete set of solutions). Since we
will use this algorithm for empirical comparison with our ap-
proach, it will be discussed in more depth below.

Other publications reporting on the use of MOEAs for portfolio
selection include Lin and Wang (2002) who consider roundlots,2

and Fieldsend et al. (2004), who address the cardinality issue but
consider the number of allowed assets, K, as a third objective to be
minimized. Armananzas and Lozano (2005) apply multi-objective
variants of greedy search, SA and ACO to the cardinality-constrained
portfolio selection problem. Schlottmann and Seese (2005) consider
credit portfolio optimization and use a gradient-based local search
within their MOEA.

General advantages of metaheuristic approaches are certainly
their flexibility. It would be straightforward e.g., to use alternative,
risk measures. Also, the multi-objective versions allow to generate
a whole set of solutions, approximating the efficient frontier with a
single run.

3. Multi-objective evolutionary algorithms

Although a detailed introduction into multi-objective evolu-
tionary algorithms (MOEAs) would exceed the scope of this paper,
in this section we will briefly introduce the main ideas which are
needed as foundation for the subsequent sections. For a more de-
tailed introduction to MOEAs, the reader is referred to Deb
(2001) or Coello et al. (2002). A survey on MOEA applications in fi-
nance can be found in Schlottmann and Seese (2004).

Evolutionary algorithms are stochastic iterative optimization
heuristics inspired by natural evolution. Starting with a set of can-
didate solutions (population), in each iteration (generation), prom-
ising solutions are selected as potential parents (mating selection),
and new solutions (individuals) are created by mixing information
from the parents (crossover) and slightly modifying them (muta-
tion). The resulting offspring are then inserted into the population,
replacing some old or less fit solutions (environmental selection).
By continually selecting good solutions for reproduction and then
creating new solutions based on the knowledge represented in
the selected individuals, the solutions ‘‘evolve” and become better
and better adapted to the problem to be solved, just like in nature,
where the individuals become better and better adapted to their
environment through the means of evolution.

The basic operations of an evolutionary algorithm can be de-
scribed as follows:

t :¼ 0
initialize P(0)
evaluate P(0)
WHILE (termination criterion not fulfilled) DO
on wit
copy selected individuals into mating pool: M(t) :¼ s(P(t))
h an envelope-based multi-objective ..., European Journal of
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crossover: M0(t) :¼ c(M(t))
mutation: M00(t) :¼m(M0(t))
evaluate M00(t)
update population: P(t + 1) :¼ u(P(t) [M00(t))
t :¼ t + 1

DONE

with t denoting the generation counter, P(t) the population at gen-
eration t, and s, c, m, and u representing the different genetic oper-
ators. Evolutionary algorithms have proven successful in a wide
variety of applications. For a more detailed introduction to EAs,
the reader is referred to Eiben and Smith (2003).

Because EAs maintain a population of solutions throughout the
run, they can also be used to simultaneously search for a set of
solutions approximating the efficient frontier of a multi-objective
problem.

The main difference between single objective EAs and MOEAs is
the way they rank their solutions for selection. While in single
objective EAs the ranking is unambiguously defined by the solution
quality, this is not so straightforward in the case of multiple objec-
tives. MOEAs have two goals: they want to drive the population to-
wards the efficient frontier, while at the same time maintaining a
diverse set of alternative solutions. To achieve the first goal, most
MOEA implementations rely on the concept of dominance. Solution
A dominates solution B if A is at least as good as B in all objectives,
and better in at least one objective. A solution is called non-domi-
nated with respect to a set of solutions if and only if it is not dom-
inated by any other solution in that set.

One particularly popular MOEA variant is the non-dominated
sorting genetic algorithm (NSGA-II), see Deb (2001). It ranks indi-
viduals according to two criteria. First, individuals are ranked
according to non-dominancy: all non-dominated individuals are
assigned to Front 1, then they are removed from the population,
again all non-dominated solutions are determined and are as-
signed Front 2, etc. until the population is empty. The result of this
process is illustrated in Fig. 1a. Within a front, solutions are ranked
according to the crowding distance, which is defined as the cir-
cumference of the rectangle defined by their left and right neigh-
bors, and infinity if there is no neighbor. This concept is
illustrated in Fig. 1b. Individuals with high crowding distance are
preferred, as they are in more isolated regions of the objective
space. In the example in Fig. 1b, individuals a and d have the high-
est priority within the front, followed by individual b and then c
because the rectangle defined by the respective left and right
neighbor is larger for individual b.

In every iteration, NSGA-II generates p offspring solutions,
where p is the population size. The old and offspring population
are then combined, ranked according to the above two criteria,
f1

f2

front 3 

front 1 

front 2 

Fig. 1. NSGA-II first ranks individuals according to non-dominance so
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and the better half forms the new population. For mating selection,
tournament selection is used which randomly draws two solutions
from the population and chooses the one on the better front or, if
they are from the same front, the one with the larger crowding
distance.

4. A point-based multi-objective EA

Although there is, to our knowledge, no definite comparison of
the different approaches discussed in Section 2, we consider the
approach by Streichert et al. (2003, 2004a,b) as state-of-the-art
metaheuristic. Not only is it one of the few papers applying MOEAs,
but they have also tested and compared a number of variations
regarding encoding and operators. We re-implemented their algo-
rithm, and will use it as reference for empirical comparison with
our newly developed envelope-based MOEA. The algorithm is de-
scribed below. Note that some adaptations were necessary to
incorporate the 5–10–40 constraint, as this constraint has not been
considered in Streichert et al. (2003, 2004a,b).

As already mentioned in the introduction, the approach uses a
MOEA for optimization. In particular, it is based on the standard
non-dominated sorting genetic algorithm (NSGA-II and its prede-
cessor NSGA) as described above.

As genetic representation, Streichert et al. (2003, 2004a,b) rec-
ommend to use a hybrid binary/real-valued encoding, which is also
used by several other successful approaches like Chang et al. (2000).
With this encoding, a solution is defined by a vector of continuous
variables c = (c1, . . ., cN)T representing the weights of the individual
assets. An additional vector of binary variables k = (k1, . . ., kN)T is
used to indicate if the asset is included in the portfolio at all. The lat-
ter vector allows the EA to easily add or remove an asset by simply
flipping the corresponding bit, and thus facilitates the handling of
cardinality constraints.

For a portfolio selection problem that contains a cardinality
constraint and buy-in thresholds, the decoding of the two vectors
to get the actual portfolio works as follows (see e.g Chang et al.,
2000; Streichert et al., 2004a):

1. For all i with ki = 0, set ci = 0.
2. If

PN
i¼1 signðkiciÞ is more or less than the required cardinality,

the solution is repaired by changing some elements of c. For
the maximum cardinality problem, elements are set to 0 in
the order of increasing ci (i.e., the assets with the smallest share
are set to zero).

3. The vector c is normalized:

c0i ¼
ciP

ci
: ð4Þ
f1

f2

a

b

c

d

rting (a) and within a front according to crowding distance (b).

on with an envelope-based multi-objective ..., European Journal of
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4. The final weight wi is calculated:

wi ¼
lþ c0ið1� j� jlÞ if i 2 � ;
0 otherwise;

�
ð5Þ

where l is the minimum buy-in threshold, � is the set of assets to be
included in the portfolio and |�| denotes the number of elements in �.

The 5–10–40 constraint has not yet been considered by Streic-
hert et al., and thus we had to adapt the decoding and repair mech-
anism. It works in 7 steps as follows.

1. For all i with ki = 0, set ci = 0.
2. The vector c is normalized:

wi ¼
ciP

ci
:

3. The surplus amount exceeding the 10% threshold is calculated,
X ¼

P
wi>0:1ðwi � 0:1Þ. All wi > 0.1 are set to 0.1.

4. The surplus X has to be redistributed to the weights below 10%.
Each weight below 10% is raised by the amount ð0:1�wiÞ � X

W,
where W ¼

P
0<wi<0:1ð0:1�wiÞ. Since W < X, no weight will have

a value above 10% after the first step.
5. In the group with more than 5%, we only accept the assets with

the largest weights such that the sum is still less than or equal
to 40%. All others are capped to 5% and the excess weight is dis-
tributed to the other assets analogously to the above step.

6. If there is not enough room for all the excess weight to be redis-
tributed among the assets with less than 5%, the remaining is
used to fill up the assets between 5% and 10% up to 10% in order
of decreasing weight.

7. The previous step may again lead to a violation of the 5–10–40
constraint. In this case, assets are removed from the 5–10%
group in order of increasing weights, and the weight in excess
of 5% is distributed to the other assets in the 5–10% group sim-
ilar to the previous step.

Note that any valid portfolio for the problem with 5–10–40 con-
straint contains at least 16 different assets (4 times 10% plus 12
times 5%). If this is the case, the above decoding will result in a fea-
sible portfolio. By appropriate mutation and crossover operators
(see below) we make sure that the binary string has always at least
16 bits set to ‘‘1”.

For both cardinality constraints and the 5–10–40 constraint, the
weights after the above repair steps are written back into the
weight-vector of the genotype and overwrite the original values.
This allows the information gained by the repair mechanism to
be inherited to the offspring (Lamarckism) and has been recom-
mended in Streichert et al. (2004b).

For mutation, simple bit flip is used on the binary vector, and
Gaussian mutation on the real-valued vector. For crossover, we
use N-point crossover independently on both real-valued and bin-
ary vector. In Streichert et al. (2004a), this crossover operator was
reported to be competitive to other, more complex crossover oper-
ators. We follow this suggestion for the cardinality constrained
problem. For the 5–10–40 constraint, as explained above, we need
at least 16 assets with ki = 1 for a feasible solution. Therefore, for
this constraint we modify the operators on the bit string as follows.
The crossover operator first transfers all bits to the child where
both parents are equal. The remaining bits are traversed in random
order and randomly taken from either parent until the maximum
number of zeros has been reached (i.e. N � 16 if N is the number
of assets). Any remaining bits are set to 1. If after mutation the
resulting bit string contains less than 16 ones, some of the per-
formed 1 to 0 bit flips are reversed to make the string valid.

In the remainder of this paper, we will denote this point-based
MOEA as P-MOEA.
Please cite this article in press as: Branke, J. et al., Portfolio optimizati
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5. Envelope-based multi-objective evolutionary algorithm

In this section, we will present our new envelope-based multi-
objective evolutionary algorithm (E-MOEA) for portfolio selection
problems. It combines the efficiency of the critical line algorithm
for calculating the whole continuous front with the ability of mul-
ti-objective evolutionary algorithms to take complex constraints
into account and to generate multiple solutions within a single
run. The main idea of our paper is to use the MOEA to define suit-
able convex subsets of the original search space, run the critical
line algorithm on every subset, and then recombine the partial
solutions to form the complete front.

A single solution (individual of the MOEA) defines a convex sub-
set by specifying how the non-convex constraints are to be han-
dled. In case of a cardinality constraint, a solution defines which
assets are allowed a weight greater than zero. The corresponding
convex problem is just the standard problem which contains only
those variables not forced to zero. Note that, in particular if the al-
lowed cardinality is much smaller than the total number of avail-
able assets, this means that the generated sub-problem is much
smaller than the original problem, which results in a tremendous
reduction of the running time of the critical line algorithm.

For the case of the 5–10–40 constraint, a solution defines which
assets are allowed up to 10% and hence have to be included in the
40% constraint. All other assets are restricted to at most 5%.

For each subset, the critical line algorithm can be used to effi-
ciently calculate the whole efficient frontier of the corresponding
standard mean–variance portfolio selection problem. For more de-
tails to the critical line algorithm, the reader is referred to Marko-
witz (1987). Because we apply the critical line algorithm to every
individual generated by the EA, an efficient implementation is cru-
cial. We use a modified variant of the algorithm described by Best
and Kale (2000). For an in-depth discussion of implementation
intricacies see Stein et al. (2008).

The result of the critical line algorithm is a front in the mean–
variance space which is efficient for the sub-problem, but not nec-
essarily for the overall problem with non-convex constraints. We
call such a partial front an envelope. The EA is now used to find a
collection of such envelopes which together form a solution to
the overall problem.

For this purpose, we use a multi-objective EA based also on the
general framework of NSGA-II (Deb, 2001). But instead of a solu-
tion being represented by a single point in the mean–variance
space, now every solution is represented by an envelope in the
mean–variance space. An exemplary population is depicted in
Fig. 2a. The example shows that situations in which envelopes en-
tirely dominate other envelopes occur very rarely. Instead, at many
points, envelopes intersect with other envelopes. Even without
intersections, many envelopes have dominated and non-domi-
nated parts. Thus, we had to adapt the non-dominated sorting
and crowding distance calculation to work with envelopes. The ba-
sic idea can be described as follows.

We are interested in the non-dominated part of the set union of
all envelopes. Let us denote the non-dominated part of the set of all
envelopes as (first) aggregated front. Following the idea of non-
dominated sorting, we assign rank 1 to all individuals contributing
at least partially to the first aggregated front. Then, we iteratively
remove these individuals/envelopes from the population, and
determine the aggregated front of the remaining individuals,
assigning them the next higher rank, etc. The resulting ranking
and the generated aggregated fronts are depicted in Fig. 2b.

It is clear that different individuals contribute differently to an
aggregated front. Some may contribute only a small segment of
the front, some may contribute large segments. Also, some parts
of the aggregated front may be represented by several individuals.
on with an envelope-based multi-objective ..., European Journal of
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Fig. 2. Ten randomly initialized envelopes and the five corresponding aggregated fronts for the max-card problem with k = 4 for the Nikkei dataset.
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We use this information to rank the individuals within a front
(substituting the crowding distance sorting in NSGA-II). For this
purpose, we determine for each individual the length of the con-
tributed segment of the aggregated front.3 Parts common to several
individuals are shared among those individuals. For example, if the
part contributed solely by an individual i has length 5, and a part
with length 4 is shared with another individual j, the overall contri-
bution of individual i is 5 + 4/2 = 7. Within a front, individuals con-
tributing more are considered more important. Parts of the
efficient frontier not belonging to the aggregated front are not taken
into account. The actual implementation of the above envelope-
based non-dominated sorting is rather tricky, the reader is referred
to Scheckenbach (2006).

5.1. Representation and genetic operators

As discussed above, the EA is only responsible for handling the
non-convex constraints, the appropriate weights are then deter-
mined by a critical line algorithm. Thus, in principle, a simple bin-
ary encoding would be sufficient. However, we wanted to feed
back some information from the critical line algorithm to the evo-
lutionary algorithm. For this reason, we are using a permutation
encoding. Then, for the maximum cardinality constraint, simply
the first K assets are used in the portfolio. For the 5–10–40 con-
straint, the first K assets are considered potential heavyweights,
with a share of at most 10%4 and inclusion in the 40% constraint,
while all others are restricted to less than 5%. The parameter K here
is variable and also part of the solution encoding.

After the critical line algorithm has been applied, the permuta-
tion is sorted with respect to the average weight an asset had in all
corner portfolios that are part of the aggregated front. Thus, an as-
set which received a high weight will appear early on the permu-
tation, and subsequently have a higher probability to be among the
first K after crossover and mutation.

As genetic operators, we use the uniform order based crossover
and swap mutation. For the latter, an asset that belongs to the first
K is swapped with an arbitrary other asset. For the 5–10–40 con-
3 Although in principle it would be possible to calculate the true length of a
segment, for reasons of simplicity we approximated the length by the Euclidean
distance between the end points. Another possible criterion would have been the
reduction in hypervolume if the individual is removed.

4 Note that the weight of these assets can be set below 5% by the critical line
algorithm, although they are still included in the 40% constraint. This helps in the
sorting, as such an asset is then moved behind more important assets that are set to
5%, leading to a smaller chance to be included again after mutation.

Please cite this article in press as: Branke, J. et al., Portfolio optimizati
Operational Research (2008), doi:10.1016/j.ejor.2008.01.054
straint, the parameter K is modified by adding a Gaussian number
with mean 0 and standard deviation Pm. The size is then rounded
and capped if necessary.

To further improve the efficiency of our algorithm, we introduced
two additional concepts: duplicate elimination and a variable popu-
lation size. In duplicate elimination, we remove individuals that
share a part of an aggregated front with another individual, but
which are nowhere better than the other individual. The variable
population size allows us to increase the number of individuals in
the population if the current first aggregated front consists of more
individuals than would fit into the population. Keeping a fixed pop-
ulation size would then mean to delete a valuable part of the solu-
tion. Note that because our approach is envelope-based, it requires
a much smaller population size than point-based approaches any-
way. The alternative to an adaptive population size, namely to work
with an equally large population as the point-based approaches
from the beginning, would have slowed down convergence unnec-
essarily. Independent of the population size, the number of offspring
generated in every iteration remains constant and equal to the origi-
nal population size.
6. Empirical evaluation

6.1. Benchmark problems and performance measure

Many authors test their approaches on the publicly available
benchmarks provided in the OR-library (Beasley, 2006). We will
also use some of these benchmarks, namely

P1 The smallest problem, the Hang Seng benchmark consisting
of 31 assets.

P2 The S&P benchmark consisting of 98 assets.
P3 The largest problem in the OR-library, the Nikkei benchmark

consisting of 225 assets.

Because we want to show that our algorithm also scales well,
we additionally tested it on

P4 a benchmark with 500 assets, generated according to a
method described in Hirschberger et al. (2007) and gener-
ously provided by Ralph Steuer.

For the cardinality constrained problems, we set the maximum
cardinality to K = 4 for P1 and P2, and to K = 8 for P3 and P4.
on with an envelope-based multi-objective ..., European Journal of
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Measuring performance in a multi-objective setting is difficult,
because it requires the comparison of frontiers (not only solutions).
A number of possible performance measures are discussed, e.g., in
Zitzler et al. (2003). In the following, we will judge a generated
front by its deviation from the ideal front, which is defined as
the efficient frontier of the problem without non-convex con-
straints.5 This ideal front is an upper bound on the performance
and can be computed efficiently with the critical line algorithm. To
measure the deviation, we calculate the area between the resulting
front and the ideal front. One difficulty with area-based methods is
to define the maximum variance and minimum return boundaries
to calculate the area, see Fig. 3. If these values are set far apart, ex-
treme portfolios have a very large impact on solution quality. If they
are set too close, some parts of the front may be cut off. Since the
appropriate borders are not clear, we report on two values here:
the area using the maximum variance and minimum yield portfolios
from the ideal front (ideal-delta-area), and the maximum variance
and minimum yield from any asset in the available universe (max-
delta-area).

6.2. Parameter settings

For P-MOEA, we use the same parameter settings as in Streic-
hert et al. (2004a), i.e., a population size of 250 and tournament
size of 8. For the bit string, bit flip mutation with mutation proba-
bility for each bit 2/(number of assets) and N-point crossover with
probability 1.0 are applied. For the real-valued string, mutation is
done by adding a value from a Normal distribution with r = 0.05
to each weight, crossover is again N-point crossover with probabil-
ity 1.0.

For E-MOEA, the following parameter settings have been chosen
without much testing. The initial population size is set to 30, and
30 individuals are generated in every iteration.

The mutation and crossover operators have been described
above. Probability to swap each of the first K assets for the cardi-
nality problem is 1/K, for the 5–10–40 constrained problem, prob-
ability to swap any of the heavyweights is 1/7.

As discussed before, P-MOEA requires a significantly larger pop-
ulation size, as each individual only represents a single point, as
opposed to a whole envelope as in E-MOEA.

All reported results are averages over 30 runs. Experiments
were conducted on a PC with AMD Sempron 1.6 GHz processor
and 1 GB RAM. Maximum allowed running time for the problem
with 5–10–40 constraint was set to 500, 1000, 2000, and 4000
5 For the problem with 5–10–40 constraint, all assets are restricted by 10%.
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CPU seconds for P1, P2, P3, and P4, respectively. Since the cardinal-
ity constrained problem seemed easier, we allowed only half the
running time for each problem.

6.3. Test results

The results on all four benchmark problems are summarized in
Tables 1–4. Table 1 reports on the max-delta-area, i.e., the area be-
tween obtained efficient frontier and ideal front with wide margins,
for the cardinality constrained problem at the end of the run. The
same information, but with respect to ideal-delta-area, is provided
in Table 2. As can be seen, E-MOEA significantly outperforms
P-MOEA on all benchmark problems. In terms of the ideal-delta-
area, the relative performance of P-MOEA is somewhat better, indi-
cating that it particularly has a problem in finding the portfolios
with high expected return or low variance.

The results for the problem with 5–10–40 constraint look sim-
ilar (see Tables 3 and 4), although the differences between P-MOEA
and E-MOEA are generally smaller.

Typically obtained efficient frontiers for P1 and P3 with cardi-
nality constraint are depicted in Fig. 4. As can be seen, for the small
problem (P1), both algorithms perform quite well. In fact, the fig-
ure zooms in on only a part on the front, as on a plot of the whole
front, the differences would be hard to see. Still, E-MOEA clearly
outperforms P-MOEA and is indistinguishable from the ideal front
over large parts. For the larger problem, P-MOEA does not seem to
be able to come close to the performance of E-MOEA. In particular
in the area of higher returns, there are clear deficiencies. It seems
that P-MOEA does not scale very well to larger problem sizes.6

One reason may be that there are usually only few assets with a high
return, and exactly those have to be combined in the portfolio to ob-
tain an overall high return. Identifying the high-return assets out of a
large set may prove difficult for the P-MOEA. E-MOEA on the other
hand finds solutions hardly distinguishable from the ideal front also
for the larger problems.

For the 5–10–40 constraint, the fronts obtained by P-MOEA and
E-MOEA are much closer to each other, and further away from the
ideal front. Still, the front obtained by E-MOEA dominates P-
MOEA’s front basically everywhere. Note that again for visibility,
the plot for the larger problem only shows a segment of the overall
front (see Fig. 5).

When looking at the obtained solution quality in terms of max-
delta-area over running time, it is clear that the advantage of E-
MOEA over P-MOEA is significant throughout the run. Fig. 6a looks
at P3 with cardinality constraint. Clearly, E-MOEA starts out much
better, and converges much faster than P-MOEA (for the small
problem, E-MOEA even found the best solution within 5 out of
the allowed 250 seconds in every single run). Note that we plot
against running time. Because E-MOEA has to run a critical line
algorithm for every individual, it can only evaluate about 13,500
individuals during the 1000 seconds allowed, while P-MOEA gen-
erates and evaluates approx. 1,945,000 individuals in the same
time frame.

For the problem P3 with 5–10–40 constraint, E-MOEA also
starts better than P-MOEA, then P-MOEA quickly catches up only
to fall behind again (see Fig. 6b). The difference in the number of
individuals evaluated is even more striking here than for P3 with
cardinality constraint, because the 5–10–40 constraint does not al-
low to remove a large fraction of the assets for the critical line algo-
rithm. While E-MOEA can generate only about 3000 individuals in
the given 2000 seconds, P-MOEA generates approx. 3,475,000.
6 In Streichert et al. (2004a,b, 2003), the algorithm was only tested on small
problems with up to 81 assets.
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Table 1
Max-delta-area at the end of the run for E-MOEA and P-MOEA for all four test problems with cardinality constraint, average ± std. error, all values in terms of 10�6

P1 (K = 4) P2 (K = 4) P3 (K = 8) P4 (K = 8)

P-MOEA 1.1613 ± 0.0159 2.7787 ± 0.0521 9.3292 ± 0.2287 4124.1363 ± 123.6716
E-MOEA 0.2275 ± 0 0.8048 ± 0.00003 0.0561 ± 0.0052 5.9063 ± 0.2939

Table 2
Ideal-delta-area at the end of the run for E-MOEA and P-MOEA for all four test problems with cardinality constraint, average ± std. error, all values in terms of 10�6

P1 (K = 4) P2 (K = 4) P3 (K = 8) P4 (K = 8)

P-MOEA 1.0605 ± 0.0160 1.6981 ± 0.0175 2.1250 ± 0.0189 125.1611 ± 1.1580
E-MOEA 0.1371 ± 0 0.5222 ± 0.00003 0.0123 ± 0.0003 2.4398 ± 0.09637

Table 3
Max-delta-area at the end of the run for E-MOEA and P-MOEA for all four test problems with 5–10–40 constraint, average ± std. error, all values in terms of 10�6

P1 P2 P3 P4

P-MOEA 1.3274 ± 0.0002 1.5107 ± 0.0197 1.7339 ± 0.0138 446.7284 ± 11.4963
E-MOEA 1.3019 ± 0.0007 1.2416 ± 0.0001 1.6511 ± 0.0047 344.7926 ± 3.8489

Table 4
Ideal-delta-area at the end of the run for E-MOEA and P-MOEA for all four test problems with 5–10–40 constraint, average ± std. error, all values in terms of 10�6

P1 P2 P3 P4

P-MOEA 0.2188 ± 0.00002 0.1028 ± 0.0009 0.0807 ± 0.0003 7.6607 ± 0.1116
E-MOEA 0.2023 ± 0.00001 0.0631 ± 0.0001 0.0700 ± 0.00006 4.9756 ± 0.0290
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One explanation for the superiority of E-MOEA, besides being
envelope-based, is certainly its in-built weight optimization by
the critical line algorithm. This effect is visible in Fig. 7, which com-
pares the solution quality of randomly generated solutions with
both, the P-MOEA and the E-MOEA. Clearly, E-MOEA has a much
better start, as the majority of randomly generated envelopes is
clearly better than the majority of randomly generated portfolios.

7. Conclusion

The critical line algorithm is a very efficient algorithm to calcu-
late the whole efficient frontier for a standard mean–variance port-
folio selection problem. However, this method is no longer
applicable if practical real-world constraints such as maximum
cardinality constraint, buy-in thresholds, or the 5–10–40 rule from
the German investment law have to be considered, because such
constraints render the search space non-convex. Researchers have
therefore resorted to solving these problems point-based, approx-
imating the efficient frontier by iteratively solving a sub-problem
with a fixed expected return, for many different settings of the ex-
pected return. Because even the sub-problems are rather complex,
often meta-heuristics are used.

In this paper, we have proposed a new envelope-based multi-
objective evolutionary algorithm (E-MOEA), which is a combina-
tion of a multi-objective algorithm with an embedded algorithm
Please cite this article in press as: Branke, J. et al., Portfolio optimizati
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for parametric quadratic programming. The task of the MOEA is
to define a set of convex subsets of the search space. For each sub-
sets the critical line algorithm can efficiently generate an efficient
frontier which we call envelope. The combination of all generated
envelopes then forms the overall solution to the problem.

To our knowledge, our approach is the first metaheuristic ap-
proach which is not point-based, but which is capable of generat-
ing a continuous front of alternatives for portfolio selection
problems with non-convex constraints. Compared with a state-
of-the-art point-based MOEA, E-MOEA was shown to find signifi-
cantly better frontiers in a shorter time.

As future work, we are planning to integrate a more intelligent
mutation operator that uses shadow prices to influence mutation
probabilities. Also, the ideas of envelope-based MOEAs should be
transferred to other applications. In particular, we are planning
to consider portfolio re-balancing problems that include consider-
ation of fixed and variable transaction costs.
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