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Abstract

This thesis explores a popular asset allocation model: the Black-Litterman
model. First, an overview is given of the foundations of modern portfolio
theory with the mean-variance model and the CAPM. Next, we discuss
some improvements that could be made over the mean-variance model. The
Black-Litterman model addresses some of these flaws and tries to improve
them. The model has been described mathematically, and various definitions
of the parameters are compared.
Finally, an empirical study has been performed to compare the performance
of the Black-Litterman model to mean-variance optimization. The models
have been compared in a three asset universe that consists of a momentum
portfolio, a HML portfolio and a size portfolio. The views of the investor
have been forecasted by a regression analysis on factors that describe the
economic climate. The regression analysis also provides a consistent manner
to specify the uncertainty on the views of the investor.
The conclusion can be drawn that BL-model improves on the mean-variance
model, in our sample period, however the result is dependent on a well chosen
benchmark.
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Chapter 1

Introduction

Portfolio selection is concerned with selecting a portfolio of investments that
will fulfill the investment objectives over the investment horizon. What these
objectives are differs per investor, but a positive and stable payoff on the
investments is always desirable.
The portfolio selection problem is complex for at least two reasons, the large
number of investment opportunities available and the difficulty to forecast
the future. Aside from the many different investment opportunities that are
available, it is nowadays also relatively easy to invest in nearly every country
around the world. It is possible to not only invest in the Netherlands, but
for a more risky investment one could choose, for example, investments in
Russia or China. The possibility to invest globally expands the investment
universe to nearly infinite size and makes it difficult for a person to examine
all possibilities.
Investing is always a risky enterprise. An initial investment is made for a
certain amount of money, but it is never certain that the value of the in-
vestment will increase. Even though there are numerous models to assist an
investor in her investment decision, it is never possible to forecast the future
with certainty. These two problems make it difficult to select a portfolio.
There are mainly two approaches to portfolio selection, a heuristic approach
and a quantitative approach. In the heuristic approach the portfolio is se-
lected with limited help of a model. The investor forms views about future
performance of investments from news in the media. These views are used
to select investments that are believed to have some favorable characteristics
that the investor looks for in her investment portfolio.
The quantitative approach uses a mathematical model to make the final
allocation of investments. The model evaluates the characteristics of the
investments and determines which ones should be added to the portfolio.
Harry Markowitz is the founder of quantitatively making investment de-
cisions with his 1952 paper ‘Portfolio selection’. He proposed that when
determining an investment one should not only look at the possible pay-
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2 CHAPTER 1. INTRODUCTION

off of the investment, but also take into account how certain one is that
this payoff will actually be acquired. By formulating a mathematical model
and making this trade-off explicit it became possible to allocate investments
quantitatively. Although the model inspired a rich field of science and is
used by many, it does have some important flaws. The model often results
in counterintuitive portfolios, which poorly reflect the views of the investor.
Investors worked around this problem by introducing extra constraints that
would limit the range of the possible outcomes.
The two approaches to investing are depicted here more disjoint than they
are in practice. Almost every investor nowadays uses the assistance of some
sort of model in assembling an investment portfolio, at least to examine the
characteristics of the portfolio.
This thesis examines a model that combines the two approaches in one
model. The model was developed by Fisher Black and Robert Litterman
of Goldman Sachs, their model is actually used at Goldman Sachs to de-
termine investments. The first publication on the model was in 1990, and
subsequently in 1991, 1992. Despite the multiple publications they never
described the model very thoroughly. This thesis sets out to explain the
model mathematically as well as conceptually.

Outline of the thesis The first chapter gives a background in the finan-
cial terminology and notation that will be used in the thesis. We next move
to the basis of portfolio selection with the model of Markowitz and the sub-
sequently developed capital asset pricing model.
Subsequently we arrive at the focus of this thesis: the Black-Litterman
model.
The last chapter covers an empirical study of the Black-Litterman model in
combination with some investment strategies.



Chapter 2

Financial terminology

The discussion of portfolio selection has its own vocabulary. The most im-
portant vocabulary and concepts will be discussed in this chapter, as well
as the accompanying notation. These are basic finance concepts like asset,
return, risk, portfolio and diversification.

2.1 Assets and its characteristics

2.1.1 Asset classes1

An investor can choose from thousands of different assets. Not only are there
many ordinary shares to choose from, but there are also other investment
opportunities available. These opportunities can be divided in classes of
assets with the same characteristics.
The most well known asset class is equity, also known as ordinary shares
or in the United States as stock. Equity is the ownership of a part of a
company. Equity of public companies can be traded on a stock exchange.
Another asset class is bonds. A bond is a debt certificate issued by a borrower
to a lender. The debt certificate says that the borrower owes the lender a
debt and is obliged to repay the principal and interest at a later date. The
later date is set at the issuance of the bond and the interest rate can be
fixed or variable. Bonds, as every investment, vary in the degree of risk
attached to them. The length of the borrowing period and the entity that
issues the bonds are important risk factors. Short term government bonds
are generally regarded as very safe investments.
The final class under consideration is currency. Investing in foreign currency
can be useful either to bet on a change in the exchange rate or to insure, or
hedge, investments in that currency against changes in the exchange rate.
There are also other asset classes, but they are not of interest to the present

1The definitions are derived from Smullen and Hand (2005) and Moles and Terry
(1997).
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4 CHAPTER 2. FINANCIAL TERMINOLOGY

research. In general the word asset will be used to describe an investment,
when it matters which class of assets is under consideration, we will be more
specific.

2.1.2 Return and risk

The investor invests her money in a portfolio of assets and is interested
in making a profit. More specifically she is interested in making a profit
relative to the invested money. The rate of return (return for short) is the
difference between the amount of invested money at the start and the value
of the investment at the end of the period plus some additional (net) cash
flows as for example dividend, divided by the starting value, i.e.

return =
profit

invested money
=

end value + cash flows− starting value
starting value

.

There are other definitions of return, but this one suffices for our purposes.
Return is defined for a period in the past, but in asset allocation one is
interested in the future behavior of an asset, the future return. Markowitz
(1959) expresses the future or forecasted return as the expected value of the
return.
What is actually meant by the term expected return E(r), is a forecast of
the return, as we want to forecast the future return of the asset. If rt denotes
the return up to time t, then E(r) is shorthand for E(rt+1|It) which means
the forecast of the return at time t+ 1 given all the information up to and
including time t. The expected return is one of two important characteris-
tics of an asset relevant to mean-variance optimization.
The other important characteristic is the risk. Intuitively risk should mean
something like the chance that one looses on a investment. However, math-
ematically it is quit challenging to define it and several different definitions
exist. Markowitz (1952) defined risk as the variance of the return. Variance
measures the deviation around a point, negative deviations from this point
as well as positive deviations. In the case of an investment, the variance of
return measures the deviation of the return around the expected return. An
investor would only consider less expected return, i.e. a negative deviation
as a risk, while positive deviations also add to the the variance of return,
which makes variance a counterintuitive measure of risk. In reaction to this
measure, others have been proposed that measure risk differently, or only
measure negative deviations.
The square root of the variance is called the standard deviation in mathe-
matics, in finance this measure is called the volatility .
Markowitz (1952) postulates that the only two measures of interest of an
asset are its expected return and its risk, measured in variance.



2.1. ASSETS AND ITS CHARACTERISTICS 5

2.1.3 Expected return and variance of return

Portfolio theory relies heavily on the probabilistic measures expected value,
covariance and variance. We will recall their definitions and some important
properties of these measures. For a more in-depth treatment one could read
for example the book of Johnson and Wichern (1998).

Definition

Expected value The sample expected value also known as sample mean of
a sample xi, i = 1 . . . n is defined as the average value of the sample:
E(X) = 1

n

∑n
i=1 xi. The mean of a variable is often denoted by the

Greek letter µ.

Variance The variance is a measure of how much a variable varies around
the expected value (µ). One definition of the sample variance is:
var(X) = 1

n−1

∑n
i=1 (xi − µ)2 = σ2, where µ is the mean value of

the sample.

Standard deviation The standard deviation (σ) is the square root of the
variance, in finance this is often called the volatility. The standard
deviation is a more intuitive measure of variability than variance, as
it is more directly related to the normal distribution. The normal
distribution and its relation with mean and volatility is explained in
the next paragraph.

Correlation coefficient The correlation coefficient measures how two ran-
dom variables are co related when a linear relationship is understood
between the two variables. If two random variables X and Y have a
linear relationship of the form Y = aX+b, then the factor a is defined
as the correlation coefficient ρ.
The correlation coefficient varies between -1 and 1. Two variables are
perfectly positive correlated if the correlation coefficient ρ = 1, this
means that if X increases so does Y , and by the same amount. A
perfect negative correlation is found when ρ = −1, this means that if
X increases, Y decreases and Y decreases by the same amount. Two
random variables are called uncorrelated if ρ = 0.

Covariance The covariance provides a measure of the strength of the cor-
relation between two random variables. The covariance of X1 and
X2 can be related to the correlation coefficient ρ of the two random
variables and the respective standard deviations (σ1 and σ2). They
are related as follows: cov(X1, X2) = ρσ1σ2 = σ12, if X1 and X2 are
independent then the correlation coefficient ρ = 0 as is the covariance
cov(X1, X2) = 0.
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Properties The expected value, variance and covariance have a few useful
properties. The proof of these properties will be omitted, the reader is
referred to a good book on statistics like Johnson and Wichern (1998). Let
a and b be real valued scalars, A a real valued matrix and let X, Y and Xi

be random variables then the following properties hold,

E(aX + b) = aE(X) (2.1)

E

(
n∑
i=1

Xi

)
=

n∑
i=1

E(Xi) (2.2)

cov(X,Y ) = cov(Y,X) (2.3)
cov(X,X) = var(X) (2.4)

cov(aX, bY ) = ab cov(X,Y ) (2.5)

var(aX + bY ) = a2var(X) + b2var(Y ) + 2ab cov(X,Y ) (2.6)

var

(
n∑
i=1

Xi

)
= cov

 n∑
i=1

n∑
j=1

XiXj

 (2.7)

var(AX) = Avar(X)A′. (2.8)

Normal distribution It is often assumed that the distribution of the
asset returns have a normal probability distribution, for example by Black
and Litterman (1991a). When an investors estimates that an asset has
an expected return of 4% with a variance of (1%)2, then the probability
distribution of the return could be drawn in a graph, see figure 2.1.

Figure 2.1: The normal probability distribution.

The values that the return can assume are plotted on the horizontal axis, the
mean can be found in the middle at 4%, the variance of (1%)2, or equivalently
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the standard deviation of 1%, can be seen in the figure at r = µ − σ = 3%
and r = µ+ σ = 5%.
The investor has implicitly professed the opinion that with a probability of
68% the return will be one standard deviation away from the mean, thus
there is a 68% probability that return is in the interval 3% to 5%. This is
a well known property of the normal distribution, another often used rule
of thumb is that there is 95% probability that the returns are in the two
standard deviation interval around the mean, i.e. from 2% to 6%.

2.2 The portfolio of assets

2.2.1 Portfolio consists of assets

A portfolio consists of various assets, where the proportion of an asset in the
total value of the portfolio is called its weight . A portfolio could for example
consist for one third of equity ASML, half could be equity of KPN and one
sixth equity of Aegon.
A portfolio consisting of n assets, is represented mathematically by a vec-
tor w ∈ Rn. This would make the vector of weights in this example w =(

1
3 ,

1
2 ,

1
6

)′.
The weights in the vector are proportional to the total portfolio and there-
fore have to sum to one,

∑n
i=1wi = 1.

Definition 1 (portfolio). A portfolio consisting of n assets is represented
by a vector w ∈ Rn such that

∑n
i=1wi = 1.

2.2.2 Borrowing and lending assets

The weights in the portfolio need not be positive, it is possible to borrow
or lend an asset. Borrowing an asset would lead to a negative weight in the
portfolio.
Borrowing makes sense if the investor anticipates a price decrease of an as-
set. For example, supposes an investor borrows an asset that is worth 20
euro at time t = 0, and she is obliged to return the asset at time t = 3. The
moment she receives the asset, she sells the asset on the stock market. At
time t = 3 she has to return the asset. If at this time the price of the asset
has decreased to for example 15 euro, she makes a profit. She buys the asset
on the stock market for 15 euro and returns the asset. She has now made
of profit of 20− 15 = 5 and a return of −15+20

20 = 25%.
Borrowing an asset, taking a negative position is called shorting an asset.
A positive position in an asset is called going long. Not every investor is al-
lowed to short assets, pension funds are often prohibited from this practice.
Borrowing of assets makes it possible to invest in a portfolio without invest-
ing any own funds, such a portfolio is called a zero-investment portfolio. In
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such a portfolio, the long positions are financed by short positions in other
asset, the end result is a portfolio whose weights sum to zero.

2.2.3 Notation

The concepts risk and return can be given a mathematical representation.
The return of asset i is denoted by ri. The expected return of asset i becomes
E(ri), its variance σ2

i and the covariance of asset i and j is σij .
For a portfolio that consists of n assets, the return of each asset in the
portfolio is captured by the vector of returns r ∈ Rn. The vector of returns
also has an expected value, E(r) ∈ Rn. The covariance and the variance
of the assets in the portfolio are represented in the covariance matrix Σ ∈
Rn×n, the diagonal entries of which are formed by the variance of the assets
(σii = σ2

i ) as this is the covariance of an asset with itself.
The covariance matrix is symmetric, this is due to the symmetry of the
covariance, see equation (2.3).
The return of the portfolio (rp) is determined by the return of the assets in
the portfolio: rp =

∑n
i=1wiri. The expected value and the variance of the

return of the portfolio follow after straightforward computation from the
properties of the expected value, covariance and variance.

Proposition 1. The expected return E(rp) of a portfolio is w′E(r).
The variance of return of a portfolio is var(rp) = w′Σw.

Proof. The proof follows from the properties of the expected value and the
variance as described in equations (2.1) to (2.7).

E(rp) = E

(
n∑
i=1

wiri

)
=1

n∑
i=1

E (wiri)

=2
n∑
i=1

wiE(ri) = w′E(r)

=1 Property (2.2) is used to interchange the summation and the
expected value operator.

=2 Propery (2.1) is used, constants are invariant to the expected
value operator.

The variance of return for the portfolio can be computed in the following
way.

var(rp) = var

(
n∑
i=1

wiri

)
=1

n∑
i=1

n∑
j=1

cov(wiri, wjrj)

=2
n∑
i=1

n∑
j=1

wiwjcov(ri, rj) =3
n∑
i=1

n∑
j=1

wiwjσij

= w′Σw
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=1 Property (2.7) is used to change the variance of the summa-
tion into the summations of the covariances.

=2 Property (2.5) is used, constants are invariant to the covari-
ance operator.

=3 The covariance of asset i and asset j is alternatively written
as σij .

2.3 Rationale for diversification2

One of the important notions in asset allocation is that diversification re-
duces risk. There is even an English proverb that supports diversification:
“Don’t put all your eggs in one basket”. Although it seems a reasonable
investment rule it is good to investigate mathematically under which cir-
cumstances diversification reduces risk.
The effect of diversification can be quantified by using the formulas for the
sum of variances. We will not give a general proof of the conditions under
which diversification diminishes the variance of the portfolio, as there are
many parameters that can be varied. Instead we will consider two instances
of diversification. In the first instance all n assets have mutually uncorre-
lated returns, that is σij = 0 for all assets i unequal to j. All the assets
have equal expected return E(r) and variance σ2. The portfolio will be con-
structed from an equal weighting scheme, i.e. taking equal proportions of
each asset: wi = 1

n for each asset i. This makes the expected return of the
portfolio E(rp) equal to the expected return of an individual asset in the
portfolio.

E(rp) =
n∑
i=1

wiE(ri) =
1
n

n∑
i=1

E(r) = E(r).

The expected return of the portfolio is in this example independent of the
number of assets in the portfolio. The variance of this portfolio var(rp),
however, does depend on the number of assets:

var(rp) =
n∑
i=1

n∑
j=1

wiwjσij =1 1
n2

n∑
i=1

n∑
j=1

σij

=2 1
n2

n∑
i=1

σ2 =
σ2

n

=1 1
n is substituted for the weights wi.

=2 It is used that σij = 0 for all i 6= j and σii = σ2.

2The text in this section is derived from Luenberger (1998).
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It can be seen that the variance does depend on the number of assets in the
portfolio and it decreases as the number of assets increases. The variance of
the portfolio even approaches zero as the number of assets grows to infinity.

lim
n→∞

var(rp) = lim
n→∞

(
1
n2

n∑
i=1

σ2

)
= lim

n→∞

(
σ2

n

)
= 0

Hence, for uncorrelated assets, with equal expected return, diversification
reduces the variance of the portfolio and can eliminate it altogether, while
the expected return of the portfolio remains the same. This implies that
it would be best to compile a portfolio of as many as possible mutually
uncorrelated assets with equal weight, as this allows the variance to be
reduced to zero in the limit.

Figure 2.2: Diversification diminishes the variance of the portfolio.

This can best be illustrated by an example.

Example 1. Assume we have two assets A and B. Asset A has expected
return of 13.5%, asset B has an expected return of 15%. In vector notation:
E(r) =

(
13.5% 15%

)′.
The first asset has a volatility of 17%, the second asset has volatility 13%
and the correlation between the assets is 0.23. We would like to construct
the covariance matrix of these two assets, therefore the volatility needs to be
squared to obtain the variance, correlation coefficient and the asset volatili-
ties needs to be multiplied to obtain the covariance of the assets. This gives
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σ11 = σ2
1 = (17%)2 = 289(%)2, σ22 = σ2

2 = (13%)2 = 169(%)2, and co-
variance σ12 = ρσ1σ2 = 0.23 · 17% · 13% = 51(%)2. In matrix notation

Σ =
(

289(%)2 50.8(%)2

50.8(%)2 169(%)2

)
.

We will construct portfolios that consists of these two assets. Starting with
the portfolio that only consists of asset A, slowing adding asset B until the
portfolio consists only of this asset. This can be accomplished by assigning
weight λ and 1− λ to asset A and B respectively, where λ will vary between
zero and one. When λ = 1 then the portfolio consists of asset A, when λ = 0
then the portfolio consists of asset B. The weight vector of the portfolio thus
is w =

(
λ 1− λ

)′.
The expected return of the portfolios is then computed by E(rp) = w′E(r) =
λE(r1) + (1−λ)E(r2) = λ 13.5% + (1−λ)15%. The variance of the portfolio
equals var(rp) = w′Σw =

∑n
i=1

∑n
j=1wiwjσij = λ2σ2

1 + 2λ(1− λ)σ12 + (1−
λ)2σ2

2 = λ2289(%)2 + 2λ(1− λ)50.8(%)2 + (1− λ)2169(%)2.
The resulting portfolios are plotted in figure 2.2. It can be seen that the vari-
ance of the portfolio can be diminished by combining the two assets. This is
due to the correlation coefficient of the assets, which is not very large and
thus makes the covariance of the assets much smaller than the individual
variances. Therefore portfolios which are a combination of these two assets
will have a lower variance, than portfolios than consists of the single assets.

The next situation under consideration, is the situation where the returns of
the assets are correlated. Suppose, as before, that each asset has an expected
return of E(r) and variance σ2, but now each return pair has a covariance
of σij = aσ2 for i 6= j and a ∈ R. The portfolio consists again of n equally
weighted assets. The result is that the expected return of the portfolio is
the same as in the previous instance, but the variance is different:

var(rp) =
n∑
i=1

n∑
j=1

wiwjσij =
1
n2

n∑
i=1

n∑
j=1

σij

=1 1
n2

∑
i=j

σij +
∑
i 6=j

σij

 =2 1
n2

∑
i=j

σ2 +
∑
i 6=j

aσ2


=

1
n2

(
nσ2 + (n2 − n)aσ2

)
=
σ2

n
+
(

1− 1
n

)
aσ2 =

(1− a)σ2

n
+ aσ2

=1 The single summation is divided in two separate summa-
tions, one for i = j and one for i 6= j.

=2 The variance is the same for all i = j: σii = σ2, the covari-
ance is σij = aσ2 for all i 6= j.
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If the assets are mutually correlated with aσ2, then the variance cannot be
eliminated altogether by increasing the number of assets.

lim
n→∞

var(rp) = lim
n→∞

(
(1− a)σ2

n
+ aσ2

)
= aσ2

This analysis of diversification is somewhat crude, for it is assumed that
all assets have the same expected return and the covariances have a simple
structure. In general, diversification may reduce the overall expected return,
while reducing the variance. How much expected return needs to be traded
for a lowering of risk, is an important question.

2.4 Summary

This chapter can be summarized in a few sentences. The portfolio of assets
is represented by a vector of weights w ∈ Rn, such that

∑n
i=1wi = 1.

Every asset has an expected return (E(ri)) and risk measured by the variance
of return (σ2

i ). The portfolio of assets also has an return: E(rp) = w′E(r)
and a variance var(rp) = w′Σw.
Adding not perfectly correlated assets to the portfolio reduces the variance
of the portfolio.



Chapter 3

Mean-variance optimization

Quantitative asset allocation originates from the work of Markowitz in 1952.
Nowadays, Markowitz’ mean-variance optimization is still the basis for quan-
titative asset allocation. This also holds for the main subject of this this
report the model of Black and Litterman. Therefore, it remains relevant to
discuss the model of Markowitz prior to the discussion of our main subject.
The model will first be derived conceptually to form a general idea of the
intricacies of the subject. Subsequently, the mathematical formulation of
the model will be discussed as well as some strong points and some draw-
backs of the model. Finally, the capital asset pricing model (CAPM) will
be discussed. The CAPM can be used to determine the expected return of
an asset under certain assumptions. The CAPM follows from Markowitz’s
model and together they form the basis of modern portfolio theory.
The main text in this chapter is derived from Luenberger (1998), Markowitz
(1987) and Sharpe (1964).

3.1 Model development

To develop an investment model it is good to have an idea of the way in
which investors select a portfolio. An investor follows the economic news
in order to form views on which markets, sectors or specific companies are
going to perform better and which are going to perform worse. However,
these views alone are not enough to select a portfolio. Such views have to be
translated in a tractable form. How does one, for example, translate a view
that the American economy will outperform the European economy in an
asset allocation? Quantitative models can give guidance in asset allocation,
after the initial translation from idea to input has been done. A model not
only needs input that can be optimized, it also needs an objective function.
This is a function that describes the allocation process and that the investor
wants to optimize.

13
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The objective function An investor aims to make a positive return
on her investments. Therefore, the expected return of the portfolio of assets
would seem to be to a logical objective function.
To maximize the expected return of the portfolio, one has to simply invest
in the single asset with the highest expected return. Addition of other as-
sets with a lower expected return to the portfolio would lower the expected
return of the portfolio.
Investing in a single however, asset goes against the notion of diversification
and the result will be that the performance of the portfolio is based on the
performance of the one asset. If the asset performs well, so does the invest-
ment. It also means the converse, if the asset performs badly, so does the
portfolio. The performance of the investments solely depends on the one
asset. This makes the return very erratic and therefore very risky. It would
be better if the return could be more steady.
Therefore, it is also important to investigate the risk involved in the port-
folio. One should not only maximize the expected return but also take into
account the risk of the portfolio; one should balance the risk and the ex-
pected return of the portfolio. A less risky result could, for example, be
obtained by diversifying the portfolio with investments in companies in dif-
ferent sectors. If the equity in one sector perform poorly, it could be that
equity in another sector do well. This diversification leads to a more steady
expected return of the portfolio. However, probably some expected return
has to be traded to obtain this less risky portfolio. It would be desirable if
the trade-off between risk and expected return would become explicit.
An investor that only takes on additional risk, in exchange for additional
expected return is called a risk averse investor . Risk aversion is thought to
best describe human investment behavior.
There is a specific field concerned with defining functions that can categorize
preferences and formalizes the principle of risk aversion, this field is called
utility theory .
The reasoning in this paragraph leads to the following conclusion. The ob-
jective should be to maximize expected return for a certain level of risk, or
equivalently minimize risk for a certain level of expected return.

Markowitz Harry Markowitz (1952), wrote the seminal paper on quanti-
tative portfolio selection. He identified the forecasted return with expected
return and risk with variance of return. He went on to postulate that the
above objective is the one to strive for and developed a mathematical model
for portfolio selection.
The objective, in terms of variance becomes to minimize the variance of re-
turn for a certain level of expected return. The expected value is often called
the mean value. Therefore this kind of optimization is called mean-variance
(MV) optimization.
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Markowitz (1987) defines a portfolio that minimizes variance for a certain
level of expected return, or equivalently maximizes expected return for a
certain level of variance as an efficient portfolio.

Definition 2 (Efficient portfolio). A portfolio is mean-variance efficient
if there does not exist another portfolio with a higher mean and no higher
variance or less variance and no less mean.

The efficient frontier can be depicted in a risk-return diagram, see figure 3.1.
In this example we have three assets, these assets can be combined to form
different portfolios. After weights are selected for the portfolio, the variance
of the portfolio w′Σw and the expected return w′r can be computed. The
risk and the expected return of the portfolio is then depicted in the risk-
return diagram.
The curve of efficient portfolios is called the efficient frontier, it has the
form of a tipped parabola. There do not exist portfolios beyond the efficient
frontier which have less variance for the level of expected return.
The top of the parabola is the minimum variance portfolio, the portfolio that
has the minimal variance over all possible combinations in our investment
universe. The portfolios that correspond to the preferences of a risk-averse
investor are located on the top half of the parabola. These portfolios all
have the characteristic that they have the maximal expected return for a
certain level of variance.

Figure 3.1: Efficient frontier of a three asset portfolio.
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3.2 The mathematics of MV-optimization

The general idea of mean-variance analysis has been explained in the previ-
ous paragraph. In this paragraph we will concentrate on the mathematical
formulation of the optimization problem and its solutions. In general we
distinguish between three cases for the optimization problem, classified ac-
cording to the constraints on the problem. One of the main advantages of
mean-variance optimization is the flexibility to cope with the extra restric-
tions an investor faces in practice. These restrictions leads to mathematically
different problems.
The section starts with standard mean-variance optimization without con-
straints. Subsequently we will move to mean-variance optimization with
equality constraints, and finally we will discuss mean-variance optimization
with inequality constraints.

3.2.1 Unconstrained mean-variance optimization

The objective of mean-variance optimization is to maximize the expected
return of a portfolio of assets for a given level of risk. If each of the n assets
in the portfolio has a weight wi ∈ R, then mean-variance optimization needs
to determine the optimal allocation of weights. This can be accomplished
by determining the solution to maxw∈Rn E(rp) subject to var(rp) = c where
c is the desired level of risk. In subsection 2.2.3 it has been shown that
the expected return and variance of return of a portfolio are w′E(r) and
w′Σw respectively. The standard mean-variance optimization problem can
therefore be formulated as follows:

Problem 1 (Standard MV-optimization).

max
w∈Rn

w′E(r)

subject to
1
2
w′Σw = c

The factor 1
2 is only introduced for convenience, it does not alter the problem.

The solution can be found via the method of Lagrange. The Lagrangian
becomes L(w, λ) = w′E(r) + λ(1

2w′Σw − c). The solution w∗ has to fulfill

simultaneously
∂L

∂w
= 0 and

∂L

∂λ
= 0.

∂L

∂w
= E(r) + λ

1
2

[Σw + (w′Σ)′] = 0

=1 E(r) + λΣw = 0 (3.1)
∂L

∂λ
=

1
2
w′Σw − c = 0 (3.2)
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=1 It is used that the covariance matrix is symmetric, Σ′ = Σ,
therefore (w′Σ)′ = Σ′w = Σw.

From equation (3.1) a formula for w∗ is obtained: w∗ = −(λΣ)−1E(r). This
formula is substituted in equation (3.2) to obtain the value of the parameter

λ = −
√

1
2cE(r)′Σ−1E(r):

c =
1
2
w′Σw =1 1

2
[(λΣ)−1E(r)]′Σ(λΣ)−1E(r)

c =2 1
2

E(r)′(λΣ)−1Σ(λΣ)−1E(r) =3 1
2
λ−2E(r)′Σ−1E(r) ⇒

λ = −
√

1
2c

E(r)′Σ−1E(r). (3.3)

=1 The optimal weight w∗ = −(λΣ)−1E(r) is substituted.
=2 The square brackets are expanded: [(λΣ)−1E(r)]′

= E(r)′((λΣ)−1)′ and it is used that Σ is symmetric hence
E(r)′((λΣ)−1)′ = E(r)′((λΣ)′)−1 = E(r)′(λΣ)−1.

=3 The lambdas are grouped together by expanding the
inverse of (λΣ)−1 = λ−1Σ−1.

The parameter λ is often called the risk-aversion parameter, as it represents
a risk-averse investor for values of λ ≤ 0.
In the usual formulation of the mean-variance problem, the risk level is not
set beforehand, the problem is simultaneously solved for all risk levels. The
level of risk is then not varied by the parameter c but is varied by the risk-
aversion parameter λ. This allows the formulation of the mean-variance
problem in one single formula without constraints.

Problem 2 (Unconstrained MV-optimization).

max
w∈Rn

w′E(r)− 1
2
λw′Σw ∀λ ≥ 0.

This is an ordinary maximization problem without any constraints, hence
the solution can be found by differentiation to the vector of weights w. This
objective function is equal to the Lagrangian of Problem 1 except for the
sign of λ, in this case it has a negative sign in the previous problem it had
a positive sign. The sign of λ does not alter the problem, it only alters the
set for which λ describes risk-aversion, previously this was for λ ≤ 0 now it
is for λ ≥ 0. The vector that maximizes this problem, the optimal vector of
weights equal w∗ = (λΣ)−1E(r).

d
dw

(w′E(r)− 1
2
λw′Σw) = E(r)− λΣw = 0

⇒ w∗ = (λΣ)−1E(r)

By varying the risk aversion parameter λ the optimal solutions w∗ can be
found to the differing problems. These solutions in turn can be plotted in
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a risk-return graph, by computing the expected return and the variance of
the portfolio for the different solutions. We have already seen the line in
figure 3.1, in this case λ needs to be positive for risk-averseness. The positive
value corresponds to the more general definition of risk-aversion that will be
discussed in paragraph 3.3.1.

The covariance matrix The covariance matrix plays an important role
in mean-variance optimization and has to meet two requirements. To de-
termine the optimal weights of the assets in the portfolio, the covariance
matrix needs to be inverted w∗ = (λΣ)−1E(r). A basic requirement for ma-
trix inversion is that the determinant of Σ 6= 0, this is known as the matrix
Σ is nonsingular.
The other important property for the covariance matrix can be deduced from
equation (3.3), where the square root of E(r)′Σ−1E(r) is taken. In order for
the square root to have real values it is needed that E(r)′Σ−1E(r) > 0 for
all values of E(r). The property is called positive definiteness: the matrix
Σ−1 needs to be positive definite. It can be seen that Σ−1 is positive definite
if and only if Σ is positive definite, see a good book on linear algebra like
Graham (1987).
It is well known that if Σ is positive definite, then it is nonsingular. There-
fore, we make the following assumption.

Assumption. The covariance matrix is positive definite (Σ > 0).

The covariance matrix, under this assumption, should give no problems
during inversion. However care has to be taken, when the covariance matrix
is estimated. Since, if the estimation procedure is flawed, this could lead to
singular or nearly singular matrices that are therefore not invertible.

3.2.2 Equality constraints

The simple instances of mean-variance optimization, outlined in the pre-
vious subsection, are not very realistic, since normally an investor faces
constraints. At least there should be a constraint that requires to invest
all the available resources. This is called a full investment constraint. This
constraint can be translated into a formula that requires that the weights of
the assets in the portfolio have to sum to one, 1′w = 1.
Other equality constraints could be imposed, these k restrictions can be rep-
resented by a matrix A ∈ Rk×n and a vector b ∈ Rk such that Aw = b.
Adding the equality constraints transforms the unconstrained optimization
problem of Problem 2 to a Lagrange problem, which is relatively easy to
solve.



3.2. THE MATHEMATICS OF MV-OPTIMIZATION 19

Problem 3 (MV with equality constraints).

max
w∈Rn

w′E(r)− 1
2
λw′Σw ∀λ ≥ 0.

subject to Aw = b

The Lagrangian of this problem is

L(w,γ) = w′E(r)− 1
2
λw′Σw + γ ′(Aw − b),

where γ ∈ Rk is a Lagrange multiplier

A necessary and sufficient condition for the existence of a solution w∗ is the
existence of a vector of weights that simultaneously fulfills the equations:
∂L

∂w
= 0 and

∂L

∂γ
= 0.

∂L

∂w
= E(r)− λΣw + (γ ′A)′ = 0

= E(r)− λΣw +A′γ = 0 (3.4)
∂L

∂γ
= Aw − b = 0 (3.5)

From equation (3.4) it follows that w∗ = (λΣ)−1[A′γ + E(r)], which can be
substituted in equation (3.5) to give an expression for γ.

b = Aw

b =1 A(λΣ)−1(A′γ + E(r))

b = A(λΣ)−1A′γ +A(λΣ)−1E(r)

γ = [A(λΣ)−1A′]−1[b−A(λΣ)−1E(r)]

=1 The optimal weight w = (λΣ)−1(A′γ + E(r)) is substituted.

Therefore the solution to the problem including equality constraints is:
w∗ = (λΣ)−1[A′γ + E(r)], with γ = [A(λΣ)−1A′]−1[b − A(λΣ)−1E(r)].
The solution to the unconstrained problem can be seen in this solution:
w∗ = (λΣ)−1[A′γ + E(r)] = (λΣ)−1E(r) + (λΣ)−1A′γ. If A = 0 and
b = 0 the equality constraint solution reduces to the unconstrained solu-
tion w∗ = (λΣ)−1E(r).

3.2.3 Inequality constraints

In addition to equality constraints, there could also be other constraints to
the problem. Restrictions on borrowing, lending or the amount of borrowing
and lending are very common. Such restrictions are generally of the form
l ≤ Aw ≤ u, where l ∈ Rk is a lower bound and u ∈ Rk is an upper bound.
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Alternatively, borrowing of equities can be prohibited: wi ≥ 0, which is
called a short selling constraint. The mean-variance optimization problem
with the addition of inequality constraints can be written as:

Problem 4 (MV with inequality constraints).

max
w∈Rn

w′E(r)− 1
2
λw′Σw ∀λ ≥ 0

subject to l ≤ Aw ≤ u

The inequality constraints greatly complicate the problem. It is no longer
possible to find an analytical solution, it has become a parametric quadratic
programming problem (parametric due to the parameter λ and quadratic
due to the quadratic term in the variance). Several algorithms are available
to solve parametric quadratic programming problems. Markowitz (1959)
has developed a so called critical line algorithm to solve this problem.

3.2.4 Separation theorem

Previously, the portfolio could only consist of risky assets, assets with an
expected return and variance unequal to zero. When there is a risk-free
asset available, an asset that has zero variance, it changes the portfolio se-
lection problem, Tobin (1958) investigated this problem and has developed
the separation theorem.
The risk-free asset (rf ) is depicted in figure 3.2, as it has zero variance it is
placed on the expected return axis. The risk-free asset makes it possible to
draw a new efficient frontier that has a better risk-return balance. This is
accomplished by forming a portfolio that consists of a combination of the
risk-free asset and the tangency portfolio. This line is represented in the
figure as the ‘new efficient frontier’.
The new portfolio (pn) is constructed in the following way: pn = λrf + (1−
λ)pt, where pt is the tangency portfolio and rf is the risk-free asset. The
parameter λ can be varied to obtain a series of portfolio and eventually draw
out the new efficient frontier. If λ = 1 the new portfolio consist only of the
risk-free asset, if λ = 0 the portfolio consist only of the tangency portfolio.
If λ < 0 the risk-free asset is borrowed to finance a larger position in the
tangency portfolio.
The expected return and variance of this new portfolio, can be computed
from the mean and variance of the risk-free asset and those of the tan-
gency portfolio. The tangency portfolio has expected return E(pt) = µt and
variance of return var(pt) = σ2

t . The risk-free asset has no variance, thus
var(rf ) = 0 and expected return E(rf ) = rf .
The expected return of the new portfolio (rn) thus equals E(rn) = E(λrf +
(1− λ)rt) = λE(rf ) + (1− λ)E(rt) = λrf + (1− λ)µt (properties (2.1) and
(2.2) are used). The variance of the new portfolio equals var(pn) = var(λrf+
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(1 − λ)rt) = λ2var(rf ) + (1 − λ)2var(rt) = 0 + (1 − λ)2σ2
t (property (2.6)

is used). The new portfolio in the variance-expected return diagram can
thus be parametrized by (var(rn),E(rn)) = ((1 − λ)2σ2

t , λrf + (1 − λ)µt).
The coefficients form a tipped parabola, due to the quadratic term in the
variance. However, in the volatility-expected return diagram it would be-
come a straight line. Then, the volatility or standard deviation of the
new portfolio is given by σn =

√
var(rn) = (1 − λ)σt. Therefore, the

new portfolio in the volatility-expected return diagram is parametrized by
((1−λ)σt, λrf +(1−λ)µt). The series of portfolios is portrayed in figure 3.2
by the new efficient frontier.

Figure 3.2: The separation theorem: the risk-free asset is used to set the
risk level

In the presence of a risk-free asset, the portfolio selection problem becomes
a two-part problem. First determine the tangency portfolio and next adjust
the tangency portfolio to the desired risk-level by going long or short in the
risk-free asset.
The selection of the risky assets in the portfolio can now be separated from
the attitude towards risk. The separation theorem is important in the next
development in modern portfolio theory, the development of the capital asset
pricing model by Sharpe, Lintner, Mossin and Treynor.

3.2.5 Summary

The mean-variance optimization problem can be divided in three versions,
each with its own degrees of difficulty. The unconstrained problem is an
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ordinary maximization problem. Adding equality constraints makes the
problem more realistic, but also increases the difficulty. It is still possible to
find an analytical solution, with the help of Lagrange multipliers. The last
version of the mean-variance optimization is the most realistic one, and also
the most difficult to solve. There no longer exists a closed form solution, but
a solution can be found via a quadratic programming algorithm. A strong
point of mean-variance optimization is its flexibility, it is very easy to add
additional constraints to the problem.
Tobin’s separation theorem allows the problem to be divided into two parts
if there is a risk-free rate of borrowing and lending available. The fist step is
to select the tangency portfolio and the next step is to adjust the portfolio
to the desired risk level by borrowing or lending of the risk-free asset.

3.3 Weak points of mean-variance analysis

3.3.1 Utility theory and mean-variance analysis

The mean-variance criterion makes the exchange between risk and expected
return explicit. The criterion states a preferences for portfolios with a higher
expected return relative to portfolios with a lower level of expected return
(for the same level of risk). This seems a reasonable criterion for portfolio
selection. However, care has to be taken in applying the criterion, since in
some cases the criterion results in unlikely preferences.
This failure has been analyzed by various authors among which Hanoch and
Levy (1969). They analyze preferences with the help of utility theory and
subsequently compare these preferences with those obtained from mean-
variance optimization. They conclude that in certain cases the preferences
resulting from mean-variance optimization differ from those obtained by
utility theory. Before we move to the explanation of these results we will
first discuss an example.

The MV-criterion is not always valid Hanoch and Levy (1969) an-
alyze when the mean-variance criterion captures the preferences of a risk-
averse investor correctly. Example 2, adapted from Hanoch and Levy (1969)
is an instance in which the MV-criterion results in unlikely preferences.

Example 2. An investor can choose between two assets X and Y , whose
returns are random variables (the notation convention, to depict only ma-
trices in capital letters, is violated for this example). The first asset (X) has
a return of 1 with probability 0.8 and a return of 100 with probability 0.2.
The second asset (Y ) has a return of 10 with probability 0.99 and a return
of 1000 with probability 0.01.
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x P(X = x) y P(Y = y)

1 0.8 10 0.99
100 0.2 1000 0.01

E(X) = 1 · 0.8 + 100 · 0.2 = 20.8, E(Y ) = 10 · 0.99 + 1000 · 0.01 = 19.9
E(X) > E(Y ), var(X) = 1568 < var(Y ) = 9703

Table 3.1: The mean and variance of asset X and Y .

Computation of the expected return learns that the expected return of as-
set X is 20.8, and the expected return of asset Y is equal to 19.9. Hence
the expected return of asset X is larger than the expected return of asset
Y . The variance of asset X (=1568) is smaller than the variance of asset
Y (= 9703). The mean-variance criterion says to prefer asset X in this
case, as it has a greater expected return and a smaller variance than asset
Y . However, it seems more natural to prefer asset Y : in that case one has
almost certainly a return of 10 as opposed to a return of 1.

This example shows that the mean-variance criterion sometimes gives coun-
terintuitive answers. The example will be continued later, when the rudi-
mentaries of utility theory have been developed.

Utility theory1 Utility theory can be used to rank preferences. Formally,
a utility function is a function u defined from a space Z representing the
various possible portfolios to the real line (R).

Definition 3 (Utility function). An utility function, is a function u : Z → R.
It is a non-decreasing, continuous function that captures the investors pref-
erences.

An investor will prefer portfolio P1 to P2 if the expected utility of portfolio
P1 is greater than the expected utility of portfolio P2. The specific utility
function used varies among individuals, depending on their individual risk
tolerance and their individual financial environment. The simplest utility
function is a linear one u(x) = x. An investor using this utility function
ranks portfolios by their expected values, risk does not play a role. The
linear utility function is said to be risk neutral since there is no trade off
between risk and expected return in the order of preferences.
A wide range of utility function are allowed, however in practice certain
standard types are popular. The most commonly used utility functions are

1The description of utility theory has been derived from Luenberger (1998).
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exponential u(x) = − exp(−ax) with a > 0, logarithmic u(x) = log(x),
power u(x) = bxb for b < 1 and b 6= 0 and the quadratic function u(x) =
x− bx2 for b > 0.
A logarithmic utility function could be used to rank the portfolios in the
previous example.

Example 3 (continued from example 2). The logarithmic function u(x) =
log10 x, would rank the assets of example 2 as depicted in table 3.2.

x P(X = x) y P(Y = y)

1 0.8 10 0.99
100 0.2 1000 0.01

E[u(x)] = P(X = x1)u(x1) + P(X = x2)u(x2) = 0.8 · 0 + 0.2 · 2 = 0.4
E[u(y)] = P(Y = y1)u(y1) + P(Y = y2)u(y2) = 0.99 · 1 + 0.01 · 3 = 1.02
E[u(y)] > E[u(x)]

Table 3.2: The expected utility of asset X and Y .

The expected utility of X is E[u(x)] = 0.4, this is bigger than the expected
utility of Y : E[u(y)] = 1.02. The expected utility of Y is greater than that
of X, hence asset Y should be preferred to X, as seems in accordance with
intuition.

Equivalent utility functions An utility function is used to provide
a ranking among alternatives; its actual numerical value (called its cardinal
value) has no real meaning. What is important, is how the function ranks
alternatives when the expected utility is computed (called its ordinal value).
An expected utility function is not unique, there are several functions that
provide the same ranking. This non-uniqueness is due to the linear nature
of the expected return. The utility function v(x) = au(x) + b, provides
the same ranking as the utility function u(x). This can be seen by taking
the expected value of the utility function. The expected value of v(x) is
E[v(x)] = E[au(x)+ b] = aE[u(x)]+ b. Adding a constant to each value does
not change the ranking of the values nor does multiplication by a factor.
Hence, the rankings of the expected utility function of u(x) and v(x) are
the same. When utility functions produce the same ranking, they are called
equivalent, u(x) and v(x) are in this case equivalent. The equivalence of
utility functions can be used to scale utility functions conveniently.
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Risk aversion The main purpose of an utility function is to provide
the investor with a systematic way of ranking alternatives. The utility func-
tion and hence the ranking of alternatives can be used to capture the princi-
ple of risk aversion. Risk aversion is represented in utility terms by a concave
utility function.

Definition 4 (Concave utility and risk aversion). A function u defined on
an interval [a, b] of the real numbers is said to be concave if for any α with
0 ≤ α ≤ 1 and any x and y in [a, b] it holds that

u(αx+ (1− α)y) ≥ αu(x) + (1− α)u(y). (3.6)

An utility function u(x) is said to be risk averse on [a, b] if it is concave on
[a, b]. If u(x) is concave everywhere, it is said to be risk averse.

(a) The function log(x) is concave. (b) The efficient frontier is concave.

Figure 3.3: Concave functions and risk-averseness.

The property that a function is concave can be formulated in several ways.
A general condition for concavity is that the straight line drawn between
any two points on the graph of the function must lie below (or on) the
graph itself. In simple terms, an increasing concave function has a slope
that flattens for increasing values. In mathematical terms, this is equivalent
to the second derivative of the function being negative on the whole domain,
u′′(x) < 0 for all x.
The efficient frontier is an example of a concave function, in figure 3.3b it can
be seen that any line drawn between two points on the efficient frontier lies
below the graph. Furthermore, the efficient frontier describes the preferences
of a risk-averse investor: a portfolio on the efficient frontier that has a higher
risk, also has a higher expected return.
A special case is the risk-neutral utility function u(x) = x. This function
is concave according to the preceding definition, but it is a degenerate case.
Strictly speaking, this function represents no risk aversion. Normally the
term risk averse is reserved for the case where u(x) is strictly concave, which
means that there is strict inequality in equation (3.6) whenever x 6= y.
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Example 4 (continued from example 2). The logarithmic function is an
example of an concave utility function. This can be seen by computing the
second derivative:

u(x) = log10 x ⇒ u′(x) =
1

log(10)x

u′′(x) =
−1

log(10)x2
< 0 for all x ∈ R

The log(x) function is a strictly concave utility function values of x on
[0,∞), hence it can represent the preferences of a risk-averse investor. It
has already been shown that the expected utility of asset X, with this util-
ity function, is smaller than the expected utility of asset Y . Therefore a
risk-averse investor should prefer asset Y to asset X. The mean-variance
criterion, which should represent the preferences of a risk-averse investor,
says to prefer asset X. Where does the mean-variance criterion go wrong?

Risk aversion coefficients The degree of risk aversion exhibited by a
utility function is related to the magnitude of the curvature in the function.
The stronger the curvature, the greater the risk aversion. This notion can
be quantified in terms of the second derivative of the utility function.
The degree of risk aversion is formally defined by the Arrow-Pratt absolute
risk aversion coefficient, which is

a(x) = −u
′′(x)
u′(x)

The term u′(x) is used in the denominator to normalize the coefficient.
This normalization causes a(x) to be comparable for all equivalent utility
functions. The coefficient function a(x) expresses how risk aversion changes
with the wealth level. For many investors, risk aversion decreases as their
wealth increases, reflecting that they are willing to take more risk when they
are financially secure.

3.3.2 The MV-criterion implies normally distributed returns

Hanoch and Levy (1969) have studied the question when the mean-variance
criterion is a valid efficiency criterion for a risk averse investor. An effi-
ciency criterion is said to be valid if it produces the same efficient set for
all concave utility functions. The ranking of the elements in the efficient set
still depends on the specific utility function. They found, as Tobin (1958)
already suspected, that the mean-variance criterion is valid if and only if
the distribution of the returns is of a two parameter family. The proof is
omitted as it would carry to far for this thesis.
They concluded that the mean-variance “criterion is optimal, when the dis-
tributions considered are all Gaussian normal. But the symmetric nature



3.3. WEAK POINTS OF MEAN-VARIANCE ANALYSIS 27

of this distribution seems to deny its usefulness as a good approximation to
reality, for at least some types of risky portfolios.
Even for symmetric distributions, the mean-variance criterion is not valid,
when the distribution has more than two parameters.”

3.3.3 Shortcomings of mean-variance optimization

Thus far, the theoretical background of mean-variance optimization has been
described, in which setting it makes good sense. However, when applying
it to real live problems some flaws do arise. The main problems are that
the optimization procedure often results in concentrated portfolios, that the
model requires much input data and, finally, that the model lacks robustness.

Concentrated portfolios In general diversification is thought of as a rea-
sonable approach to spreading risk. Adding assets to a portfolio that are less
than perfectly correlated to the assets already in the portfolio reduces the
variance of the portfolio. Mean-variance optimization however, can result
in portfolios with large long and short positions in only a few assets (Black
and Litterman, 1992), which opposes the notion of diversification. If the
parameters that are used in the optimization, like the vector of expected
return and the covariance matrix, would be known with certainty, it would
be reasonable to invest in such concentrated portfolios, but as the expected
returns are just forecasts this seems a very risky investment choice. Con-
centrated portfolios are very counterintuitive, which is one of the reasons
for the lack of popularity of using unconstrained mean-variance optimizers
in making investment decisions (Michaud, 1989).

The model requires much input data A more practical problem is
that the model requires input of expected return, variance and covariance
of every asset under consideration.
If an investor has 1000 assets in her portfolio, it becomes a very cumbersome
task to give estimates for all the input parameters. There are solutions to
this problem: historical data could be used to give an estimate of the ex-
pected return. But historical estimates are often bad predictors of future
behavior (Black and Litterman, 1992).
Another problem is how the investor should formulate her believes about
future performance. Often an investor holds relative views on asset per-
formance, for example that asset a will outperform asset b. Mean-variance
analysis needs a specific estimate of the expected return of a single asset
and cannot handle relative views.

The model is not robust The main deficiency is that the model is not
robust. This means that a small change in the values of the input param-
eters can cause a large change in the composition of the portfolio. The
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mean-variance model assumes that the input data is correct, without any
estimation error. The model does not address this uncertainty and sets out
to optimize the parameters as if they were certain. Michaud (1989) describes
mean-variance optimizers even as “estimation-error maximizers”.
Best and Grauer (1991) have analyzed the behavior of the mean-variance
optimizer under changes in the asset mean. They show that a small increase
in an asset mean can cause a very different portfolio composition. Half of
the assets can be eliminated from the original portfolio, by a small increase
in the mean of one asset. They state that for a mean-variance problem with
a budget constraint, the rate of change for the vector of weights depends on
the change in the mean. More specifically it depends on λ, the risk-aversion
parameter, Σ−1, the inverted variance-covariance matrix and q, which spec-
ifies the change in the asset mean.
Michaud (1989) considers the covariance matrix as the main culprit for the
non-robust behavior. The covariance matrix is often estimated from data,
but this estimation procedure can produce matrices that are nearly singular
or singular. This causes problems when the matrix is inverted during the
optimization procedure.

Summary The idea of mean-variance optimization has an intuitive appeal
and is very useful for educational purposes. When the optimization proce-
dure is used for practical purposes then the resulting portfolios are counter-
intuitive and the optimization procedure should be constrained. Further-
more, the model is non-robust and the assumption of normally distributed
expected returns is not always a good assumption.
Mean-variance analysis has been a good starting point for the development
of portfolio selection, but it could be improved on.

3.4 Capital asset pricing model2

The work of Markowitz on portfolio selection became relevant with the pub-
lication of the capital asset pricing model (CAPM). This theory, that has
been separately developed by William Sharpe (1964), John Lintner (1965),
Jan Mossin (1966) and Jack Treynor (1961), builds on the mean-variance
analysis of Markowitz to develop a model that can compute the expected
return of an asset if an equilibrium would exist in the market.

3.4.1 Assumptions

The model is based on the following assumptions. Suppose that every in-
vestor bases his investing decisions on mean-variance theory. Suppose also
that the investors agree on the future performance of every asset in the

2The text has been derived from Luenberger (1998) and Sharpe (1970).
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investment universe, hence everyone assigns the same mean, variance and
covariance to the assets. Assume there is a unique risk-free rate of borrowing
or lending available to all investors and that there are no transaction costs.
Under these assumptions an equilibrium can be established in the market.
From this equilibrium the pricing formula can be derived.

Assumption. A1 All investors use mean-variance analysis to select a
portfolio.

A2 All investors have homogeneous believes about the future return, vari-
ance and covariance of assets.

A3 There is a unique risk-free rate of borrowing and lending available for
all investors.

3.4.2 Equilibrium

From Tobin’s separation theory (see section 3.2.4) it is known that everyone
will invest in a single portfolio of risky assets. In addition, investors can
borrow or lend at the risk-free rate, to adjust the portfolio to the desired
risk level. Furthermore, since everyone uses the same means, variances, and
covariances, to determine the optimal portfolio, everyone will compile the
same risky portfolio.
Some investors will seek to avoid risk and will have a high percentage of the
risk-free asset in their portfolios. Other investors who are more aggressive,
will have a high percentage of the risky portfolio. However, every individual
will form a portfolio that is a mix of the risk-free asset and the same risky
portfolio.
If everyone purchases the same portfolio of risky assets, what must that
portfolio be? The answer to this question is the key insight underlying the
CAPM.
As all investors share the same view, and at that moment there is only one
optimal portfolio, it will result in a rising price of the assets in the optimal
portfolio and hence a downward adjustment of the expected return. The
opposite happens with the assets not in the portfolio. These price changes
lead to a revision of the portfolios. And this goes on and on, until an equi-
librium is reached. In this equilibrium the optimal portfolio is the one that
contains all assets proportional to their capitalization weights, that is the
market portfolio. This means that the market portfolio is mean-variance
efficient in equilibrium.
This theory of equilibrium is usually applied to assets that are traded re-
peatedly over time, such as equities traded on a stock exchange. The con-
clusion of the mean-variance approach and Tobin’s separation theorem is
that the optimal portfolio, in which everyone invests, must be the market
portfolio(wm).
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Figure 3.4: The curve that connects the market portfolio and a single asset.

3.4.3 The pricing formula

Theorem 3.4.1 (The capital asset pricing model). If the market portfolio
M is mean-variance efficient, the expected return of an asset i satisfies

E(ri)− rf =
σiM
σ2
M

(E(rM )− rf ) = βi (E(rM )− rf ) (3.7)

where βi =
σiM
σ2
M

σiM represents the covariance between asset i
and the market portfolio M

σ2
M represents the variance of the market portfolio

Proof. The proof rests on connecting the market portfolio, with a single
asset. This forms a curve that should be tangent to the capital market line,
i.e. the line connecting the market portfolio with the risk-free asset, in the
point M . From this equality it is possible to find the pricing formula.
We start by forming the curve that connects the market portfolio and a
single asset, see figure 3.4. For any α ∈ R consider the portfolio consisting
of a portion α invested in asset i and a portion 1−α invested in the market
portfolio M . The return on this portfolio would be rα = αri + (1 − α)rM .
The portion α can be negative, α < 0, which corresponds to borrowing at
the risk-free rate. The expected rate of return of this portfolio is formed
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by the expected return of the asset and the expected return of the market
portfolio

E(rα) = αE(ri) + (1− α)E(rM ). (3.8)

The variance of the return is

σ2
α = α2σ2

i + 2α(1− α)σiM + (1− α)2σ2
M . (3.9)

As α varies, the values of (E(rα), σ2
α) trace out a curve in the risk-return

diagram, as shown in figure 3.4. In particular, α = 0 corresponds to the
market portfolio M . The curve cannot cross the capital market line, as this
is the efficient frontier. Hence as α passes through zero, the curve must be
tangent to the capital market line at M . The tangency condition will be
used to derive the pricing formula.
When the two lines are tangent at M , the two lines must have the same slope
in that point. To get at this equality, we need to calculate the derivative of
the connecting curve. The curve is parametrized by the function for expected
return (3.8) and the function for the standard deviation (3.9). To compute
a derivative for (E(r), σ), first the derivatives are computed separately and
later they are combined to form the desired derivative.

dE(rα)
dα

= E(ri)− E(rM )

dσ2
α

dα
= 2ασ2

i + 2(1− α)σiM − 2ασiM − 2(1− α)σ2
M )

Thus at the market portfolio α = 0, this gives

dσ2
α

dα

∣∣∣∣
α=0

= σiM − σ2
M

We then use the following relation to compute the derivative of the curve,

dE(rα)
dσ2

α

=
dE(rα)

dα
dα
dσ2

α

=
dE(rα)

dα

(
dσ2

α

dα

)−1

if
dσ2

α

dα
6= 0

to obtain

dE(rα)
dσ2

α

∣∣∣∣
α=0

=
E(ri)− E(rM )
σiM − σ2

M

.

This slope must be equal to the slope of the capital market line. Hence,

E(ri)− E(rM )
σiM − σ2

M

=
E(rM )− rf

σ2
M
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Solve for E(ri), to obtain the final result

E(ri) =
E(rM )− rf

σ2
M

(σiM − σ2
M ) + E(rM )

= (E(rM )− rf )
σiM
σ2
M

+ rf

= (E(rM )− rf )βi + rf

This is equivalent to formula (3.7) in the capital asset pricing model.

Two kinds of risk An interesting result of the CAPM is that it allows
risk to be divided in two parts. To develop this result the return (ri) of asset
i is written as

ri = rf + βi(E(rM )− rf ) + εi. (3.10)

Where εi is a random variable to indicate the uncertainty in the return. The
CAPM formula can be used to derive two results about εi.
From the formula for the expected value of ri (3.8) the first result follows:
the expected value of εi must be zero. The second result follows by taking
the correlation of the return of an asset (3.10) with the return of the market
portfolio rM : from this it follows that the covariance of εi with the market
portfolio is zero, cov(εi, σM ) = 0. Therefore the variance of an asset is:

σ2
i = β2

i σ
2
M + var(εi) (3.11)

The first part β2
i σ

2
i is called systematic risk . This is the risk associated

with the market as a whole. This risk cannot be reduced by diversification
because every asset with nonzero beta contains this risk. The second part,
var(εi), is termed the non-systematic, idiosyncratic, or specific risk. This
risk is uncorrelated with the market and can be reduced by diversification.
It is the systematic (or non-diversifiable) risk, measured by beta, that is
most important, since it directly combines with the systematic risk of other
assets. A result of CAPM is that expected return depends on this beta.

3.5 Summary

In this chapter, the mean-variance approach has been described in detail.
The most complex instance is the one with inequality constraints. This in-
stance can be solved as a parametric quadratic programming problem.
There are several limitations to the mean-variance criterion. The main lim-
itations are that it can result in counterintuitive portfolios, the method is
non-robust and it assumes normally distributed returns.
Finally the capital asset pricing model has been derived. The result of
this model is that in an equilibrium situation every investor should hold the
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market portfolio combined with the risk-free asset. Furthermore it concludes
that the expected return of an asset is proportional to the market beta. The
CAPM will play a role in the next chapter, where the Black-Litterman model
will be discussed.
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Chapter 4

The Black-Litterman model

The mean-variance model was a groundbreaking model in portfolio selec-
tion. It allows investors to quantitatively select a portfolio on the basis of
their views. But, as explained in the previous chapter, the model has its
shortcomings. Practitioners do use this model, but worked around the prob-
lems mentioned by adding many constraints.
Fischer Black and Robert Litterman, then working at Goldman Sachs, set
out to improve the original mean-variance model. They choose a practi-
tioners perspective and wanted to develop a model that could be used at
Goldman Sachs for portfolio selection. Therefore the mathematics of the
model should be tractable, the inputs should be intuitive to the investment
manager and the optimized portfolio should reflect the investors views. They
have published a few articles on their model (1991a, 1991b, 1992), but none
of them are very precise about the mathematics of the model.
Various authors have tried to shed light on the model. Satchell and Scowcroft
tried to demystify the mathematics of the model in their 2000 article titled
“A demystification of the Black-Litterman model: Managing quantitative
and traditional portfolio construction”. Also there is a lucid description
of the model in chapter seven of Lee’s book (2000) on tactical asset allo-
cation. The bank UBS uses a model very similar to the Black-Litterman
model, which is described by Scowcroft and Sefton in chapter 4 of the
book by Satchell and Scowcroft (2003). Also Idzorek (2004), from Ibbot-
son associates, wrote an interesting guide about the Black-Litterman model:
“A step-by-step guide to the Black-Litterman model”. His paper gives an
overview of the articles about the model and describes a new method to set
the level of uncertainty in the model.
In this chapter the Black-Litterman model (BL-model) is explained, with
emphasize on the mathematics of the model. In consecutive order, the ob-
jectives of the model, the mathematical derivation and a further explanation
of the parameters in the model will be discussed.

35



36 CHAPTER 4. THE BLACK-LITTERMAN MODEL

4.1 The Black-Litterman model in general

Black and Litterman set out to accomplish more intuitive portfolios by com-
puting a better estimate for the expected return vector. This expected re-
turn vector could then directly be used to compute the portfolio weights,
or the expected return vector could be fed to a mean-variance optimizer to
provide a solution to a constrained optimization problem.
Black and Litterman identified two sources of information about the ex-
pected returns and they combined these two sources of information in one
expected return formula. The first source of information is obtained quan-
titatively, these are the expected returns that follow from the CAPM and
thus should hold if the market is in an equilibrium. The CAPM returns form
a backbone to the process, and are used to dampen the possibly extreme
views of the second source of information.
The second source of information are the views held by the investment man-
ager. The investment manager has access to different information and could
therefore have different opinions about the expected return of the asset, than
those that would hold in an equilibrium. The views of the investor are used
to tilt the equilibrium views, they provide information to invest less or more
in a certain asset, then would follow from the equilibrium views.
Combining these two sources of information results in a new vector of ex-
pected returns. This improved vector of expected returns can then be used
in the portfolio optimization process.

4.1.1 Two sources of information

Quantitative views can provide a stable reference point. This reference point
is often called a benchmark portfolio, neutral view or equilibrium view .

Quantitative views on expected return Black and Litterman look at
investments in a global context and invest in three asset classes: equity,
bonds and currency. Therefore, the quantitative views should reflect this
global framework and they choose an international CAPM to compute the
equilibrium returns. The standard CAPM of Sharpe (see section 3.4) is used
to compute the expected return of equity and bonds, which is supplemented
with the universal hedge ratio of Black (1989) to obtain the ratio of currency
that should be hedged.
The CAPM computes the expected return of an asset when there is an equi-
librium in the market. The major drawback of the formula, E(ri) − rf =
σiM

σ2
M

(E(rM ) − rf ), is that it is difficult to specify the expected return of
the market portfolio E(rM ), as the world market is practically unbounded.
Therefore, a benchmark portfolio is often used as a proxy for the market.
For such a finite benchmark it is possible to compute the expected return
and therefore to estimate the expected return of the single asset.
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A benchmark portfolio could be an index, for example the Standard & Poor’s
Global 1200 index (S&P Global 1200). The S&P Global 1200 covers equity
in 29 countries and approximately 70 percent of global market capitaliza-
tion1. From the returns of the assets in the benchmark it is possible to
estimate the expected return of the market portfolio. The topic of equilib-
rium returns will be discussed more thoroughly in section 4.2.2.

The investor’s view on expected returns An investor also has views
on the expected return of assets. The BL-model allows investors to express
their views in an absolute sense, asset A will have an expected return of
x, as well as in a relative sense, e.g. asset A will outperform asset B. The
Black-Litterman model allows the investor to represent views in such a rela-
tive way, which is much closer to how investors think (Scowcroft and Sefton,
2003).
Additionally, the investor might not be equally certain about every view.
This should also be reflected in the model, so that not all views are treated
on an equal footing. Therefore, Black and Litterman made it possible to
express a level of certainty to each view separately.
The number of views that the investor wants to take into account is flexible.
It can range from no views at all to as much views as there are assets under
consideration. This makes the model much better to use. Investors often
focus only on a small part of the potential investment universe, choosing as-
sets that they feel are undervalued, finding assets with positive momentum,
or identifying relative value trades. In the Black-Litterman model, it is only
necessary to specify a view if the investor holds one.

Integrate quantitative and traditional approach An additional ad-
vantage of this approach is that is combines two approaches that were for-
merly considered separately. Scowcroft and Sefton, in chapter 4 of “Ad-
vances in portfolio construction and implementation (2003)” address this
broader issue in investment management: the dichotomy between the tra-
ditional investment manager and the more quantitative approach to invest-
ments.
The traditional manager forms views from news about performance of com-
panies, markets, interest rates, etc. A view could be that pharmaceutical
companies will outperform food companies. A view could also be that the
French companies will outperform German companies. Or that Unilever
will outperform Kraft Foods. From these views she compiles a portfolio,
without the help or with limited help of a quantitative model. Typically,
the traditional investment manager has little background in mathematics,
and is hesitant to use quantitative models, as she feels that techniques of
mean-variance analysis and related procedures do not capture effectively

1http://www2.standardandpoors.com/spf/pdf/index/factsheet global1200.pdf
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their value added.
The quantitative manager, on the other hand, is surprised by the lack of rigor
that the traditional manager uses to select a portfolio. The Black-Litterman
model can integrate these diverse approaches. This framework allows the
traditional managers to give their views/forecasts, and these views are com-
bined with the quantitative model to give final forecasts that reflect a blend
of both viewpoints.

4.2 Mathematics of the Black-Litterman model

Mathematically, the main challenge is to combine the two separate sources
of information into one vector of expected returns. This has to be done in
such a way that the mathematics remains tractable and the parameters are
intuitive to the user.
One could combine the expected returns of the neutral reference points with
the views of the investor heuristically. If one is positive about an asset, then
simply increase the weight of the asset, and vice versa for assets about
which one has a negative outlook. The question then becomes how much
to increase it. Furthermore, assets are correlated: if one asset is expected
to do well and therefore the weight is increased, then the weights of other
positively correlated asset should also be increased. It would be very cum-
bersome to do this all by hand. A more constructive approach is needed.
Black and Litterman have combined these two separate sources of infor-
mation in a constructive manner and suggest two methods to accomplish
this. First, the mixed estimation method of Theil (1971), which is related
to the generalized least square method to estimate dependent parameters.
Secondly, they suggest that the new vector of expected returns should be
‘assumed to have a probability distribution that is a product of two normal
distributions’ (Black and Litterman, 1991a). Satchell and Scowcroft (2000)
propose a Bayesian approach to accomplish this blending of probability dis-
tributions.
Not only the method to compute the combined vector of expected returns
is poorly described mathematically, but also the characteristics of the vari-
ables are unclear. It is unclear what the parameters represent and how they
should be specified. This makes it very difficult to use to model.
Of the two approaches suggested by Black and Litterman the most widely
used approach is the Bayesian one. Especially after the publication of an
article by Stephen Satchell and Alan Scowcroft (2000) about the derivation
of the BL-formula. In this article they use a Bayesian approach to combine
equilibrium views with the views of the investor. The Bayesian approach
updates currently held opinions with the neutral reference point to form new
opinions. The reasoning of Satchell and Scowcroft (2000) will be largely fol-
lowed in the explanation of the Bayesian approach.
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After the Bayesian approach, the mixed estimation method of Theil (1971)
will be described. The derivation of the main formula is very concise when
using this method.

4.2.1 Preliminaries

Satchell and Scowcroft (2000) went a long way in describing the Black-Litter-
man model mathematically. Their notation and description of basic terms
will be used in the thesis.
As before, there are n assets in the universe. The portfolio of assets is
represented by a vector of weights w ∈ Rn. The return of the assets is a
random variable that can be represented by the vector r ∈ Rn, and it has
an expected value E(r) ∈ Rn.
Black and Litterman adapt the definition of expected return to represent
expected excess returns by which they mean the expected returns in the
domestic currency minus the domestic risk-free rate E(r)− rf .

Definition 5 (Expected excess return). The expected excess return of an
asset is the expected return in the domestic currency minus the domestic risk
free rate, E(r)− rf .

For conciseness we will use the term expected return to represent expected
excess returns in this chapter. In some cases the term expected excess return
will still be used for emphasize.
Furthermore, we assume that the variance of return exists and is well de-
fined. This means that the vector of returns r is assumed to have a positive
definite covariance matrix Σ ∈ Rn×n.
Finally, Satchell and Scowcroft (2000) assume that returns are normally dis-
tributed random variable. This is a common assumption in finance. How-
ever, this assumption is also often shown to be flawed, see for example
Embrechts et al. (2003).
To sum up there are two assumptions:

Assumption. A1 Returns have a normal probability distribution.

A2 The covariance matrix of returns, Σ, is positive definite.

4.2.2 Equilibrium

The market equilibrium returns form the backbone of the portfolio. There
are roughly three approaches in the literature for computing these equi-
librium returns. One could use historical means or average returns, the
equilibrium returns as defined by the CAPM, or reversed optimized returns
from some benchmark portfolio.
In the case of historical means, one estimates the future returns by making
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an average of the returns over a certain time interval. For example to esti-
mate the future expected returns an average is taken over the returns of the
past six months.
Many authors have pointed out, for example Frankfurter et al. (1971), that
past returns are a bad estimator of future expected returns. Frankfurter
et al. performed an experiment in which it was assumed that the returns
were normally distributed. An estimate of future returns was made by sam-
pling these normally distributed returns over four different run lengths. The
obtained estimates are used in a mean-variance optimizer to compile port-
folios. The experiment shows that “the make up of the efficient portfolio
varies substantially among sample trials, even though generation of all sam-
ple data was based upon the assumed parameter values.”
Black and Litterman state that the equilibrium returns (π) can be com-
puted from π = δΣwm. The parameter δ is called the (world) risk aversion
coefficient and wm is the world market portfolio. They claim that the equi-
librium returns are derived from the CAPM. However their notation differs
from that of the standard representation of the CAPM formula. A transfor-
mation of the original CAPM shows however, that their depiction is correct.
Satchell and Scowcroft (2000) transform the CAPM formula into the for-
mula for π. This transformation also results in new insights in the parameter
δ.

Proposition 2. The CAPM formula E(ri) − rf = β(E(rm) − rf ) can be
written as π = δΣwm, where β = cov(ri,r

′wm)
σ2

m
, π = E(r) − rf and the

parameter δ is δ = E(rm)−rf
σ2

m
.

Proof. The CAPM formula will first be transformed to vector notation in
order to have both formulas in the same dimensions. Next we will expand
the CAPM vector formula until we are back to basic variables, rearrange
the variables and finally combine them into the new variables δ,Σ and wm.

E(ri)− rf = β(E(rm)− rf )

E(r)− rf =1 β(E(rm)− rf )

π =2 βµm =3 cov(r, r′wm)
σ2
m

µm

=4 cov(r, r′)wm

σ2
m

µm =5 E(rm)− rf
σ2
m

cov(r, r′)wm

=6 δΣwm
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=1 The equation is transformed from a one dimensional formula
to a vector formula.

=2 π = E(r)− rf and µm = E(rm)− rf .
=3 β = cov(r,r′wm)

σ2
m

see equation (3.7).
=4 cov(aX, Y ) = a cov(X,Y ) if a is not a random variable, see

rule (2.5).
=5 Some rearranging of the terms takes place .
=6 δ = E(rm)−rf

σ2
m

= µm

σ2
m

and Σ = cov(r, r′).

Thus the CAPM formula can be written as π = δΣwm, where δ = E(rm)−rf
σ2

m

the excess return on the market portfolio divided by its variance.

From the CAPM it follows that if the market is in an equilibrium, then every
investor should hold the market portfolio (wm). It is possible to compute
an estimate for the returns if the weights of this market portfolio are known,
however herein lies the difficulty of the CAPM. The weights of the world
market portfolio are very difficult to obtain. Therefore the third approach
of reverse optimization, advocated by Scowcroft and Sefton (2003), is the
most practical one.
A benchmark or index portfolio is used as a proxy for the market weights,
taking away the problem of estimating these weights. The equilibrium re-
turns, as in the previous case, follow from the CAPM formula π = δΣwm.
The parameter δ is in this case the the expected return of the benchmark
portfolio divided by its variance. The relation between the market portfolio
and the expected returns can also be seen from the unconstrained mean-
variance optimization problem. The optimization problem with mean π
and variance Σ is: maxw∈Rn w′mπ − δ

2w′mΣwm. The solution to this prob-
lem is wm = (δΣ)−1π. In this case the weights are already known and we
are interested in the vector of expected returns (π), thus for a mean-variance
efficient portfolio wm reverse optimization entails

π = δΣwm. (4.1)

In this context δ could be chosen equal to
√

1
2cE(r)′Σ−1E(r), where c is the

desired level of risk as measured in variance, see problem 1 on page 16.
In practice, the values of the risk aversion coefficient vary around 3.
The rationale for taking a benchmark portfolio instead of a world market
portfolio also stems from more practical issues. The performance of a in-
vestment manager is often measured against a benchmark. The goal could,
for example, be to earn a better return than the S&P Global 1200. In that
case it would be wise to invest, in the absence of any views, in the bench-
mark portfolio. When the investment manager does have views, she could
deviate from the benchmark portfolio in other to tilt the portfolio in the
direction she seems fit. Therefore, it is a practical and safe choice to take
the benchmark portfolio as an equilibrium portfolio.
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4.2.3 Expressing Views

In many articles on the Black-Litterman model, for example Idzorek (2004),
it is emphasized that the investor can express relative views, for example
that asset A will outperform asset B by 2%. This manner of expressing is
an important improvement of the BL-model over traditional mean-variance
optimization, as this manner of expressing views is more intuitive than ex-
pressing absolute views.
Let us move to the mathematical description of the manner of expressing
views and the view matrix P . An investor often holds views about perfor-
mance of assets, asset classes or markets. The mathematical representation
of these views needs to meet a few characteristics. The views have to be
specified relative to the vector of expected return E(r), the views have to be
specified relative to each other and it has to be possible to express a level
certainty in the view. These prerequisites lead to the following specification.

PE(r) = q + ε, where ε ∼ N(0,Ω) (4.2)

P ∈ Rk×n is known, q ∈ Rk is known

ε ∈ Rk is an error vector with known variance Ω ∈ Rk×k

E(r) ∈ Rn is unknown and needs to be estimated

Assets that are under consideration can be specified in the matrix P , the
vector q expresses the relative change in performance and the vector of
random variables ε expresses the uncertainty of the view. The vector ε is
normally distributed with mean zero and variance Ω. That the mean is zero
means that the investor does not have a standard bias against a certain
set of assets. It is assumed that the views are mutually uncorrelated and
therefore the covariance matrix Ω is diagonal. A variance of zero represents
absolute certainty about the view. The vector E(r) is the unknown expected
return vector that needs to be estimated.
What is often not noted is that Black and Litterman let the manner of
formulating views in the matrix P completely free, they not did give any
characteristics. A more general idea therefore, that can be found in some
literature (see Scowcroft and Sefton (2003)) is to express views on a portfolio
of assets. Then the matrix P is considered as a series of portfolios and the
vector q holds the expected return of the corresponding portfolio. It is
difficult for a person to estimate the expected return of a portfolio of assets.
However, this more general definition does capture all manners of expressing
views.
A portfolio could exist of one asset, which would correspond to expressing an
absolute view on an asset; a portfolio could be zero-investment, this would
correspond to expressing a relative view, and finally one has the possibility
to express views on more than two assets.
It is important to note that the vector q denotes the forecasted relative
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performance of the assets. This can be illustrated by an example. An
investor holds one view about the relative performance of the assets A and
B. She specifies the view in the formula PE(r) = q, with P =

(
1 −1 0

)
.

The vector E(r) is unknown and equals E(r) =
(
E(rA) E(rB) E(rC)

)′,
the variable q represents the forecast of the assets return, she forecasts this
to be: q = 2%. Performing the actual multiplication highlights the meaning
of the formula: PE(r) = E(rA)− E(rB) = 2%, the investor has expressed a
view that she expects the difference between the expected return of asset A
and B to be 2%.
When the matrix P represents a collection of portfolios, every row of P
represents one portfolio, and the corresponding element of q is its expected
return. The example would then translate to a zero-investment portfolio
whose expected return is 2%.
An example can make this manner of expressing views more clear.

Example 5 (Expressing views). Consider an investor that has a benchmark
of eights asset classes, see table 4.1.2

Asset Class Weight

US Bonds 19.34 %
International Bonds 26.13 %
US Large Growth 12.09 %
US Large Value 12.09 %
US Small Growth 1.34 %
US Small Value 1.34 %
International developed equity 24.18%
International emerging equity 3.49%

Sum 100.0%

Table 4.1: The benchmark of assets.

She holds three views about the performance of assets:
View 1: The asset class international developed equity will have an absolute
excess return of 5.25 %
View 2: International bonds will outperform US bonds by 25 basis points, or
equivalently 0.25 %.
View 3: US large growth and US small growth asset will outperform US large
value and US small value by 2%.

2The example is derived from Idzorek (2004).
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These views can be expressed in matrix form in the following way: 0 0 0 0 0 0 1 0
−1 1 0 0 0 0 0 0
0 0 0.5 −0.5 0.5 −0.5 0 0

E(r) =

5.25
0.25

2

+ ε.

There are some variations possible on the specification of the view matrix
P and the confidence level ε. Various authors have different views, which
will be discussed in paragraph 4.4.2 and 4.4.1.
The subsection can be summarized in the following assumption:

Assumption. A3 The investor has k < n views, expressed as a linear
relationship PE(r) = q + ε. Where P ∈ Rk×n, q ∈ Rk,
ε ∈ Rk ∼ N(0,Ω) and Ω ∈ Rk×k is a diagonal covariance matrix.

4.2.4 The Bayesian approach: Combining views with equi-
librium3

Black and Litterman do not explicitly state how they arrive at the BL-
formula, they suggest the mixed estimation method of Theil (1971) that
will be discussed in the next subsection, and they suggest that E(r) is the
product of two normal distributions. Satchell and Scowcroft (2000) use a
Bayesian approach to obtain an estimate for the vector of expected returns
as a product of two normal distributions. This approach will be discussed
in this subsection. First we will discuss Bayes’ formula in general and then
move to the application of the formula to the problem at hand.
In classical statistical analysis, unknown parameters are estimated by a set of
observed data. The Bayesian approach, however proposes that views about
the state of the world are subjective.4 Instead of estimating parameters as
if they were fixed, as if only the one set of observation should be used, the
Bayesian approach proposes to continuously update the set of observed data
with recently observed data in order to sharpen the subjective prior beliefs
about the current state. The centerpiece driving all Bayesian methods is
Bayes’ Theorem.

Theorem 4.2.1 (Bayes’ Theorem).

P(A|B) =
P(B|A) P(A)

P(B)
(4.3)

This is often restated as

P(A|B) ∝ P(A)`(A|B)

3The text is derived from the works by Satchell and Scowcroft (2000) and Lee (2000).
4A good introductory book on Bayesian statistics is that of Lee (1997).
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for P(B) 6= 0. Here ∝ means ‘is proportional to’ and ` denotes the likelihood
function. P denotes a discrete or a continuous probability distribution.
The probability distribution prior to any observations is P(A), this is called
the prior distribution. After the observations of new data represented by
B a new distribution can be derived for P(A|B), this is called the posterior
distribution.

Proof. This is a reworking of the traditional formula for conditional proba-
bilities:

P(A|B) =
P(A ∩B)

P(B)
=

P(B|A) P(A)
P(B)

.

Bayes’ Theorem is mathematically not very challenging. To apply the the-
orem to the problem at hand is less straightforward. What should be the
prior distribution and the posterior distribution in this case and how should
they be specified?
It is assumed that the investor forms her views using knowledge of the equi-
librium expected returns. Therefore, the equilibrium expected returns are
considered the prior returns and these will be updated with the views of the
investor. The posterior distribution combines both sources of information.
Using Bayes’ formula this yields:

P (PE(r)|E(r)) =
P (E(r)|PE(r)) P (PE(r))

P (E(r))
. (4.4)

We would like to make one note of comment on the formula used by Satchell
and Scowcroft (2000), they use:

P(E(r)|π) =
P(π|E(r))P(E(r))

P(π)
(4.5)

to compute the posterior distribution. However, in their proof they substi-
tute the probability distribution of PE(r) instead of the one for E(r). To be
mathematically correct one should use formula (4.4). The formula they use
looks intuitive, as it seems to compute the probability distribution of the
expected return vector given the equilibrium returns, however the formula
is used incorrectly.

Probability distributions The probability distribution of the views can
be deduced from assumption A3: PE(r)|E(r) ∼ N(q,Ω).

Assumption. A4 PE(r)|E(r) is normally distributed with mean q and
diagonal covariance matrix Ω: PE(r)|E(r) ∼ N(q,Ω).
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Equilibrium returns The reasoning on the distribution of the ex-
pected returns is more complicated, than the reasoning on the distribution
of the investors views. Black and Litterman (1992) assume first that the
return of the assets are normally distributed with mean E(r) and variance
Σ. Furthermore, they assume that this mean itself is a random variable, is
unobservable and stochastic. In Bayesian statistics, E(r) would be called
a hyperparameter, and could be approximated by another application of
Bayes’ Theorem.
They however, do not follow this path. Instead, they choose a distribution
for E(r) heuristically. They assume that the market is always moving to
equilibrium, and is not necessarily in equilibrium. Therefore, the mean of
the expected return should be equal to the expected returns that would
hold if the market is in equilibrium, i.e. equal to the CAPM returns. The
variance of E(r) is assumed to be proportional to the variance of the re-
turns r, proportional to Σ with proportionality constant τ . The constant
τ will be close to zero, because the uncertainty in the mean of the return
is much smaller than the uncertainty in the return itself. “The equilibrium
risk premiums together with τΣ determine the equilibrium distribution for
expected excess returns.”

Assumption. A5 The expected return E(r) is a random variable, which is
normally distributed with mean π and variance τΣ: E(r) ∼ N(π, τΣ).

The contribution of Black and Litterman has been to put this problem into
a tractable form.
This brief introduction into Bayesian statistics will be sufficient to derive
the formula for the posterior distribution of the expected return.

Theorem 4.2.2 (Black-Litterman formula). Under the assumptions A1 to
A4 the posterior distribution E(r)|PE(r) is normally distributed with mean

[(τΣ)−1 + P ′Ω−1P ]−1[(τΣ)−1π + P ′Ω−1q] (4.6)
and variance

[(τΣ)−1 + P ′Ω−1P ]−1. (4.7)

Proof. The proof is a straightforward application of Bayes’ Theorem.5 The
probability distributions for the prior distribution and the likelihood func-
tion will be substituted, resulting in a complicated exponent that will be
transformed by some matrix manipulation to resemble a normal distribu-
tion with the to be proved mean and variance.
We will briefly restate the assumptions that will be used in the proof.

Assumption. A4 PE(r)|E(r) is normally distributed with mean q and
diagonal covariance matrix Ω: PE(r)|E(r) ∼ N(q,Ω).

5The proof is adapted from a proof in Satchell and Scowcroft (2000).
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A5 The expected return E(r) is a random variable, which is normally dis-
tributed with mean π and variance τΣ: E(r) ∼ N(π, τΣ).

Bayes’ Theorem in this context can be expressed as:

P(E(r)|PE(r)) =
P(PE(r)|E(r))P(E(r))

P(PE(r))
. (4.8)

Assumption A4 states that the probability density function of PE(r)|E(r)
is multivariate normally distributed with PE(r)|E(r) ∼ N(q,Ω) :

P(PE(r)|E(r)) =
1√

(2π)k det(Ω)
exp[−1

2
(PE(r)− q)′Ω−1(PE(r)− q)].

Assumption A5 states that the probability density function of E(r) is mul-
tivariate normally distributed with E(r) ∼ N(π, τΣ):

P(E(r)) =
1√

(2π)n det(τΣ)
exp[−1

2
(E(r)− π)′(τΣ)−1(E(r)− π)].

These distributions can be substituted in equation (4.8) to obtain the poste-
rior distribution. We will first concentrate on the numerator of the equation
(4.8):

P(E(r)|PE(r)) ∝ P(PE(r)|E(r)) P(E(r)).

Substituting the distributions into the formula gives

P(E(r)|PE(r)) ∝ 1√
(2π)k det(Ω)

exp[−1
2

(PE(r)−q)′Ω−1(PE(r)−q)]

· 1√
(2π)n det(τΣ)

exp[−1
2

(E(r)− π)′(τΣ)−1(E(r)− π)].

We leave out all the constants and are left with:

P(E(r)|PE(r)) ∝ exp[−1
2

(PE(r)− q)′Ω−1(PE(r)− q)

− 1
2

(E(r − π))′(τΣ)−1(E(r) − π)].

This formula will be transformed in a such way that the general formula for a
normal distribution becomes apparent, i.e. the probability density function
of a multivariate normally distributed variable X ∈ Rn with mean µ and
variance Σ can be represented as P(X) ∝ exp[−1

2(X − µ)′Σ−1(X − µ)].
In our case it should become apparent that µ equals the mean of the BL-
formula and Σ the variance of the formula. In order to get to this result we
will concentrate on the (X −µ)′Σ−1(X −µ) part of the exponent and leave
out the rest for the moment.
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Expanding the brackets in the exponent and dropping the exponent and the
factor a half in the exponent gives:

E(r)′P ′Ω−1PE(r)− E(r)′P ′Ω−1q− q′Ω−1PE(r) + q′Ω−1q

+ E(r)′(τΣ)−1E(r)− E(r)′(τΣ)−1π − π′(τΣ)−1E(r) + π′(τΣ)−1π.

The term q′Ω−1PE(r) is equal to E(r)′P ′Ω−1q due to the symmetric prop-
erty of Ω, the same holds for E(r)′(τΣ)−1π and π′(τΣ)−1E(r), now due to
the symmetry of Σ. The previous equation can thus be shortened to:

E(r)′P ′Ω−1PE(r)− 2q′Ω−1PE(r) + q′Ω−1q + E(r)′(τΣ)−1E(r)

− 2π′(τΣ)−1E(r) + π′(τΣ)−1π.

This can be expanded even further to:

E(r)′[P ′Ω−1P + (τΣ)−1]E(r)− 2[q′Ω−1P + π′(τΣ)−1]E(r)

+ q′Ω−1q + π′(τΣ)−1π.

The formula will be simplified by introducing three symbols C,H,A.

C = (τΣ)−1π + P ′Ω−1q,

H = (τΣ)−1 + P ′Ω−1P, where H is symmetrical H = H ′,

A = q′Ω−1q + π′(τΣ)−1π.

With this shortened notation we can rewrite the exponent to:

E(r)′HE(r)− 2C ′E(r) +A = E(r)′H ′E(r)− 2C ′E(r) +A.

We introduce the identity matrix I = H−1H into the equation which will
prove useful.

E(r)′H ′E(r)− 2C ′E(r) +A

= (HE(r))′H−1HE(r)− 2C ′H−1HE(r) +A

= (HE(r)− C)′H−1(HE(r)− C) +A− C ′H−1C

= (E(r)−H−1C)′H(E(r)−H−1C) +A− C ′H−1C.

The terms in A − C ′HC do not depend on PE(r) and therefore disappear
into the constant of integration. Thus, reintroducing the exponent and the
factor half in the exponent leaves us with:

P(E(r)|PE(r)) ∝ exp[−1
2

(E(r)−H−1C)′H(E(r)−H−1C)].

Hence, E(r)|PE(r) has mean

H−1C = [(τΣ)−1 + P ′Ω−1P ]−1[(τΣ)−1π + P ′Ω−1q]
and variance

H−1 = [(τΣ)−1 + P ′Ω−1P ]−1.
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The Bayesian approach after a somewhat lengthy calculation thus, leads to a
formula for the posterior distribution of the expected return that combines
the investors views and the market views. The concept of updating the
views of the investor with the views of the market is fairly intuitive, and
makes sense. A major drawback of this method is the assumption about
the equilibrium returns. The parameter τ has to be set, but there is no real
indication about how to do this.
Before we investigate the other way to derive the Black-Litterman formula,
we investigate the meaning of the formula.

Interpretations The solution in equation (4.6) looks quite complicated.
Nevertheless, the formula does comply with the specifications that if the
investor does not have any views on the assets, the equilibrium distribution
of returns should be used. This will lead to holding the market portfolio as
is also implied by the CAPM.

Ê(r) = [(τΣ)−1 + P ′Ω−1P ]−1[(τΣ)−1π + P ′Ω−1q]

The BL-formula has the same result as can be seen by taking P = 0. In
that case we are only left with [(τΣ)−1]−1[(τΣ)−1π] = π, the equilibrium
returns. Therefore the BL-formula fulfills this basic characteristic.
It is also interesting to investigate the other limiting case: if the investor is
totally confident in his views what will the vector of expected returns be? A
total confidence in views would imply that the variance on this view is zero,
it is not possible to substitute this in the BL-formula because this would
require the inversion of a zero matrix. It can be shown the the BL-formula
then converges to the views of the investor (q).

4.2.5 Mixed estimation method of Theil

Black and Litterman also propose a different method to derive the com-
bined formula of expected returns: the mixed estimation method of Theil
and Goldberger (1961), which is more thoroughly described in the book by
Theil (1971). The model is an adaptation of the generalized least square
estimation method. Theil (1971) shows that it yields the same results as a
Bayesian estimation method. The main advantage of this method is that it
is much easier to derive the estimator with the mixed estimation technique.
The mixed estimation method of Theil is a generalized least square estima-
tion method. Where traditional least square estimation only allows data
from one source, the mixed estimation method allows two separate sources
of information.
In order to explain the mixed estimation method of Theil, we will first recall
generalized least square estimation and subsequently develop the connection
with mixed estimation.
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Generalized least square estimation6 Generalized least square estima-
tion gives an estimator for a dependent variable. In general, one wants to
estimate the vector β, from the observed data in the vector y. The observed
data has some estimation error, represented by the vector e, it is assumed
that this estimation error has a normal probability distribution. Addition-
ally, the relation between the observed data y and the to be estimated data
is linear in some matrix X. More specifically a relationship y = Xβ + e is
assumed to hold.
The main theorem, also known as Aitken’s theorem is the following.

Theorem 4.2.3 (Aitken). Given is the specification y = Xβ + e, where
y ∈ Rk is a known vector, where X ∈ R(k×n) is a full column rank matrix,
β ∈ Rn is a unknown vector and e ∈ Rk is an error term. The error term
has zero mean E(ε) = 0 and variance var(ε) = Σ. Suppose that X is a
non-stochastic matrix and E(y|X) = Xβ. Also suppose that var(y|X) =
Σ ∈ Rk×k, where Σ is a positive definite matrix.
Then,

β̂ = (X ′Σ−1X)−1(X ′Σ−1y) (4.9)

is the best linear unbiased estimator for β and the covariance matrix of the
estimator is (X ′Σ−1X)−1. It is the best estimator in the sense that any
other estimator of β which is also linear in the vector y and unbiased has a
covariance matrix which exceeds that of β̂ by a positive definite matrix.

Given a set of observed data, the generalized linear estimation technique
obtains an estimator for β. In this case there are two separate sets of data
to make an estimate of E(r) from.

Mixed Estimation The information from the investment manager and
information from the market can be used to estimate the vector of expected
returns E(r). Mixed estimation says now to incorporate both sources of
information in the model and not dismiss one of the sources as false. It
is probable that one has a priori information about the unknown parame-
ter, and these ideas could then be updated with sample information. The
concept of mixed estimation is very close to Bayesian inference, which also
uses a prior distribution which is then updated with sample information. A
derivation of the Black-Litterman formula with this method can be found
in Koch (2004).

Model specification The two sources of information have previously
been specified in terms of probability distributions. For generalized least

6An explanation of generalized least square estimation can be found in any good
econometrics book, for example Theil (1971).
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square estimation they have to be specified as a linear model. The to be
estimated parameter is the expected return E(r) = β.
The prior information consists of the views of the investment manager about
the performance of certain assets. The views of the investment manager are
already represented by Black and Litterman in the desired form.

q = PE(r) + ε,

q ∈ Rk a known vector

P ∈ Rk×n, k < n is a known matrix of rank k

ε ∈ Rk the vector of errors
such that E(ε) = 0, var(ε) = Ω non-singular
or equivalently E(q) = PE(r), var(q) = Ω

The sample observation are the equilibrium returns. They have previously
been expressed as E(r) ∼ N(π, τΣ). This assumption will now be slightly
modified, the equilibrium return vector π is our observed variable and E(r)
is the value we would like to estimate.

π = E(r) + u,

π ∈ Rn the observed vector of equilibrium returns,
E(r) ∈ Rn is the to be estimated vector of expected returns,
u ∈ Rn a vector of errors,
such that E(u) = 0, var(u) = τΣ non-singular,
or equivalently E(π) = E(r) and var(π) = τΣ.

Aitken’s theorem expresses the linear relationship as π = Xβ + u. Our
linear relationship corresponds to this when the matrix X is identified with
the identity matrix I, which clearly has full column rank.
To estimate E(r), both sources of information are used by stacking the
respective vectors and matrices. The linear equation then becomes:(

π
q

)
=
(
I
P

)
E(r) +

(
u
ε

)
(4.10)

where var(
(

u
ε

)
) = var(

(
π
q

)
) =

(
τΣ 0
0 Ω

)
= W.

Note that this can be written in the form: y = Xβ + e. It can be seen
that the linear system (4.10) complies with Aitken’s Theorem. The matrix

X =
(
I
P

)
has full column rank due to the identity matrix and the matrix W

is positive definite due to the positive definiteness of Σ and the diagonality
of Ω. Furthermore, the two sources of information are independent.
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The estimator of E(r) can be found by substituting the appropriate param-
eters in equation (4.9) (this short derivation can be found in Koch (2004)):

Ê(r) = (X ′W−1X)−1(X ′W−1y)

= [
(
I P ′

)(τΣ 0
0 Ω

)−1(
I
P

)
]−1[

(
I P ′

)(τΣ 0
0 Ω

)−1(
π
q

)
]

= [
(
(τΣ)−1 P ′Ω−1

)(I
P

)
]−1[

(
(τΣ)−1 P ′Ω−1

)(π
q

)
]

= [(τΣ)−1 + P ′Ω−1P ]−1[(τΣ)−1π + P ′Ω−1q]

The derivation of the formula is in this case remarkably shorter than in the
Bayesian approach.

Least square estimate of τ The mixed estimation method of
Theil (1971) additionally provides an estimate for τ , however our specifica-
tion of the model does not fulfill the requirements for the estimator. The
estimator not only requires a full column rank matrix X, in our case the
identity matrix I, but it also requires that there are more observations than
to be estimated data, i.e. row dimension of X is larger than the column
dimension. The identity matrix cannot fulfill this requirement, as column
dimension equals the row dimension, and the estimator for τ cannot be used.

τ̂ 6= 1
n− k

(π − Iβ̂π)′Σ−1(π − Iβ̂π). (4.11)

Where β̂π is the estimator of E(r) when only the equilbrium returns are
known. In our case n = k and thus the formula cannot be used.

4.2.6 Summary

The Black-Litterman model combines views of the investor and the market
equilibrium on the expected return of assets in one formula. This formula
should be a better approximation of the expected returns. These expected
returns, or more precisely the estimator of the expected return, could then
be used in a mean-variance optimizer.
The Black-Litterman model can be summarized by the following points:

1. The market consists of n assets. The assets have a return r ∈ Rn, with
variance Σ and expected return E(r). The expected return E(r) is an
unknown and normally distributed random variable, it is assumed to
have mean π and variance τΣ.

2. The first source of information about E(r) are the equilibrium returns
π. The equilibrium returns are found by π = δΣwm, where δ is
a (world) risk aversion coefficient or a ratio of the (world) market
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portfolio and wm are the market weights. They can be represented
as π = E(r) + u, with u ∼ N(0, τΣ), where τ is some proportionality
constant.

3. The second source of information are the k views of the investor. The
views are expressed as PE(r) = q + ε, where P ∈ Rn×n, q ∈ Rn, and
ε ∼ N(0,Ω), Ω is a diagonal (k × k)-matrix.

4. Combination of these two sources of information leads to E(r) be-
ing normally distributed with mean [(τΣ)−1 + P ′Ω−1P ]−1[(τΣ)−1π +
P ′Ω−1q] and variance [(τΣ)−1 + P ′Ω−1P ]−1.

5. This mean can be used in a mean-variance optimization process to
obtain a mean-variance efficient portfolio.

There are a few subjects that could be explained more thoroughly, especially
about the view matrix P , the matrix Ω and the parameter τ . Also, Black and
Litterman meant the model to be used in a global context and to allocate
not only equity, but also bonds and currency. In this global context the
model should be modified slightly. This we will do in the next section.

4.3 A global allocation model

The Black-Litterman model is not only a model to allocate equity, but it
can also be used to allocate bonds and currency. Investing in more asset
classes is desirable, as it gives the possibility to combine the characteristics
of both classes. Also, it gives a wider choice of assets which in turn widens
the possibilities for diversification and thus reducing risk.
Furthermore, it is meant as a global allocation model, which makes it pos-
sible to diversify even more. Unfortunately, it also opens the investor up to
a new source of risk: exchange risk. The investment in a foreign asset could
perform well, but if the exchange rate of the currency drops relative to the
domestic currency, a substantial loss on the investment could occur.
This problem can be alleviated by supplementing the portfolio with a suit-
able amount of foreign currency, which corresponds to the market capital-
ization of the assets held in that currency (Black, 1989). This procedure is
known is as hedging . The question then remains, how much to hedge?

4.3.1 Universal hedging

Black (1989, 1990) has determined a very simple optimal hedging formula.
The formula requires three inputs: the expected return of the world market
portfolio, the standard deviation (volatility) of the world market portfolio
and the average exchange rate volatility. In turn the formula yields three
results: hedge your foreign equity, hedge the equities by the same ratio for
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all countries and do not hedge the total amount of foreign equity, it is only
necessary to hedge a ratio of the foreign equity.

Theorem 4.3.1 (Universal hedging formula). Assume there are no taxes,
trading cost or other barriers to international investment or disinvestment.
Assume that every investor is a mean-variance investor and can borrow or
lend without fear of default. Assume that the risk aversion coefficient λi is
the same for every investor, hence λi = λ.
Then each investor should hedge his global asset portfolio by holding a total
short position of 1− λ in each currency of:

1− λ =
µm − σ2

m

µm − 1
2σ

2
e

.

Where µm is the average world market portfolio expected excess return.
Where σ2

m is the average world market portfolio excess return variance.
Where σ2

e is the average exchange rate variance.

The proof of this can be found in Black (1990). The result can be explained
from Siegel’s paradox. The basic idea is that, because investors in different
countries measure returns in different units, each will gain some expected
return by taking some currency risk. Investors will accept currency risk up
to the point where the additional risk balances the expected return. Un-
der certain simplifying assumptions, the percentage of foreign currency risk
hedged will be the same for investors of different countries, therefore called
“universal hedging”.
The formula seems very simple, but it is difficult to determine exactly the
right value for the universal hedging constant, primarily because the ex-
pected excess return on the market portfolio is difficult to estimate. Nev-
ertheless, Black and Litterman (1992) “feel that universal hedging values
between 75% and 85% are reasonable”.

4.3.2 Mathematics in a global context

The mathematical description of the BL-model changes slightly in this global
context. The expected return vector (π) now represents the expected excess
returns of a global market portfolio that is demonetized in the domestic
currency.
The parameter δ becomes a global constant. Black and Litterman state that
δ “is a proportionality constant based on the formulas in Black (1989)”. It
is probable that they mean the world risk aversion coefficient (λ) from Black
(1990) instead.
The vector of weights now not only contains equity, but also bonds and
currency. When the benchmark portfolio is the market portfolio as in the
(1991a) article by Black and Litterman, then the weight of the currency



4.4. IN-DEPTH ANALYSIS 55

position is determined by the weight of the equity and bond position in that
country and the universal hedging constant: wi = λwcj , where wcj is the
country weight, i.e. the sum of the market weights for bonds and equities
in the j’th country.

4.4 In-depth analysis

4.4.1 The parameter τ and the matrix Ω

The parameter τ is one of the least understood parameters in the model, as
little indication is given on how to set it. Black and Litterman introduce it
as a proportionality constant to scale the variance of the expected return.
They first assume that the return is a random variable with mean E(r) and
variance Σ, and next assume that the mean itself is a random variable with
a probability distribution centered at the equilibrium returns and variance
proportional to the variance of the return. They choose τ close to zero be-
cause the uncertainty about the mean is much smaller than the uncertainty
of the return itself. The only indication they give is that it should be chosen
close to zero.
The parameter has therefore been source of much confusion. Satchell and
Scowcroft (2000) for instance state the opposite of what Black and Litterman
advice, i.e. that the parameter τ it is often set to one. However, they also
found a method to circumvent the problem of giving an estimate for τ : they
assume that it is stochastic and derive a new form of the Black-Litterman
formula in that case. The new formula, however becomes so complicated
that a non-mathematical investment manager can no longer use it.
The parameter τ also plays a role in the BL-formula Ê(r) = [(τΣ)−1 +
P ′Ω−1P ]−1[(τΣ)−1π +P ′Ω−1q]. He and Litterman (1999) claim that Ω and
τ need not be specified separately as only the ratio ω/τ enters into the for-
mula. After a reworking of the original formula it can been seen that this is
correct:

Ê(r) = [(τΣ)−1 + P ′Ω−1P ]−1[(τΣ)−1π + P ′Ω−1q]

=1 [(τΣ)−1 + P ′Ω−1P ]−1τ−1τ [(τΣ)−1π + P ′Ω−1q]

=2 [τ(τΣ)−1 + τP ′Ω−1P ]−1[τ(τΣ)−1π + τP ′Ω−1q]

= [Σ−1 + P ′(τ−1Ω)−1P ]−1[Σ−1π + P ′(τ−1Ω)−1q].

=1 The identity τ−1τ = 1 is inserted.
=2 The matrix property A−1B−1 = (BA)−1 is used.

He and Litterman explain in a footnote that “the confidence level on a single
view pE(r) = q + ε is calibrated such that the ratio between the variance ω
and parameter τ is equal to the variance of the portfolio in the view, p′Σp.”
Usually one holds more than one view, hence the procedure should be gen-
eralized to multiple views. For multiple views this would imply that the
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matrix Ω/τ should be calibrated such that it equals PΣP ′. It is assumed
(assumption (A3)) that the views of the investor are independent, therefore
the matrix Ω needs to be diagonal. This can be accomplished by taking only
the variances and deleting the covariances, thus Ω/τ = diagonal(PΣP ′).
The rationale for this relation probably stems from the assumption that
E(r) is normally distributed with variance τΣ. If the views of the investors
q = PE(r) are seen as a transformation of the expected return vector (E(r)),
then it follows from property (2.8) that the variance of these views Ω is also
a transformation of τΣ, and hence Ω = PτΣP ′, so Ω/τ equals PΣP ′. He
and Litterman, however do not perform this transformation completely. As
Ω needs to be a diagonal matrix only the variance of the transformed matrix
PΣP ′ is used.
There is a substantial advantage: the problem of specifying τ is solved and
there is a clear method to obtain an estimate for this parameter and for the
uncertainty matrix Ω.
However, it is strange to see the views of the investor as a simple transfor-
mation of the equilibrium returns. It would actually imply that the investor
has no additional information, as it would be logical that one should then
also see the vector q as a transformation of the equilibrium return and hence
should be equal to Pπ.
Additionally, this procedure to determine τ and Σ takes away much flex-
ibility from the BL procedure, while one of the attractions was that an
investment manager could indicate a sense of certainty in her view. More-
over the conceptual relationship of τ as a parameter to scale the matrix Σ is
lost in this way. By specifying Ω/τ in this manner the relationship between
the parameter τ and the equilibrium distribution is non-existent, while this
was the reason to introduce the parameter in the first place. Finally, it is
strange that the two parameters were first specified separately and it is now
possible to combine them into one parameter.

4.4.2 Specification of the view matrix P

There are three points of view on specifying the matrix P , which are not
completely distinct, but slightly overlap. The simplest method is to specify
a view on a single asset, just as one would do in mean-variance optimization.
The second method is to specify a view on a portfolio of assets. This method
is less intuitive because it is difficult for a person to give an estimate for the
expected return of a portfolio.
Finally, a popular method is to specify relative views, i.e. that one asset, or
a set of assets will outperform another set of assets. Effectively this means
specifying a zero-investment portfolio. This method is popular due to the
intuitiveness of it: it feels natural to express that asset A will outperform
asset B. However, the value of the elements of P could then become a mat-
ter of importance. Idzorek (2004) has written a series of articles on this
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subject.
For example, a view could be that the expected return of asset A will out-
perform asset B by 5 %. The specification is done in the form PE(r) = q+ε.
Black and Litterman (1991a) specify the P matrix in this example as P =(
1 −1 0

)
. This example is fairly straightforward, but it becomes more

complicated when one wants to specify views about more assets. Idzorek
(2004) has a nice example of this, which also features in example 5. This
example will be continued now.

Example 6 (continuation of example 57). The third view is most important
to us:
View 3: US large growth and US small growth asset will outperform US large
value and US small value by 2%.
The view matrix can be specified as was done in example 5:

P =

 0 0 0 0 0 0 1 0
−1 1 0 0 0 0 0 0
0 0 0.5 −0.5 0.5 −0.5 0 0

 (4.12)

Satchell and Scowcroft use an equal weighting scheme to specify the weights
in P , as seen in the last row of the matrix of equation (4.12). Under this
system, the weightings are proportional to 1 divided by the number of re-
spective assets outperforming or underperforming. View 3 has two nomi-
nally underperforming assets, each of which receives a −0.5 weighting. View
3 also contains two nominally outperforming assets, each receiving a +0.5
weighting.
However, the view matrix can also be specified differently. The previous
weighting scheme ignores the market capitalization, the price of the equity
times the number of outstanding equity of the assets involved in the view.
The market capitalizations of the US Large Growth and US Large Value as-
set classes are nine times the market capitalizations of US Small Growth and
Small Value asset classes. However, the method of Satchell and Scowcroft
affects their respective weights equally, causing large changes in the two
smaller asset classes.
Idzorek (2004) prefers to use a market capitalization weighting scheme, that
takes in consideration the market capitalization of the assets. He and Lit-
terman (1999) probably also use such a scheme but they do not state this
explicitly. More specifically, the relative weighting of each individual asset is
proportional to the assets market capitalization divided by the total market
capitalization of either the outperforming or underperforming assets of that
particular view.

7Derived from Satchell and Scowcroft (2000).
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Example 7 (continuation of 6). The market capitalization of the assets
can be found in table 4.2. The relative market capitalization weights of the

Market capitalization Relative weight
(billions)

Outperforming
US Large Growth 5,174 90%
US Small Growth 575 10%

Underperforming
US Large Value 5,174 90%
US Small Value 575 10%

Table 4.2: Market capitalization weights.

nominally outperforming assets are 0.9 for US Large Growth and 0.1 for
US Small Growth, while the relative market capitalization weights of the
nominally underperforming assets are -0.9 for US Large Value and -0.1 for
US Small Value. These figures are used to create a new matrix P :

P =

 0 0 0 0 0 0 1 0
−1 1 0 0 0 0 0 0
0 0 0.9 −0.9 0.1 −0.1 0 0

 .

4.4.3 Alternative models

Scowcroft and Sefton (2003), of the bank UBS, use a model that is very
similar to the Black-Litterman model. However, they make some different
assumptions, remove some of the parameters and most noticeably they do
not estimate the expected return of an asset but the return. The investor
no longer has to specify views on the expected return of assets, but this is
changed to the difference between the return and the long run return (equi-
librium returns in the terminology of Black and Litterman).
The first assumption is that next periods return (rt) is the sum of the
long run equilibrium returns µ and next periods stochastic return εt, i.e.
rt = µ + εt. The stochastic return (in other settings often called an er-
ror term) is normally distributed with zero mean and covariance matrix Σ.
Therefore, the next periods return rt could also be said to be normally dis-
tributed: rt ∼ N(µ,Σ).
The investor has views on the return of a single asset or a portfolio assets.
These portfolios are formed by the rows in the matrix P ∈ Rk×n. The next
period investor’s views (ft) are distributed around the final realized vector of
returns with an error νt. The error is normally distributed with covariance
matrix Ω and mean zero.
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Thus, the investors views are given by: ft = P (rt − µ) + νt, where ν ∼
N(0,Ω). It is assumed that the error vector in the investor’s views are in-
dependent of the stochastic return, i.e. E(ν ′tεt) = 0. The variance of the
investor’s views is a combination of the variance fo the return r and that of
the error νt, thus: var(ft) = PΣP ′ + Ω.
The investor does not forecast the absolute return of a portfolios of assets,
but rather she can forecast the excess return over the long run equilibrium
vector (rt−µ) of the portfolio. More precisely, rt−µ is actually the stochas-
tic return vector (εt).

The combined return The two sources of information can be combined
by the mixed estimation method of Theil, or the Bayesian statistics method.
Either manner lead to the following result:

E(rt|ft)− µ = (Σ−1 + P ′Ω−1P )−1PΩft
var(rt|ft) = (Σ−1 + P ′Ω−1P )−1

Comparison of BL and UBS The Black-Litterman model and the UBS
model differ mainly in their approach to forecasting the return vector. They
both agree that it is difficult to forecast such a vector. The solution of
Black and Litterman is to forecast an expected return vector (E(r)) instead
of the absolute return. The problem with this approach that one needs
a distribution of the expected return vector and therefore they introduce
the parameter τ . The parameter τ greatly complicates the problem as it is
unintuitive and there is no guidance on setting it.
Satchell and Sefton take a different approach and solve the problem by
requiring an estimate of the return relative to the long run equilibrium
returns. The main advantage of the UBS model, is that it has no parameters
that are difficult to understand. It might be interesting to research if it is
really easy for a person to forecast the return in the method they specify.
Furthermore, it would be interesting to compare the performance of the
models in an empirical study.

4.5 Advantages and disadvantages

The Black-Litterman approach to asset allocation, is a step forward. The in-
vestor is now no longer obliged to specify views on all assets, but can specify
views only if she holds one. The manner of specifying view is more natural,
because it is possible to represent the views in a relative manner. Also it
is possible to express how certain one is about the view. These additions
make the model more versatile. However, the extension of the model also
opens up new problems.
The model contains a few parameters that are difficult to specify, these are
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the parameters τ and δ. Several ideas exist about how to specify them,
but these contradict each other. The recommended values of the parameter
τ varies between 0 and 1. According to Black and Litterman τ should be
close to zero, according to Satchell and Scowcroft τ should nearly always be
set to 1. The parameter δ can be seen as fraction of the excess return of
the (world) market portfolio and its variance or as a (world) risk aversion
constant.
The method combines the best of both the quantitative as well as the qual-
itative world. Two sources of information are combined in the BL-formula
that were previously considered to be disconnected.
The Black-Litterman approach does not solve all problems of mean-variance
optimization. The optimizer is still the driving force behind the model. Al-
though it has new estimates of the expected return and variance and should
therefore be better behaved, inherently nothing has been changed about the
optimization procedure.
A major drawback of the model is that it assumes that the returns have a
normal distribution, which is often not the case. It would be an improvement
to develop the Black-Litterman formula under the assumption of other dis-
tributions that better reflect the return distribution. This has been explored
in a discussion paper by Giacometti et al. (2006).



Chapter 5

Empirical Research

5.1 Introduction

The Black-Litterman is at the moment a very popular asset allocation model,
many articles have been written on the subject. In this empirical study we
will investigate if this popularity is justified by comparing the performance
of the BL-model to mean-variance optimization.
In order to compare these models, we will first perform a sensitivity analysis
of the parameters in the BL-model. The parameters and inputs to the
model, to a large extent determine the output of the model. Therefore, it
is important to investigate the influence of the parameters on the portfolios
formed by the model. When the impact of the parameters is understood
it will be possible to calibrate the value of the parameters. The Black-
Litterman formula has the following inputs: the parameter τ , the covariance
matrix Σ, the view matrix P , the view return vector q, the uncertainty in
view covariance matrix Ω and the equilibrium returns π = δΣwm, where
δ has various definitions and wm is the benchmark portfolio or the market
portfolio. To recall, the BL-formula to the compute the new expected returns
is:

Ê(r) = [(τΣ)−1 + P ′Ω−1P ]−1[(τΣ)−1π + P ′Ω−1q].

The inputs Σ, P and wm will be determined in a straightforward manner,
as will be explained in section 5.2. The parameters τ , and δ are open to
calibration. Finally, the parameter q, the expected returns of the view port-
folios of the investor will be computed via a new method. They will not be
estimated by the investor, but they will be forecasted from a regression anal-
ysis on factors that describe the economic climate. The covariance matrix
Ω can in this context be computed from the error in the regression analysis.
We will also explore the alternative of taking Ω/τ = PΣP ′.
The performance of the BL-model and the MV-model will subsequently be
compared in a three asset universe, where the three assets will be popular
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zero-investment strategies. An investment strategy is a set of guidelines,
behaviors or procedures, designed to maximize the expected return of an
investment portfolio.
The outline of the chapter is as follows, first we will explain the three asset
universe further. Next, we will move to the methods with which our topic is
investigated, subsequently the data will be evaluated and finally the results
of the empirical study will be discussed.

5.1.1 Investment universe: Three zero-investment strategies

The investment universe will consist of three zero-investment strategies.
Each strategy has a certain characteristic on which the equity is categorized,
from this division into groups it is possible to determine zero-investment
strategies and to form portfolios based on these strategies. Various reasons
are offered on why these strategies provide added return, these explanations
will be discussed.

HML The first strategy divides equity in three categories: value, neutral
and growth or glamor equity. Value equity, equity that is undervalued on
the market in comparison to its accounting value, are shown to have a higher
than average return than growth equity (Fama and French, 1992).
Stattman (1980) and Rosenberg, Reid, and Lanstein (1985) are among the
first to examine the performance of value equity. They find that average
returns on U.S. equity are positively related to the ratio of a firm’s book
value of common equity (BE) to its market value (ME)(often shortened to
book-to-market value or BE/ME). The book value of the firms equity is
the value of the equity in the accounting books of the firm at the date of
the last balance sheet. It can for instance be the value determined by the
accountant at January 2006. The market value of a company is the value of
all the outstanding ordinary equity on the stock market, i.e. the number of
equity outstanding times the price of the equity.
A high book-to-market ratio means that the value of the firm in the books
is higher than the value on the stock market. Thus, it could be said that
a firm is undervalued by the stock market. The derived strategy is known
as high-minus-low (HML), which entails to go long in high book-to-market
value equity and short in low book-to-market equity.

Reason Different reasons are proposed on the profitability of the HML
strategy, not one has been reached consensus upon. The main argument of
Fama and French (1992) centers around the efficient market hypothesis. The
efficient market hypothesis says markets incorporate instantaneously all in-
formation on the assets that are traded on the market. Thus, if a strategy
has a higher return, there must also be some additional risk attached to that
asset.
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Chan and Lakonishok (2004) however found no such higher risk after mea-
suring risk with a variety of indicators. Therefore, they conclude that it is
unlikely that the superior performance of value equity can be attributed to
a higher risk.
Furthermore, they state that the sharp rise and decline in the nineties of
technology and other growth equity calls into question the argument that
growth equity is less risky than value equity. They do not find evidence for
additional risk, while using a variety of indicators.
According to Chan and Lakonishok (2004) “the value premium can be tied
to ingrained patterns of investor behavior or the incentives of professional
investment managers. In particular, in the markets of the nineties (as in nu-
merous past episodes in financial history), investors extrapolated from the
past and became excessively excited about promising new technologies, like
Internet, telecommunications and ICT. They overbid the prices of apparent
“growth” stocks while the prices of value stocks dropped far below their
value based on fundamentals. Because these behavioral traits will probably
continue to exist in the future, patient investing in value stocks is likely to
remain a rewarding long-term investment strategy.”

SMB The second strategy differentiates among stock according to size.
Banz (1981) shows that the size of a firm is an important indicator of future
performance. At various holding horizons are small firms shown to outper-
form large firms, in the value of the risk-adjusted return.
Banz (1981) found that the size of a company, as measured by the market
value of the common outstanding equity, is an indicator of the future per-
formance. He shows that in the period from 1936 to 1975 “the common
stock of small firms had, on average, higher risk-adjusted returns than the
common stock of large firms”, which he calls the ‘size effect’.
The strategy entails to go long in small size equity and short in large size
equity. Fama and French (1993) describe this strategy as small-minus-big
(SMB).

Reason Banz (1981) already warned that the size effect is not stable
through time and for the lack of theoretical foundation for the effect. It is
not certain to Banz whether size is the factor that causes the effect or if it is
only correlated with the real factor and that size serves as a proxy for this
other factor.
He gives a possible explanation for the effect: if there is little information
on the equity, then few investors will hold these. Furthermore, Banz has
shown in his PhD thesis that “securities sought by only a subset have higher
risk-adjusted returns than those considered by all investors.” Therefore the
higher returns in small stock could be related to a higher risk.
Baker and Wurgler (2006) relate the sentiment of investors to the perfor-
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mance of stocks. They measured sentiment by a regression analysis on
certain factors. They find a relationship between sentiment and the return
of small size equity. They find that returns are relatively high for small size
equity when sentiment is low. The smallest stock had a monthly return of
2.94% as opposed to a return of 0.92% for the largest equity.
Finally, several researchers, among those Keim (1983), find that the size
effect is mainly a January effect. “Nearly fifty percent of the average mag-
nitude of the size anomaly over the period 1963-1979 is due to January
abnormal returns. Further, more than fifty percent of the January premium
is attributable to large abnormal returns during the first week of trading in
the year, particularly on the first trading day.”
Jegadeesh and Titman (2001) observe that the size effect is not observed
after the sample period of 1965 to 1981. In the 1982 to 1998 sample period
the Fama-French size factor is only -0.18% on average per month with a
t-statistic of -1.01, as opposed to 0.53% per month with a t-statistic of 2.34
in the 1965 to 1981 period.

WML Finally, the momentum of the stock, the performance of the past
three to eighteen months, seems to have some predictive power over future
returns. It is found that past winners (named so by Jegadeesh and Tit-
man (1993)), equity with an above average return, tend to be winners for
some time longer, alternatively past losers also tend to be losers for some
time longer. The portfolio that is derived from the momentum strategy
is called winners-minus-losers(WML), or up-minus-down (UMD) by Fama
and French, it is a portfolio that goes long in winners and short in losers.
Jegadeesh and Titman (1993) show that buying past winners and selling
past losers realizes significant abnormal returns over the 1965 to 1989 pe-
riod. They examine the returns of zero-cost winners minus losers portfolio
in the 36 months following the portfolios formation date. In the short to
medium-term the winners minus losers portfolios realize significant returns.
However, the longer-term performances of these past winners and losers
reveal that half of their excess returns in the year following the portfolio
formation date dissipate within the following two years.

Reason Jegadeesh and Titman (2001) reassess momentum strategies
since their original 1993 study to find that their work still holds in the out
of sample 1993-1998 period. In their new study they try to understand why
momentum strategies are profitable and to this end they evaluate various
explanations.
There are mainly two opposing strands of thought on the workings of mo-
mentum strategies. The behaviorist explain momentum as being due to a
bias most investors have in interpreting information. The bias is explained
further by Scowcroft and Sefton(2005): “Investors have a tendency to at-



5.2. METHODS 65

tribute positive outcomes to skill and negative outcomes to bad luck. Fol-
lowing a decision to buy, investors exhibiting this bias are more likely to
later buy more of the stock it they receive further good news than they are
likely to sell if they receive bad news. This asymmetry causes prices to rise
too far in the short term and correct themselves later.” Realist try to seek
an explanation in rational models and suggest that the profitability is due
to a compensation for risk factors.
Jegadeesh and Titman (2001) compared a behaviorist model and a ratio-
nal model from Conrad and Kaul (1998). The models make ‘diametrically’
opposed predictions about the returns of past winners and losers over the
period following formation. Jegadeesh and Titman examined the returns of
the winner and loser equity in the 60 months following formation date. The
Jegadeesh and Titman momentum portfolios have a positive return in the
first twelve months after formation date and a negative return in the 13 to
60 months after formation date. This return reversal effect is consistent with
behavioral theories but, inconsistent with the Conrad and Kaul hypothesis.
Therefore, they conclude that the behavioral models appear to describe
the effect better, however caution is necessary. They find strong evidence
of return reversal for small firms, but the evidence is ‘somewhat weaker’
for larger firms. Additionally, there is strong evidence of the return rever-
sal in the period 1965-1981, but this is substantially weaker in the period
1982-1998. This finding is noteworthy because there are no distinguishable
differences between the two periods in either magnitude or significance of
the momentum profits. Therefore, the endorsement of behavioral finance
theory to explain the momentum effect has to be done cautiously.

Summary The investment universe consists of three assets, a HML port-
folio, a SMB portfolio and a WML portfolio. The Black-Litterman portfolio
will be a portfolio that is a combination of these three portfolio, in effect it
is a superportfolio.

5.2 Methods

The Black-Litterman model has been implemented in Scilab, an open source
matrix computation software package. The source code of the program used
in this analysis can be found in Appendix A.
The research into the effectiveness of the BL-model is performed by com-
piling a new portfolio every month from January 1997 to December 2006
one portfolio with the BL-model and one with mean-variance optimization.
The period from January 1978 to December 1996 will be used to calibrate
the parameters of the BL-model. Each month the return of the portfolios
will be computed, which allows the comparison of the models via various
measures and to graphically display the return of the portfolios in time.
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The inputs to the model are an important factor and therefore they will
be discussed one by one. Also the manner in which the investors views are
obtained, will be explained further.

Choice of benchmark The choice of benchmark to a large extend de-
termines the performance of the BL-model, the portfolios formed by the
BL-model vary around the benchmark. Therefore, it is important to choose
a benchmark that has a reasonable Sharpe ratio under all circumstance. A
Sharpe ratio starting at 0.7 is found to be reasonable.
The three strategies perform well under different circumstances and the cir-
cumstances under which they perform well are not clearly defined. Therefore
the benchmark consists equally of all three portfolios. This should allow a
reasonable Sharpe ratio under all circumstances, thus wm =

(
1
3

1
3

1
3

)
.

Estimate covariance from ‘RiskMetrics’ The covariance matrix will
be estimated from daily return data of the three assets. The method of
‘RiskMetrics’ (2001) is used to estimate the covariance matrix. Every month
a new matrix will be constructed. It is stated that recent data is more
important for covariance modeling and therefore a decay factor is introduced,
wherewith recent data has a larger weight in the covariance model than data
farther in the past. The covariance matrix at time t (Σt) is computed as
follows.

Σt =
1− λ
1− λn

n∑
k=1

λk−1(rt−k − r̄) (rt−k − r̄)′

rt−k is the vector of return at time t− k
r̄ is the average return over the time period t− 1 to t− n

RiskMetrics advices to take the decay factor λ equal to 0.97 for estimating
a monthly covariance matrix. The number of days incorporated in the esti-
mate is to a certain extend not very relevant. The decay factor lessens the
importance of later dates, for example λ = 0.97 and a forecast that uses 227
days results in a λn−1 = 0.97226 ≈ 0.10%, thus the 227th day has a very
small weight in the sum. Therefore, we choose to use one business year of
information in the forecast, i.e. 256 days.

Delta The definitions of δ vary, as discussed in section 4.2.2. The coef-
ficient δ can be taken to equal the expected excess return of the market
portfolio divided by its variance. Then, δ = E(rm)−rf

var(wm) , where the excess
return on the market is obtained from the data library of French and the
variance of the market portfolio is computed from the excess return minus
the risk-free rate.
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Alternatively, the coefficient δ can be seen to represent a risk aversion co-
efficient, in this form it can be set to a certain level. Both alternatives to
setting δ will be explored.

P The investor can specify views on single assets, portfolios of assets or
the relative performance of two assets, see section 4.4.2. The forecasting
procedure to produce views provides a forecast for every individual asset,
therefore the view matrix will be chosen accordingly equal to the identity
matrix.

P =

1 0 0
0 1 0
0 0 1


Omega/tau The confidence in view matrix Ω can be chosen as suggested
by He and Litterman (1999) to equal Ω

τ = diagonal (PΣP ′), see section 4.4.1.
This removes the difficulty of stating a weight on the view of the investor
and of calibrating the parameter τ .
Alternatively, the matrix Ω can be chosen to represent the error or uncer-
tainty that results from the forecasting procedure. In that case τ has to be
specified separately, τ is said to vary between zero and one.

q The vector of expected returns of the investor (q) is a transformation
of the expected returns that follows from the forecasting procedure (Ê(r)q)
and the view matrix P ,

q = P Ê(r)q (5.1)

in this case equals P the identity matrix and therefore no transformation
takes place, i.e. q = Ê(r)q.

5.2.1 Economic factors

It is commonly believed that asset prices react sensitively to economic news.
Chen et al. (1986) state that “daily experience seems to support the view
that individual asset prices are influenced by a wide variety of unanticipated
events and that some events have a more pervasive effect on asset prices than
do others.”
Chen et al. (1986) have investigated which economic factors have an influence
on the return of assets. They find that the most important factors are
industrial production, changes in the risk premium, twists in the yield curve,
and, somewhat more weakly, measures of unanticipated inflation. These
factors and some others that describe the economic climate, will be used to
forecast the asset return. The explanation of these factors will be omitted,
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as it caries to far for this thesis. Explanation of these factors and others,
can be found in the works of Chen et al. (1986), Chen (1991), Pesaran and
Timmermann (1995) and Fama and French (1989).
The general consensus among these researchers is that asset return can to
some extend be predicted by a regression analysis on economic factors. The
idea of regression analysis and in the manner in which it can be used in our
context will be discussed in the next paragraph.

Regression analysis to forecast q We assume there is a relationship
in time between the return of assets and certain economic factors, but are
uncertain about the nature of the relationship. To examine this relationship
one could plot the data of the asset return and for example dividend yield
in one graph, see figure 5.1. Every point in the graph is the asset return and
the dividend yield at a time instance, where the return is at time t and the
dividend yield is at time t− 1.

(a) Data points. (b) Data points with regression line.

Figure 5.1: The relationship between the return of a HML portfolio and
dividend yield.

Examining the graph, one expects a linear relationship between dividend
yield and return. This is our next assumption, there is a linear relationship
between the asset return (y) and the economic factor (x) of the form:

yt = a+ bxt−1 + εt.

The dependent variable yt, in this case the asset return, will be explained
from the dividend yield xt−1, also known as the explanatory variable. The
asset return at time t equals some intercept a plus the dividend yield at time
t−1 times some unknown coefficient b plus some unknown error ε. Further-
more, it is assumed that this unobservable error εt is normally distributed
εt ∼ N(0, σ2). Typically, there is more than one observation of y and x
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to make the analysis on, therefore the formula is often written in matrix
notation, the formula then becomes:

y = Xβ + ε.

y =


yt
yt−1

...
yt−n+1

 , X =


1 xt−1

1 xt−2
...

...
1 xt−n

 ,β =
(
β1

β2

)
=
(
a
b

)
, ε =


εt
εt−1

...
εt−n+1


To estimate this linear relationship it is necessary to estimate the coeffi-
cients a and b in the vector β. This can be accomplished by choosing the
coefficients β in such a way, that they minimize the distance between the
observed data (y, X) and the lines y = Xβ. The coefficients that minimize
the distance form β̂, the estimate of β.

β̂ = (X ′X)−1X ′y (5.2)

The proof of this formula can be found in any good book on econometrics,
for example Theil (1971). The analysis can be expanded to incorporate
more explanatory variables, in our case we would also like to incorporate
among others the term spread. The regression formula with m explanatory
variables then becomes yt = β1 + xt−1,2β2 + . . . + xt−1,mβm + εt. This can
be easily accomplished, by expanding the matrix of explanatory variables
X to encompass m columns of explanatory variables and by expanding the
coefficient vector of β to a m column vector.
The relationship in time between the explanatory variables and the depen-
dent variable can be used to make a prediction of the return at time t+ 1.
At that time the formula is yt+1 = x′tβ + εt+1, at time t are the explanatory
variables in xt known and the coefficients β can be estimated from equation
(5.2). Thus the forecasted return for time t + 1 on basis of the economic
factors is given by:

ŷt+1 = x′tβ̂. (5.3)

So far we have not discussed the error term (εt) in much detail, it is assumed
to have a normal probability distribution with zero mean and covariance
matrix σ2I. The value of σ2 is unknown but, can be estimated to be:

σ̂2 =
y′(I −X(X ′X)−1X ′) y

n−m
, (5.4)

the proof of this formula can be found in Theil (1971).
Knowing the error in εt it is now possible to comment on the error in our
forecast ŷt+1, however we will first need to discuss the error in the coefficient
estimate β̂ before the error in ŷt+1 can be discussed.
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Proposition 3. The uncertainty in the estimated coefficient vector β̂ is:

var(β̂) = σ2(X ′X)−1. (5.5)

Proof. The proof of this proposition uses that β̂ = (X ′X)−1X ′y, further-
more X is a non-stochastic matrix and therefore the variance of β̂ depends
on the variance of y. Finally, a little reworking of the formulas is needed to
obtain the end result.

var(β̂) =1 var((X ′X)−1X ′y) =2 (X ′X)−1X ′var(y)((X ′X)−1X ′)′

=3 (X ′X)−1X ′var(y)X(X ′X)−1 =4 (X ′X)−1X ′σ2IX(X ′X)−1

= σ2(X ′X)−1(X ′X)(X ′X)−1

= σ2(X ′X)−1

=1 β̂ = (X ′X)−1X ′y from equation (5.2).
=2 X and y are non-stochastic and therefore equation (2.8) ap-

plies: var(PX) = Pvar(X)P ′.
=3 (X ′X)

′−1 = (X ′X)−1

=4 var(y) = var(ε) = σ2I

Now that the variance of the coefficients β̂ is known, it is possible to compute
the variance of the forecast ŷt+1.

Proposition 4. The uncertainty in the forecast ŷt+1 is:

var(ŷt+1) = σ2x′t(X
′X)−1xt.

The variance σ2 can then be estimated from formula (5.4), this makes the
estimate:

y′(I −X(X ′X)−1X ′) y
n−m

x′t(X
′X)−1xt. (5.6)

Proof. The proof of this proposition follows along the same lines as the proof
of previous proposition.

var(ŷt+1) =1 var(x′tβ̂) =2 x′tvar(β̂)xt
=3 x′tσ

2(X ′X)−1xt = σ2x′t(X
′X)−1xt

and thus 4 y′(I −X(X ′X)−1X ′) y
n−m

x′t(X
′X)−1xt

=1 yt+1 = x′tβ̂ from equation (5.3).
=2 xtis non-stochastic and therefore equation (2.8) applies:

var(PX) = Pvar(X)P ′.
=3 var(β̂) = σ2(X ′X) see equation (5.5).
=4 σ̂2 = y′(I−X(X′X)−1X′)y

n−k , see equation (5.4).
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Summary The forecasting procedure will be performed for all three assets
and this will result in the view vector of the investor (q). The elegance of this
procedure is that it provides a natural choice for the covariance matrix Ω.
The matrix Ω should convey the variance of the investors views. Ordinarily
this is estimated by the investor, but it is difficult for a person to give an
estimate of a variance. With this procedure the variance follows from the
error in the forecasting procedure as given by equation (5.6).

5.3 Data

The empirical study requires a considerable amount of data, for example
to compute the covariance matrix and to predict the return of the assets.
The data that is needed for this empirical study will be taken from various
sources.

5.3.1 Data of French is used for the assets

Fama and French have written some articles on size and value strategies (see
for example Fama and French (1989, 1992, 1995)), as part of that research
Kenneth French maintains a data library on his website where HML, SMB
and WML portfolios are formed with various holding horizons.
The monthly portfolios, available from July 1926 to the present, will be used
to compute in each month the realized return of the Black-Litterman and
the mean-variance portfolio. The monthly data will also be used to perform
the regression analysis on the economic factors and thus forecast the asset
return.
Finally, the daily data on asset returns of French will be used to estimate
the covariance matrix with the RiskMetrics procedure, the data is available
from July 1, 1963.

Construction of the strategy portfolios French compiles portfolios
since 1926 based on the three strategies SMB, HML and WML. These port-
folios will be used as assets in the Black-Litterman optimization process to
construct a superportfolio.
The construction of the three portfolios follow a similar pattern.1 French
constructs the portfolios by focusing on six portfolios, a simple sort divides
the firms in two groups on size and three groups on value, the intersection
of these form six portfolios.
The equity in the portfolio are all listed on either the New York Stock Ex-
change (NYSE), the American Stock Exchange (AMEX) or the NASDAQ.
The first division on size is made by simply listing the firms on the value of

1The explanation of the formation is taken from the website of Kenneth French:
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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their market equity, the median of the NYSE is used to divide the equity in
two groups, a group of small size equity and a group of large size equity.
The second division is made by ranking the stocks according to the book-
to-market value, the breakpoint of the bottom group is the 30%-mark of
the NYSE, the middle group consists of the next 40 % and the top group
consists of the last 30 %. The bottom group is considered growth equity and
the top group value equity .
The intersection of these groups form six portfolios, see table 5.1.

Median ME
Small value Big value

P70 BE/ME
Small neutral Big neutral

P30 BE/ME
Small growth Big growth

P70 is the 70th percentile, P30 is the 30th percentile

Table 5.1: Six portfolios formed on size and book-to-market value.

The small value portfolio, for example consists of the equity that fall in the
small size category and are considered value equity, thus are in top BE/ME
segment. This portfolio is also denoted as the S/V portfolio, small in size
and high in value. The big growth portfolio is hence called the B/G portfo-
lio.
In total there are six portfolios, three small portfolio S/V, S/M and S/G
also there are three big portfolios B/V, B/M and B/G. These six portfo-
lios are used to construct the size strategy (SMB) and the value strategy
(HML). The momentum strategy (WML) is constructed in a similar fashion,
but instead of a sorting on book-to-market value there is a sorting on past
return.

Compiling the HML portfolio The high-minus-low portfolio is an av-
erage of a long position in the small value portfolio and the big value port-
folio and a short position in the small growth and big growth portfolios:
wHML = 1

2(SV +BV )− 1
2(SG+BG) = 1

2

(
1 1 −1 −1

)
.

Compiling SMB SMB is the difference between the returns on small size
and big size equity portfolios with about the same weighted-average book-
to-market equity: wSMB = 1

3(SV + SN + SG) − 1
3(BV + BN + BG) =

1
3

(
1 1 1 −1− 1 −1

)
.
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Compiling WML The momentum strategy is compiled from six portfo-
lios sorted on size and prior two to twelve month returns. The portfolios,
are the intersections of two portfolios formed on size and three portfolios
formed on prior (two to twelve month) return. The monthly size breakpoint
is the median NYSE market equity, the monthly prior return breakpoints
are the 30th and 70th NYSE percentiles.
WML is the average return on the two high prior return portfolios mi-
nus the average return on the two low prior return portfolios: wWML =
1
2(SH +BH)− 1

2(SL+BL) = 1
2

(
1 1 −1 −1

)
.

5.3.2 Economic factor model data

The data for the economic factor model is acquired from various sources, all
data is available in the period January 1978 until December 2006.

UTS One of the economic factors should capture the shape of the term
structure, which can be measured by the difference between the long term
government bonds (10-year T-bond rate) and short term government bonds
(3-month T-bill rate), this factor is called UTS. The data is taken from
the “Real Time Dataset for Macroeconomists” of the Federal Reserve in
Philadelphia.

MP The change in monthly industrial production (MP) is defined as:
MP(t) = log

(
IP(t)

IP(t−1)

)
, where IP(t) is the industrial production at time t.

The industrial production figures are obtained from the “Real Time Dataset
for Macroeconomists” of the Federal Reserve in Philadelphia.

UI The unanticipated inflation (UI) is defined by Chen (1986) as the
difference between the inflation and the expected value of the inflation,
where the inflation is defined as the log of the change in the consumer
price index (CPI) and the expected inflation is taken from a study by Fama
and Gibson (1984). The definition of unanticipated inflation is adapted
to the change in inflation from the previous month to the present month:
UI(t) = log

(
CPI(t)

CPI(t−1)

)
−log

(
CPI(t−1)
CPI(t−2)

)
. The figures on consumer price index

are obtained from Shiller.2

DEF The default spread (DEF), has been defined by Fama and French
(1989) as the difference between the yield on a market portfolio of 100 cor-
porate bonds and the AAA yield. However, they claim the results are robust
over changes in definition and the yield of BAA bonds could be substituted
for the market portfolio.

2http://www.econ.yale.edu/˜shiller/
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The difference between BAA bond yield and AAA bond yield is computed
on basis of LEHMAN US AGGREGATE data.

DP The dividend yield (DP) is defined by Fama and French (1989) as
the sum of the dividends on the portfolio for the year preceding time t and
divided by the value at time t. This data is not available for the period
1974-2007 it is only available until 2004, hence it is approximated by the
dividend yield of ‘S&P 500 COMPOSITE - DIVIDEND YIELD’ which is
available until 2006. The two data sets are perfectly correlated for the
period 1966-2004, therefore it is assumed that this change will not give any
problems.

5.4 Results

The results of the investigation into the performance of BL-optimization
will be presented in this chapter and compared to the performance of MV-
optimization. Before, the BL-model can be compared to MV-optimization
we will determine the values of the input parameters Ω, τ and δ. These values
will be determined by performing a sensitivity analysis and by calibrating
the model. The calibration will be performed over the period January 1978
to December 1996, subsequently will the models be compared over the pe-
riod January 1997 to December 2006.
Previous to the sensitivity analysis we will look into the uncertainty matrix
Ω.There are two options to specify the uncertainty matrix Ω, both will be
compared and the one with the best result, i.e. reasonable values of Ω and
a good Sharp ratio of the resulting portfolio, will be used in the remainder
of the study.
Next we will move to the illusive parameter τ , we will will investigate how
τ influences the weight distribution of the portfolio. When that relation is
understood, we can calibrate the parameter to improve the performance of
the BL-portfolio. Finally, we will look into the sensitivity of the parameter
δ and calibrate it in the same manner as the parameter τ .
After the calibration of the parameters for the BL-model it will be possible
to perform the empirical study. The BL-model will compile portfolios from
the BL-optimized returns and the covariance matrix Σ. The MV-portfolios
will use the views of the investor(q), that are undampened by the equilib-
rium returns, and the corresponding covariance matrix Ω to compute the
portfolio. The models will be compared under a full investment constraint,
that is that the weights in the portfolios have to sum to one and thus that
all portfolios are of equal size.
The portfolios will be compared over the ten year period from January 1997
to December 2006. Every month portfolios will be formed via both meth-
ods. The performance will, among others, be measured via the Sharpe ratio,
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the mean return and the standard deviation of return over the investment
period, all measures are annualized.

5.4.1 The parameters of the BL-model

The parameters of the BL-model will be varied one by one, to determine the
sensitivity and the optimal value. While varying one parameter we will keep
the others constant to a default value. The default value of the parameter
δ will be 4, δ could be seen as a risk aversion parameter in that context
this is a reasonable value. The parameter τ has two diametrically opposed
interpretations, Black and Litterman (1991a) say its near to zero, Satchell
and Scowcroft (2000) on the other hand state that it is often set to one.
Therefore, we take a position in the middle, the default setting is τ = 0.5.
The uncertainty of views matrix is most often specified in the manner of
He and Litterman (1999) they take Ω/τ = diagonal(PΣP ′), this therefore
is our starting point. When Ω/τ is specified in this manner it is no longer
necessary to specify τ separately. The purpose of the investigation is to
one by one determine the sensitivity of the parameters and subsequently to
calibrate the parameter to the optimal value.
The model will be calibrated such that the parameter values yield a model
with a reasonable Sharpe ratio, but also such that it mixes both sources of
information and such that the month-on-month turn-over in the portfolio
becomes not to large. The turn-over in the portfolio is defined as the sum of
the variations in the weights between two subsequent months, in formulas
this can be written as turn-over =

∑n
i=1 |wi,t −wi,t−1|. We will calibrate

the model such that the average turn-over during the sample period is at
least 5% and maximally 10%.

Omega and tau The first parameters that will be varied are the uncer-
tainty on views matrix Ω and the parameter τ . He and Litterman (1999)
suggest to specify the parameters together and take Ω/τ = diagonal(PΣP ′),
this will be the first option that will be investigated. For the moment we
take the risk aversion parameter δ equal to 4, its default setting. These
parameter choices lead to a series of portfolio. The average performance of
the portfolios can be observed in table 5.2, all measures in the table, except
for the turn-over, are annualized.

The annualized Sharpe ratio of the thus formed BL-portfolio is equal to
0.79, this is acceptable, but not very good. Additionally, a very large turn-
over in the portfolio takes place, on average changes every month 64% of
the portfolio, this would result in very high transaction costs. Including
the transaction costs of 50 bp per percentage of change in the Sharpe ratio,
would dramatically reduce the profitabiliy of the BL-model, it would result
in a Sharpe ratio of 0.09.
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Sharpe turn-over(%) µ σ

Ω/τ = diag(PΣP ′) 0.79 64.05 12.74 16.06

Table 5.2: The performance of the BL-portfolio with Ω/τ = diag(PΣP ′)
and δ = 4.

Aside from the performance of the model, it is also important to note the
value of the parameters, the thus formed values of Ω should represent rea-
sonable choices.
The values of Ω/τ equal the diagonal elements of PΣP ′, in this experiment
P equals the identity matrix, therefore Ω/τ = diag(Σ). It is difficult to
inspect all 227 individual matrices of Ω/τ , therefore we will examine the
average size of the matrices. The size of the matrices will be measured with
the Frobenius norm of the matrix ‖Ω‖F =

√∑n
i=1

∑n
j=1 ω

2
ij . The result can

be found in table 5.3.

mean σ max min

‖Ω
τ ‖F 0.39 0.47 5.58 0.09

Table 5.3: The size of the values of Ω/τ = diagonal(PΣP ′).

The table shows that the average Frobenius norm is 0.39, with a standard
deviation of 0.47. Small values of the norm of Ω mean that the variance in
the views of the investor is also small and therefore that the investor is thus
very certain about her views.
To discuss the reasonableness of these values we will try to compare them
with other values of Ω found in literature. Idzorek (2004) gives an example
with

‖Ω‖F = ‖ 1
1000

0.709 0 0
0 0.141 0
0 0 0.866

 ‖F = 0.0011281,

and τ = 0.025, this results in ‖Ω/τ‖F = 0.04512. In comparison, the size of
our matrix is much larger, it is approximately 9 times as large.
Satchell and Scowcroft (2000) present an example with a single view, that
has variance 0.05 and another example where the view has variance 0.025,
in both examples is τ = 1. Thus, ‖Ω/τ‖F = 0.05 and 0.025 respectively,
this is larger than in the previous example but not as large as our findings.
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Finally, Koch (2004) presents an example with two views, the first view has
variance (0.61%)2 and the second view has variance (0.91%)2, the parameter
τ in this example equals 0.3, this results in ‖Ω/τ‖F = 0.03026.
The figures we obtain look large in comparison to these figures, but the
parameter τ makes a significant impact. The norm of ‖Ω/τ‖F = ‖Ω‖F /τ ,
this means that for values of τ close to zero the norm will grow rapidly. The
influence of τ makes it difficult to compare the figures. For example, the
matrix Ω/τ of Satchell and Scowcroft with a τ of 0.01 instead of 1, would
lead to norm of 0.5; this number is much closer to our findings. Therefore,
we cannot draw a conclusion on the appropriateness of the values of Ω.
The matrix Ω could also be specified differently, in a way that has a greater
connection to the certainty in the views that are expressed. The views of
the investor are computed from a linear regression forecasting analysis, this
regression forecasting exercise also results in a variance of each forecasted
return. The idea is now to take these variances as the diagonal elements of
the uncertainty matrix Ω, the off-diagonal elements of Ω are taken zero as
is required by Black and Litterman, see assumption A3. The matrix Ω can
then be specified as

ωii =1 σ̂2
iix
′
t(X

′X)−1xt

=
y′i(I −X(X ′X)−1X ′) yi

n− k
x′t(X

′X)−1xt (5.7)

=1 The derivation of this formula can be found in
paragraph 5.2.1.

Having specified Ω separately from τ , leaves the determination of τ . For the
moment it will equal its default setting 0.5. BL-optimization gives the fol-
lowing results, that can be seen in table 5.4.

Sharpe turn-over(%) µ σ

Ω = σ̂2x′t(X
′X)−1xt 1.09 8.89 6.10 5.62

Table 5.4: The performance of the BL-portfolio with Ω = σ̂2x′t(X
′X)−1xt,

τ = 0.5 and δ = 4.

The Sharpe ratio of the thus formed BL-portfolio is 1.09, which is a great
improvement over the previous portfolio, also the turn-over in the portfolio
has greatly diminished to 8.89% of the portfolio.
The sample statistics of the values of Ω can be found in table 5.5. The val-
ues of Ω are significantly larger than in the previous example, this reflects a
greater uncertainty in the views of the investor, also there is more variability
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mean σ max min

||Ω||F 3.47 1.87 10.43 0.70

Table 5.5: The size of the values of Ω = σ̂2x′t(X
′X)−1xt.

in the values of Ω (σ = 1.87).
As the latter method for specifying Ω gives a better Sharpe ratios and less
turn-over in the portfolio, we will adopt this method in the remainder of
our empirical study. Further variation of the parameter τ should result in
different portfolios with possibly an even higher Sharpe ratio.

tau The parameter τ could be the most mysterious parameter of the BL-
model, originally it is used to specify the relation between the distribution of
the asset returns and the distribution of the mean of the asset returns. Black
and Litterman assume that the variance in the mean of the return is smaller
than the variance in the return itself and therefore τ is chosen close to zero,
see section 4.2.4. However, according to Satchell and Scowcroft (2000) it
should be close to one. Koch (2004) on the other hand takes a position
somewhat in the middle and finds that values of τ = 0.3 are reasonable. All
these differing opinions require an investigation into the value of τ .

Sensitivity of τ First, we will reexamine the sensitivity analysis of
Drobetz (2002). He performed an analysis of the change in the weights of a
portfolio caused by increasing the parameter τ . For each value of τ between
zero and one we will compile a BL-portfolio for the month April 1982, the
distribution of the weights will be plotted against the change in τ .
Under normal circumstances it is only possible to observe a part of the be-
havior. The effect of τ can be enlarged by scaling the covariance matrix Σ
by a factor of ten.
The effect that τ has on a portfolio is portrayed in figure 5.2. For τ = 0,
one can observe that the portfolio almost equals the equilibrium portfolio,
and as τ increases to one, one sees that weights of the portfolio diverge. It
is interesting to investigate why the weights diverge from the equilibrium
weights and if they converge to some portfolio, as seems plausible from ob-
serving the graph.

The parameter τ is a scaling parameter that affects the covariance matrix
Σ. The assumption is (see assumption A5) that the expected value of the
returns is normally distributed with a mean equal to the equilibrium returns
and a variance of τΣ, i.e. E(r) ∼ N(µ, τΣ). A larger value of τ , thus means
a larger covariance in the equilibrium expected returns and more uncertainty
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(a) Influence of τ on weight distribution in the BL-portfolio.

(b) The difference between the BL-return and
the return of π becomes larger.

(c) The difference between the BL-return and
the return of q becomes smaller.

Figure 5.2: The influence of τ on the weights in the portfolio and the cause
for the change in weights. The variance Σ has been enlarged 10 times to
make the effect more pronounced.

on the equilibrium portfolio. Therefore, in an allocation the weights should
be diverted from this risky position and thus from the equilibrium portfolio.
This is exactly what can be observed in the graph.
The Black-Litterman portfolio is a combination of the equilibrium portfolio
and the investors’s view portfolios. If the weight distribution moves away
from the equilibrium portfolio, then one should expect that they move to-
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wards the investor’s views portfolio.
The investor specifies views on multiple portfolios, therefore there is not one
investor portfolio to compare the BL-portfolio to. However, it is possible
to compare the BL-optimized returns to the equilibrium returns (π) and
those of the investor (q). The difference between the BL-returns and the
equilibrium returns can be found in figure 5.2b.
The difference between the equilibrium returns and the BL-returns is very
small for τ = 0, and increases as τ increases to one. The difference be-
tween the BL-optimized returns and those of the investor are compared in
figure 5.2c. For τ = 0 the difference between the BL-returns and those of the
investor are the largest, this corresponds to the weights as the BL-weights
are almost equal to the equilibrium weights. As τ increases to one, one
sees that the difference becomes smaller. Therefore, it seems plausible the
BL-weights converge to the investor’s portfolio as τ grows larger.

Calibration of τ The parameter τ will be calibrated over the period
January 1978 to December 1996. The purpose of the calibration is to obtain
a value of τ that mixes both sources of information, results in portfolios
with a reasonable Sharpe ratio and finally causes an average turn-over in
the portfolio of maximally 10%.
The parameter δ will be taken to its default setting for the moment. That
means that the risk aversion coefficient δ is taken equal to 4. The uncer-
tainty in the views matrix (Ω) will be estimated by the error in the forecast.
The result of the optimization can be found in table 5.6. The Sharpe ra-
tio and the average turn-over are given for the different values of τ . These
results have also been displayed graphically in table 5.6b. Examining the
graph there seems to be an optimal value of τ , for which the Sharpe ratio
is maximal. The Sharpe ratio of the portfolio increases steadily as τ grows
smaller and reaches its maximum around τ equal to 0.1, from there on the
Sharpe ratio starts diminishing again. However, for this value of τ there
is little turn-over in the portfolio, on average only 2.10% of the portfolio
changes every month. There is little mixing between both sources of infor-
mation.

In figure 5.3 is the cumulative return of the portfolio in the time plotted. The
cumulative return is defined in this framework as the sum of the monthly
returns. In a zero-investment strategy each month one starts with no funds
and the funds that are acquired at the end of each month are not reinvested,
but they are accumulated. It can be seen from figure 5.3 what it means when
there is little turn-over in the portfolio, effectively the BL-portfolio follows
the benchmark portfolio. The BL-portfolio differs in some cases from the
benchmark portfolio, often with a positive result. The average difference
between the BL-portfolio and the benchmark portfolio is now only 7.94%.
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τ Sharpe turn-over
(%)

0.01 1.14 0.23
0.1 1.14 2.10
0.2 1.14 3.98
0.3 1.13 5.71
0.4 1.11 7.35
0.5 1.09 8.89
0.6 1.06 10.36
0.7 1.04 11.76
0.8 1.02 13.10
0.9 1.00 14.39
1.0 0.98 15.63

(a) Sharpe ratio and turn-over. (b) τ versus the Sharpe ratio and turn-over.

Table 5.6: The influence of τ on the Sharpe ratio and the average turn-over
in the portfolio.

Figure 5.3: For τ = 0.1 does the BL-portfolio almost equal the benchmark
portfolio.
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For the moment we will keep τ equal to 0.3, the variation in the portfolio is
then less than 10% and the Sharpe ratio is reasonable at 1.13.

delta The last parameter that can be calibrated is the parameter δ. The
parameter has two alternative explanations as detailed in section 4.2.2. The
different interpretation hinge on the manner in which the equilibrium returns
are computed. If the equilibrium returns are reverse optimized from some
well chosen benchmark, then δ is a risk-aversion coefficient. The parameter,
in that case, is set at the start of the optimization procedure. Typical values
of the risk aversion parameter vary around three. The equilibrium returns
could also be computed from the CAPM. Then δ is a ratio of the market
portfolio that varies on every allocation and is specified as δ = E(rm)−rf

var(rm) .
First, we will investigate the sensitivity of the weights to changes in the risk
aversion parameter δ, subsequently will the parameter be calibrated over
the period January 1978 to December 1996.

Sensitivity of δ The sensitivity of δ will be investigated by forming a
portfolio in the month April 1982 for values of δ ranging from 1 tot 10. The
results can be found in figure 5.4.

Figure 5.4: The difference between the weights diminish as delta grows
larger.



5.4. RESULTS 83

It is visible in this figure that increasing δ has the opposite effect as increasing
τ . When increasing δ, the weights seem to move towards each other, the
difference between the weights diminishes. This behavior can be understood
from the meaning of δ as a risk-aversion coefficient. A larger value of δ means
that one becomes more risk-averse, one would like to take on less risk and
hence less extreme positions.
That δ truly is a risk-aversion parameter is also supported from evidence
of the volatility of the BL-portfolio. The volatility of BL-portfolio formed
between January 1978 and December 2006 has been computed, the result
can be found in table 5.8. The table shows that increasing delta leads to less
volatility. Therefore, δ can be understood to be a risk-aversion parameter.

Calibration of δ The parameter δ will be calibrated in order to ob-
tain an optimal value. First, we will investigate δ when it is related to
the CAPM, the values of δ will be examined by computing some summary
statistics of these values. Defining δ as E(rm)−rf

var(rm) gives very erratic values in
the calibration period, as can be seen from table 5.7. The mean value of δ,
the standard deviation, the maximum and minimum value of the values of
δ can be observed in the table.

δ µ σ max min

e 7.03 6.40 35.50 0.11

Table 5.7: The variation in δ when δ = E(rm)−rf
var(rm) .

The values of δ are fairly large and very erratic, they are not realistic when
delta could also represents a risk aversion coefficient. The Sharpe ratio of
the BL-portfolios, formed in the period, is good at 1.04, see table 5.8. Before
we draw any conclusion we will investigate δ as a risk aversion coefficient.
The parameter δ could also been seen as a risk aversion coefficient and fixed
to a certain value. A range of values of δ will be tried in order to obtain the
best Sharpe ratio and variability in the portfolio, these are detailed in table
5.8.

Values of δ around 10 seem to give a good Sharpe ratio of 1.17, then the
portfolio varies on average 2.6%. When increasing δ even more, the Sharpe
ratio increases some more and the variability in the portfolio diminshes fur-
ther. The portfolio approximates the benchmark portfolio. Furthermore, as
δ should represent a risk aversion coefficient the values then becomes un-
characteristically large. Therefore, we will keep the parameter at four. The
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δ Sharpe turn-over(%) volatility

e 1.04 18.98 7.08
1.0 0.81 22.24 8.64
2.0 1.02 11.19 6.12
3.0 1.09 7.52 5.46
4.0 1.13 5.71 5.18
5.0 1.14 4.64 5.03
10 1.17 2.62 4.79
20 1.17 1.73 4.70
50 1.18 1.33 4.65
100 1.18 1.27 4.64

Table 5.8: The performance of the BL-portfolio for τ = 0.3 and various δ.

Sharpe ratio, for the sample period 1978-1996, is 1.13 and the turn-over in
the portfolio is on average 5.71%.

Summary The covariance matrix Ω can best be approximated by Ω =
σ̂2x′t(X

′X)−1xt, this gives far superior Sharpe ratios and less turn-over.
The sensitivity analysis of the parameter τ shows that is determines how
near the BL-portfolio is either to the equilibrium portfolio or the investor’s
portfolio. The parameter is calibrated to τ = 0.3.
The sensitivity analysis of δ shows that the parameter behaves like a risk-
aversion parameter. Increasing the value of δ leads to less volatile portfolios.
The parameter has been calibrated to δ = 4.

5.4.2 BL vs MV

The Black-Litterman model can now be compared to mean-variance opti-
mization with a full investment constraint. The performance of both mod-
els will be compared over the period from January 1997 to December 2006.
They will be compared via the following measures: the turn-over in the
portfolio, the hit ratio, the kurtosis, the mean return, the skewness, the
volatility of the return and the Sharpe ratio, additionally are available the
minimal and the maximal return. The hit ratio is defined as the percentage
of time that the return of a portfolio is positive.

Inspection of table 5.9 learns that the BL-portfolio performs better than the
MV-portfolio in almost all respects. The BL-portfolio displays less average
month on month turn-over, less volatility and the downward peak in the
return is less pronounced. Furthermore, it has a higher hit ratio and most
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BL MV

mean return 6.93 8.23
volatility 8.87 13.38
Sharpe 0.78 0.62
hit ratio 0.64 0.62
min return -8.15 -12.26
max return 8.69 23.02
skewness 0.09 1.29
kurtosis 4.63 13.08
turn-over(%) 3.39 12.08

Table 5.9: The BL-portfolio has a higher Sharpe ratio than the MV-portfolio.

importantly a better Sharpe ratio. If we would take transaction costs into
consideration, MV would perform even worse, due to the high turn-over in
the portfolio. The BL-portfolios have a skewness near to zero, this means
that the returns are symmetrically distributed around the mean. Moreover,
the kurtosis is 4.63, where the normal distribution has a kurtosis of 3.
As the BL-model performs much better than traditional mean-variance op-
timization, it is also interesting if it performs better than the individual
strategies or than an equal weighting scheme (in this case this equals the
equilibrium portfolio). Therefore, the performance has been compared to
these portfolios, the result can be found in table 5.10.

BL HML SMB WML MV equal weights

mean return 6.93 6.53 3.67 9.19 8.23 6.46
volatility 8.87 13.51 14.93 20.00 13.38 8.74
Sharpe 0.78 0.48 0.25 0.46 0.62 0.74
hit ratio 0.64 0.61 0.50 0.61 0.62 0.63
min return -8.15 -12.66 -16.58 -25.05 -12.26 -7.93
max return 8.69 13.71 21.87 18.40 23.02 9.20
skewness 0.09 -0.03 0.77 -0.59 1.29 0.18
kurtosis 4.63 5.06 8.93 6.59 13.08 4.94
turn-over(%) 3.39 0 0 0 12.08 0

Table 5.10: The BL-portfolio performs better than the individual strategies.

Table 5.10 shows that the BL-portfolio does perform better than the indi-
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vidual strategies of which the portfolio is composed, it has a higher Sharpe
ratio and it performs better than a equal weighting scheme.
The cumulative return of the strategies are plotted in an overview graph
of the period (figure 5.5), the graph shows the erratic behavior of the MV-
portfolios. It also clearly shows how the BL-portfolio moves between the
return of the MV-portfolio and the equilibrium (equal weights) portfolio.

Figure 5.5: Cumulative return of the different portfolios between 1997 and
2006.

The performance of the BL-portfolio tracks the performance of the bench-
mark portfolio, the average difference between the Bl-portfolio and the
benchmark portfolio is 12%. It might be interesting to investigate if the good
performance of the BL-portfolio is due to the benchmark, that is whether a
change of benchmark would still offer good results.
Therefore, we will try three different benchmarks, the first benchmark is
long in HML and WML and leaves out SMB, wm =

(
1
2 0 1

2

)
. The second

benchmark is long in WML, wm =
(
0 0 1

)
and the third portfolio is long

in SMB, wm =
(
0 1 0

)
.

From table 5.11 it becomes clear that the BL-portfolios have in all these
instances a larger Sharpe ratio then the benchmark portfolio (wm), although
it is not much larger. Altering the benchmark does have a side effect, the
BL-portfolios performs worse in comparison to the MV-portfolios in two
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BL MV wm BL MV wm BL MV wm

wm =
(

1
2 0 1

2

)
wm =

(
0 0 1

)
wm =

(
0 1 0

)
µ 8.12 8.27 7.86 9.05 8.49 9.19 4.56 8.14 3.67
σ 11.57 13.38 11.75 18.49 13.38 20.00 13.69 13.39 14.93
S 0.70 0.62 0.67 0.49 0.63 0.46 0.33 0.61 0.25
h 0.63 0.62 0.63 0.61 0.63 0.61 0.51 0.62 0.50
t 3.29 12.22 0 3.83 12.25 0 3.7 12.25 0

Table 5.11: Performance of the BL-portfolio with different benchmarks.

cases. It might be possible to gain some better results for the BL-model, by
calibrating the parameters. However, this example does show the sensitivity
of the BL-model to the chosen benchmark. The BL-model in combination
with the original benchmark resulted in a Sharpe ratio of 0.78, this is much
better than the worst result of 0.3.

5.5 Conclusion

The empirical study allows several conclusion about the BL-model to be
drawn, some conclusion concern its calibration other concern the perfor-
mance of the BL-model.
The new method of specifying Ω has some good results. It could be argued
that this is due to the relatively large values of the variance obtained in this
manner. The large uncertainty in the views steers the BL-returns towards
the equilibrium returns, which are chosen in such a way that it has under
most circumstances a favorable return.
The sensitivity analysis has shed some more light on the parameter τ . The
parameter scales the confidence in the benchmark or equivalently the un-
certainty in the expressed views. However, it still remains an unintuitive
parameter. Knowing that it steers the BL-returns towards the one or the
other does not give an intuitive idea of the value of the parameter.
The calibration of τ showed there was certainly an optimal value of τ , fig-
ure 5.6b displays the optimal value around 0.1. The relative small value of
τ indicates again, that it is best to remain close to the benchmark portfolio.
The sensitivity analysis shows that δ can be seen as risk aversion coefficient,
increasing δ leads to less volatility in the portfolio return, which indicates
a less risky position. This interpretation of δ additionally, allows more flex-
ibility , then when δ is chosen to equal E(rm)−rf

var(rm) . Additionally, it offers a
possibility to calibrate the parameter.
The performance of the BL-model has been observed over the period 1997
to 2006, inspecting the cumulative return graph (figure 5.5) it becomes clear
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that the return of the BL-portfolio varies between the benchmark return and
the mean-variance return. The BL-model has a higher Sharpe ratio than
the mean-variance portfolio and the benchmark portfolio. The BL-portfolios
do not differ much from the benchmark, on average 12% of the allocations
differ, but when it differs from the benchmark it succeeds in producing extra
return.
Therefore, the performance of BL has been evaluated under different bench-
marks, this leads to lower Sharpe ratios. Fortunately, the BL-model still
performs better than its benchmark, although this is only 2 or 3 basis points.
This leads to the conclusion that the BL-model is truly an enhanced index-
ing model, it improves slightly on the benchmark portfolio. When the BL-
model moves away from the benchmark, it does make the right choices and
improves on the benchmark portfolio. However, the difficulty in choosing
the parameters, the dependency of the BL-model on the benchmark port-
folio and the slight improvement over the benchmark would suggest that it
maybe easier to choose a benchmark portfolio well and invest in this.



Chapter 6

Conclusion and further
research

6.1 Conclusion

The purpose of this thesis has been to investigate the popular Black-Litter-
man model for asset allocation. The model is designed to alleviate some
of the flaws found in the traditional asset allocation model, mean-variance
optimization.
Mean-variance optimization has since its origination been the most popular
method to allocate assets, the popularity could be due to the understandable
premise on which it sorts assets. The central premise in asset allocation is
that one should balance risk and expected return, and to only take on more
risk if one acquires also more expected return. The mean-variance model
allocates assets exactly on this premise. Despite the well accepted under-
pinning does mean-variance optimization have its flaws.
In practice, the MV-portfolios are often very concentrated in only a few
assets and do not reflect the views of the investor. In order to cope with
these problems, investors often constrain the mean-variance model in such
way that the possible portfolios lie in an bandwidth they are comfortable
with.
Black and Litterman set out to alleviate these problems by making a model
that would result in intuitive portfolios and a model that could be used by
investors. They at least had the effect that the Black-Litterman model has
become a very popular model and many papers are written on the subject.
However, the papers mainly try to explain the model, as the mathematics of
the model are originally not very clearly described. Black and Litterman did
not go in to detail about how they obtained the BL-formula and what the
parameters meant. Thus, in trying to alleviate the problems of the mean-
variance optimization, they also created a few new problems.
Especially the parameter τ has been a source of confusion. It is used to
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scale the variance matrix of the equilibrium returns, but how the matrix
should be scaled is unclear and what the value of the scaling parameter
should be or on what it should depend is unclear. Therefore, a popular
method of circumventing this problem has been to choose the uncertainty in
views covariance matrix Ω and τ together. The method solves the problem
of specifying τ , but mathematically there is no consistent reason to specify
these variables together. It seems that this method serves no other purpose
than removing the difficult parameter τ from the model.
The Black-Litterman has been the subject of an empirical study in a three
asset environment. The purpose of the study was to determine the per-
formance of the Black-Litterman model in comparison to mean-variance
optimization. The assets we have chosen are three popular zero-investment
strategies, a momentum strategy, a size strategy and a book-to-market value
strategy. All the input data, apart from the views of the investor, has been
acquired or computed in a straightforward manner.
The views of the investor have been forecasted by a regression analysis on
variables that describe the state of the macro economy. The regression anal-
ysis, additionally, produces an estimate of the variance of the views and thus
an consistent manner to specify the uncertainty matrix Ω. This however,
still leaves the parameter τ .
The BL-model and MV-optimization have been compared over the period
January 1997 to 2006. The graph of the cumulative return in this period,
clearly shows how the return of the BL-portfolio varies between the return
of the equilibrium portfolio and those of the investor.
The Sharpe ratio of the BL-portfolio was higher in the observed period,
than the Sharpe ratio of the MV-portfolio. The BL-portfolio performed also
slightly better, 4bp, than the equilibrium portfolio. A change of the bench-
mark showed that the performance of the BL-portfolio strongly depends on
the benchmark portfolio and the BL-model truly is an enhanced indexing
model.
The concept of the BL-model is very good, investors often have difficulty
estimating data, see Herold (2003), therefore it is good to combine the ideas
of an investor with those of a quantitative source. The way the model was
specified however, resulted in a few unintuitive parameters that are difficult
to use. The problem of the parameter τ has been solved by specifying the
parameter together with the uncertainty matrix Ω. It would be mathemati-
cally more consistent and probably easier to use if all the parameters in the
model have a consistent definition and a method to calibrate them. Oth-
erwise, it could be better to specify the model in a different manner as for
example has been done by Scowcroft and Sefton at UBS.
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6.2 Suggestions for further research

As speaks clearly from the conclusion, there is room for improvement in the
Black-Litterman model. The suggestions can be divided in two part, first we
will discuss suggestions on what could be researched on the BL-model and
finally suggestions on models that could be based on the Black-Litterman
model.

Suggestions for the BL-model A large problem of the BL-model are
the parameters, for there is no comprehensive explanation of the meaning
and the value of all parameters. Most notably the parameter τ . It would be
good if the influence of the parameter τ on the weights, could be quantified.
It has become clear in the empirical study, that τ determines how near the
BL-returns are to either the equilibrium returns or the investors returns.
If this relationship could quantified even more, for example that a τ = 0.3
means that the weights are a mix of one third the equilibrium returns and
two thirds the returns of the investor, then it would be easier to specify τ .
The same could be investigated for the parameter δ, although there is less
of a direct relationship between δ and the two return estimates.
Another interesting subject is the BL-optimized covariance matrix produced
by combining the two sources of information with the Bayesian statistics
approach, see equation (4.7). Usually, the covariance matrix Σ is used to
optimize the portfolio with the Black-Litterman returns. It is interesting
why the BL-covariance matrix is not used, as this is the matrix that corre-
sponds to the BL-returns. A short exploration of using this matrix, shows
that it produces portfolios that have a large month-on-moth turn-over. It
could be interesting to see why this covariance matrix performs so badly,
and if its performance could be improved.
Finally, the model could be improved by adding a method to compute the
parameter τ . The original work of Theil (1971) does provide an estimate
for τ , see equation (4.11), however it could not be applied to the problem
at hand due to constraints on the BL-formulation. It could be a major im-
provement if the model could be adapted such that there is a method to
compute τ .
An easy improvement could also be made by incorporating different prob-
ability distributions for the returns, it has be shown by that returns often
are not normally distributed, see for example Embrechts et al. (2003). Gia-
cometti et al. (2006) have started with the research into this subject.

Improvements on the BL-model Instead of tinkering with the BL-
model, it might be better to start from their premise, the combination of
two information sources, and build on that premise a new model. The new
model should have parameters that can be understood and chosen by the
investor or computed in a consistent manner. The model developed by
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UBS, see paragraph 4.4.3, is an example of this. They started from the
same premise, adapted the model and left out for example the parameter τ .
It would interesting to compare the performance of the UBS model to the
model of Black and Litterman.
The model could be improved on even further by making it easier for in-
vestors to provide forecasts of returns. Another method, also mentioned
by Herold (2003), would be to provide a ranking of the asset performance
which subsequently will be transformed to a forecast of the expected return
and variance. This removes the difficult for the investor of providing an
estimate of the probabilistic measures expected return and variance, but it
leaves intact the advantage that a quantitative and a qualitative approach
are combined.



Appendix A

Source Code

A.1 Main Program

function [weights, weights_MV, return_totaal, NES] = ...
BLproces(start, eind, wm, tau);

exec(’data\return200701.sce’); exec(’data\excess_return.sce’);
exec(’data\rf.sce’); exec(’data\GB.sce’); exec(’data\DP.sce’);
exec(’data\URP.sce’); exec(’data\MP.sce’);
exec(’data\UI.sce’);

return_strat = [return_HML, return_SMB, return_WML];
Y = [DP, UI, GB, URP, MP];
[n, m] = size(return_strat);
vmaand = 60;
pmaand = 6;
transaction_costs = 0; // 0.5;
printen = 0;
P = eye(m,m);
[Sigma] = standaardinput(start, eind);
delta = 4;
[d, q, OmegaTau] = calibreerbareinput(start, eind, n, m, tau, 1, P, delta);
[weights, weights_MV, return_totaal, NES, pis] = ...

berekenreeks(wm, start, eind, P, Sigma, d, q, OmegaTau, printen);

endfunction
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A.2 Subroutines

A.2.1 ‘Standaard Input’

function [Sigma] = standaardinput(start, eind);

Sigma = zeros(m, m, n);
load(’data\rd256.dat’, ’rd256’)
rd = rd256;
// grootte van de 3-d matrix met dag-date bepalen.
// w = aantal dagen, e = aantal maanden,
// r = aantal assets
[w, e, r] = size(rd);
decay_factor = 0.97;
s = zeros(w, r);
for i = start:eind
s(:, :) = rd(:, i, :);
Sigma(:, :, i) = variancedecay(s, decay_factor, ’r’);

end

endfunction

A.2.2 ‘Calibreerbare Input’

function [d, q, OmegaTau] = ...
calibreerbareinput(start, eind, n, m, tau, O, P, delta_method);

d = zeros(n, 1);
q = zeros(n, m);
OmegaTau =zeros(n, m);
for i = start:eind
d(i) = delta(i, delta_method); // delta, uitrekenen

// qp voorspelling van return uitrekenen
// Omega geschat op basis van fout in forecast

[qp, Omega] = lse_forecast(return_strat(i-vmaand:i, :), Y(i-vmaand:i, :));
// de views van de investeerder (q) is een transformatie van de
voorspellingen (qp) met matrix P

q(i, :) = (P*qp)’;
if O == 1 then

OmegaTau(i, :) = diag(P*Sigma(:, :, i)*P’)’;
else

OmegaTau(i, :) = Omega/tau;
end

end
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endfunction

‘lse forecast’

function [q, s2, bet] = lse_forecast(r, Y)

// maakt een voorspelling van r op t+1 doormiddel van lineare regressie op Y
// r_t = X_{t-1}*beta + e_t

// grootte van r en Y bepalen
[lr, mr] = size(r);
[lY, mY] = size(Y);

// output initialisatie
q = zeros(mr,1);
s2 = zeros(1, mr);

// fout in input afvangen
if lr <> lY then error(’The matrices should have the same length.’); return, end;

// lineare regressie met constante term, dus vector van enen toevoegen aan matrix Y
X = [ones(lY, 1), Y];

// schatter beta maken
bet = zeros(mr, mY+1);
bet = lse( X(1:lr-1, :), r(2:lr, :), ’r’ );

// tijdsrelatie constant veronderstellen en r op t+1 schatten
q = bet*(X(lr, :))’;

// schatting van homescedatic variance van q, formule uit Theil(1971)
XX = inv(X’*X)
M = eye(lr, lr) - X*XX*X’;
s = diag(r’*M*r)/(lr-mY-1);

for i=1:mr
// variantie matrix van de schatter voor de verschillende assets is:

sig(:, :, i) = s(i)*XX;
// variantie matrix van de fout in voorspelling bepaald door waarnemingen op tijdstip
// lr en door fout in schatter

s2(1, i) = X(lr, :)*sig(:, :, i)*X(lr, :)’;
end

endfunction
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A.2.3 ‘Berekenreeks’

function [weights, weights_MV, return_totaal, NES, pis] = ...
berekenreeks(w, start, eind, P, Sigma, d, q, OmegaTau, printen);

// ‘berekenreeks’ berekend de gewichten voor een BL-portfolio.
// De inputs zijn: w, start, eind, P, Sigma, OmegaTau, printen
// w = benchmark portfolio
// start = maand waarin optimalisatie proces start
// eind = maand waarin proces eindigt
// P = views matrix van investeerder
// Sigma = serie van covariantie matrices
// OmegaTau = covarariantie matrix, onzekerheid in investeerder’s views
// printen = booelean, 1 = save output
// De outputs:
// [weights, weights_MV, return_totaal, NES, pis]
// weights = de gewichten na BL-optimalisatie,
// weights_MV = gewichten na MV-optimalisatie
// return_totaal = matrix van maandelijkse return van portfolio en assets
// NES, pis = de BL-expected return en de equilibrium returns

weights = zeros(return_strat);
weights_MV = zeros(return_strat);
NES = zeros(n, m);

// Benchmarkportfolio als start portfolio in vector van weights geplaatst.
weights(start, :) = w’;
weights_MV(start, :) = w’; // evenals in de MV-weights vector

// optimalisatie proces uitvoeren;
// de nieuwe expected return de gewichten bepalen
for index = start:eind-1

// Berekenen van een Nieuwe Expected returns vector (NE)
[NE, pi] = BL(Sigma(:, :, index), P, q(index, :)’, d(index), w, ...

diag(OmegaTau(index, :)));
// MV optimalisatie met fullinvestment constraint
weights(index+1, :) = (MVequal(NE, d(index), Sigma(:, :, index)))’;
// MV met de voorspellingen q en variantie Omega
weights_MV(index+1, :) = (MVequal(q(index, :)’, d(index), ...

diag(OmegaTau(index, :))*tau))’;
NES(index+1, :) = NE’;
pis(index+1, :) = pi’;

end;
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return_portfolio = diag(weights*(return_strat)’) ....
- trading_costs(weights, transaction_costs, ’c’);

return_MV = diag(weights_MV*(return_strat)’)
- trading_costs(weights_MV, transaction_costs, ’c’);

return_totaal = [return_portfolio, return_strat, return_MV];

if printen == 1 then
print(’\resultaten\result070412\weights.txt’, weights);
print(’\resultaten\result070412\weights_MV.txt’, weights_MV);

end

endfunction

BL

function [NE, pi] = BL(Sigma, P, q, delta, w, OmegaTau)

//de functie berekend de BL geoptimaliseerde nieuwe vector van verwachte return.
// initialisatie output parameter
NE = zeros(w);
pi = zeros(w);
//pi reverse optimizen uit de benchmark portfolio
pi = (delta*Sigma)*w;
// de nieuwe expected return vector
NE = (inv(inv(Sigma) + P’*inv(OmegaTau)*P))*(inv(Sigma)*pi + P’*inv(OmegaTau)*q);

endfunction

MVequal

function [weight] = MVequal(pi, delta, Sigma)

// mean-variance optimization with a full investment constraint,
// i.e. the method of Lagrange multipliers is used.
// inputs:
// pi, the vector of expected return, delta the risk-aversion coefficient,
// sigma the covariance matrix.
// gam is the lagrange multiplier, A and b are the full investment constraints,
// C is a term that is introduced for convenience,

// initialisation of output parameter
weight = zeros(pi);

// determine size of pi



98 APPENDIX A. SOURCE CODE

[n, m] = size(pi);

// full investment constraint A*w= b
A = ones(1, n);
b = 1;
C = delta^(-1)*inv(Sigma);
gam = inv(A*C*A’)*(b - A*C*pi );
weight = C*(A’*gam + pi);

endfunction
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Symbols

cov(xi, xj) The covariance of xi and xj , this can also be denoted as σij .

q ∈ Rk the vector that specifies the expected return of the in-
vestors view.

r ∈ Rn vector of random variables, that represents the return or
excess return of a vector of assets. The standard assumption is
that the returns are normally distributed, r ∼ N(E(r), τΣ).

var(·) The variance operator, often shortened to σ2.

w ∈ Rn vector of weights of the assets in the portfolio. There could
be a full investment constraint, that requires the weights to sum
to one. Alternatively, it could be a zero-investment portfolio,
then the weights sum to zero.

wm The (world) market portfolio, this consists of all the assets in
the market to the ratio of the respective market capitalizations.
The market portfolio is often approximated by a well chosen
benchmark.

E(·) Expected value operator.

P ∈ Rk×n the view matrix specifies which assets are under con-
sideration of the investor. A row of P can specify a view on
a single asset or a portfolio of assets. Views are specified as
q = PE(r) + ε.

rf Return of the risk-free asset.

rp The return of a portfolio, rp =
∑n

i=1wiri.

δ Black and Litterman call this the (world) risk-aversion coeffi-
cient, it is also said to equal E(rm)−rf

σ2
m

.
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ε ∈ Rk the vector of uncertainty in the expressed view, this vector
is normally distributed with mean 0 and variance Ω.

λ The risk aversion coefficient or a Lagrange multiplier.

µ The mean value of a quantity.

Ω ∈ Rk×k the diagonal covariance of views matrix.

π The equilibrium returns, these are often computed from π =
δΣwm.

ρ The correlation coefficient.

Σ ∈ Rn×n covariance of return matrix.

τ A highly debated parameter, Black and Litterman use it to scale
the covariance matrix Σ.

Words1

basis point (bp) A basis point is a percentage of a percentage, i.e. 100 bp
= 1% or equivalently 1 bp = 0.01%.

benchmark portfolio (benchmark) A portfolio against which the perfor-
mance of the investment manager can be measured, this could
for example be an index portfolio like the AEX-index or the
NASDAQ. A well diversified benchmark can serve as a proxy
for a market portfolio.

bond A debt investment with which the investor loans money to a
company or government that borrows the funds for a (defined)
period of time at a specified interest rate.

book equity (BE) The accounting value of the common equity.

capital asset pricing model (CAPM) An economic model of the behavior
of asset prices under conditions of risk. The model is intended
to promote an equilibrium relationship for pricing the risk asso-
ciated with holding assets. It predicts that the expected rates
of return will be directly related to a single common factor: the
return on the market portfolio.

equilibrium return The expected returns that would hold if the market is
in an equilibrium, often CAPM returns are used.

1The definitions are obtained from various sources: Smullen and Hand (2005), Moles
and Terry (1997)



GLOSSARY 101

equity Represents the ownership of a part of a company, synonyms are
shares and in the US also stocks.

expected excess return (expected return) The expected return of an as-
set in the domestic currency minus the domestic risk free rate
E(r)− rf .

growth equity Equity that is categorized in the bottom BE/ME percentile.
Common equity that is expected to increase, or has already
increased, its earnings per share at a rate faster than that for
the market as a whole.

hedge A transaction or position designed to mitigate the risk of other
financial exposures.

high-minus-low (HML) A zero-investment strategy that entails to go long
in value equity, with a high book-to-market value and to go short
in a growth equity, equity with a low book-to-market value.

long Going long means to bet on a price increase by taking a positive
position in the asset. The asset is bought to be sold a later time
at a higher price.

market equity (ME) The value of common equity if it would be sold on
the market.

mean-variance (MV) Evaluating uncertain investments in terms of their
expected return and variance of outcomes.

MV-efficient portfolio A portfolio that has minimum variance of return
for a certain level of expected return, or equivalently maximum
expected return for a certain level of variance.

non-systematic risk The risk that is uncorrelated with the market and can
be diversified, also known as specific risk.

posterior distribution In a Bayesian sense, it represents the probability
distribution of the random variable A, given observations of the
random variable B. It is the distribution that can be obtained
after Bayesian inference.

prior distribution In a Bayesian sense, it represents the probability distri-
bution of the random variable A, prior to any observations.

return Short for rate of return, which is the fraction of profit to invested
money.

risk A characteristic of the return of an asset, that defines the chance
that a certain estimate is not made.
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risk aversion The investment philosophy that extra risk should only be
taken on, if it also implies a higher expected return.

risk aversion coefficient The measure of risk averseness, when there is an
utility function this can be defined mathematically.

short Shorting an asset, or going short means to bet on a price fall by
taking a negative position in the asset. The asset is first sold
and later bought back at a lower price.

small-minus-big (SMB) Investment strategy that entails to go long in
firms with a small size and to go short in firms with a large
size. The size of a firm is measured by its market equity.

systematic risk The risk associated with the market as a whole, this risk
cannot be diversified.

utility theory The field of study concerned with analysis and ordering of
preferences that is used to explain individual decision-making.

value equity Equity that is categorized in the top BE/ME percentile, eq-
uity of a company with solid fundamentals that are priced below
those of its peers, based on analysis of price/earnings ratio, yield,
and other factors.

volatility The standard deviation, the square root of the variance, is often
called the volatility in finance.

weight The weight is the proportion an asset has in the portfolio.

winners-minus-losers (WML) A zero-investment strategy that entails to
go long in equity that has performed well in the past 3 to 18
months and to go short in equity that has performed poorly in
that period. WML is more commonly known as momentum, or
UMD (up-minus-down).

zero-investment portfolio An investment portfolio where the long posi-
tions are financed by short positions in other assets, the weights
in the portfolio sum to zero.
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