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Abstract

The 21st century is seeing technological advances that make it possible to build more robust and sophisticated decision

support systems than ever before. But the effectiveness of these systems may be limited if we do not consider more eclectic (or

romantic) options. This paper exemplifies the potential that lies in the novel application and combination of methods, in this

case to evaluating stock market purchasing opportunities using the ‘‘technical analysis’’ school of stock market prediction.

Members of the technical analysis school predict market prices and movements based on the dynamics of market price and

volume, rather than on economic fundamentals such as earnings and market share. The results of this paper support the

effectiveness of the technical analysis approach through use of the ‘‘bull flag’’ price and volume pattern heuristic. The romantic

approach to decision support exemplified in this paper is made possible by the recent development of: (1) high-performance

desktop computing, (2) the methods and techniques of machine learning and soft computing, including neural networks and

genetic algorithms, and (3) approaches recently developed that combine diverse classification and forecasting systems. The

contribution of this paper lies in the novel application and combination of the decision-making methods and in the nature and

superior quality of the results achieved. D 2002 Elsevier Science B.V. All rights reserved.

Keywords: Technical analysis; Neural networks; Forecasting; Genetic algorithms; Pattern recognition; Heuristics; Financial decision support;

Market efficiency

1. Introduction

This new century opens on an unprecedented

availability and selection of development tools for

building decision support systems [4]. These tools

have reduced the complexity and long development

time inherent in building systems that offer valuable

insights into the complex problems offered in today’s

business world. But will these technological enhance-

ments manifest into systems that exploit the vast

opportunities that are now available?

This century also promises to be a time of dis-

continuous and increasingly rapid change, with new

risks taking the place of ones we understand. Time

pressures and the rush of events will require that
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decision support tools be used in an efficient, unified

and adaptive manner. This will require satisficing with

good results, often without understanding ‘‘scientifi-

cally’’ the underlying decision contexts that we ana-

lyze. Decision support systems, however, cannot meet

these opportunities without changing the way the

systems are approached and built. Indeed, a bolder,

more eclectic style will be necessary, which we term

romantic.

Classical connotes beauty of form, good taste,

restraint, and clarity. Romantic is extravagant, wild,

free, imaginative, and fantastic, and is in revolt from

that which is classical. We contend that in the early

21st century, the classical style in decision support

practice will be supplanted by a more romantic style.

A romantic style for decision support combines seem-

ingly disparate sets of theories, data, and techniques,

uses radically new data analysis and machine learning

techniques, which employ nonlinear and connectionist

models, realizes systems through the assembly of

powerful hardware and software components, com-

bines tools and techniques to develop hybrid decision-

making mechanisms, may involve assaults on the

accepted wisdom of decision-making, and achieves

superior results.

The work in this paper is empirical. We cannot

explain the results attained here, or the results claimed

by practitioners for technical analysis, with any strong

theoretical basis. The romantic style is pragmatic and

values decision-making results over understanding

and values data over theory. The romantic style is

data-driven, rather than theory-driven (but, of course,

there is nothing more pragmatic than a bit of good

theory at the right time). Diebold discusses this

tension, which is more palpable in some firmly

ensconced branches of academia, including finance,

than in industry (page 589, Ref. [7]):

There is a long and unfortunate tradition in eco-

nomics, however, of placing too much emphasis on

theory—as opposed to evidence (data)—in guid-

ing the specification and evaluation of forecasting

models. Within such a framework, one is led to

focus on the task of estimating the parameters of a

relationship suggested by a priori theory (at the

cost of neglecting the model selection problem),

after which the optimal prediction problem is easily

solved (conditional upon the assumed model).

Winkler agrees (page 606, Ref. [53]):

I prefer, however, to take the view that, in many

situations, there is no such thing as a ‘true’ model

for forecasting purposes. The world around us is

continually changing, with new uncertainties re-

placing old ones. As a result, the longer-term search

for a ‘true’ model is doomed to fail in many cases

because unanticipated changes prevent us from

enjoying the luxury of getting to the longer term in

a stable environment. This suggests that models

should be adaptive, but even adaptive models only

represent our best state of knowledge at a given

time; they do not represent the ‘truth’ in any sense.

Decision support systems, as a discipline, owes

much to artificial intelligence, which has been pre-

dominantly pragmatic and data-driven from the begin-

ning, and as such has always evidenced the attributes

of what we are calling romantic, to a degree. But the

need for adaptability and the achievement of results is

more compelling in the 21st century than before, and

the opportunity is greater than before. The new

elements that are present now are the methods and

techniques of soft computing and machine learning

for decision-making and forecasting, in particular

neural networks and genetic algorithms, and the new

science of the combination of those tools. These new

elements make possible decision support systems that

are more romantic than those which have gone before

to an extent that by comparison, the decision support

systems of today appear classical.

The way in which different decision-making and

forecasting methods are combined is critical. The

objective is for a coordinated use of different methods

to arrive at a better decision than the employment of

any of the methods alone. There is reason to believe

that this not overly difficult to achieve (for the case of

classification algorithms, see Ref. [2], and for fore-

casting, see Ref. [34]); and that greater diversity in the

decision-making methods which are combined leads

to better combined decisions (for the case of classifier

systems, see Ref. [52]). The development and use of

effective methods of decision tool integration and

combining are critical to realizing successful decision

support systems of this romantic style. We explore,

exemplify, and survey such combining methods in

this paper.
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In the following sections we describe four experi-

ments that focus on stock market price forecasting—

each experiment building on the results of the pre-

vious ones. The first experiment, Experiment A,

employs the conventional pattern recognition techni-

que of template matching to identify one of the basic

price–volume pattern market direction signals of

technical analysis. We compare the change in level

of the New York Stock Exchange Composite Index

after the trading day, which is identified as marking

the end of the pattern, when it is identified in time

series data, with the average change in level of the

same index over all trading days in the period of

comparison. Experiment B uses the template fitting

values of the identified instances of the technical

pattern as a basis for forecasting the level of the

NYSE Composite Index with a neural network model.

Experiment C employs a genetic algorithm to improve

the forecasting quality of the neural network forecast

in terms of its squared multiple correlation R2. Experi-

ment D applies the methods of Experiments A and B

in a cross-validation experimental design. The system

in Experiment D is deployable for decision support.

Two of the techniques we use, neural networks and

genetic algorithms, have come into use in the decision

support arsenal only in the last 10 years. The experi-

ments are accomplished using a desktop computer and

commercially available spreadsheet, neural network,

genetic algorithm, and statistical software. No gen-

eral-purpose-language programming is needed. The

theoretical basis for the series of experiments con-

ducted is stock market technical analysis, which is

presently considered disreputable in the academic

finance community. However, excellent results are

achieved—romantic decision support is pragmatic

and does not respect accepted wisdom. As a result

of the approach taken, and the results achieved, we

believe that this work exemplifies the romantic style

of decision support for financial forecasting.

2. Technical analysis

The generally accepted efficient markets hypoth-

esis (EMH), explained and surveyed by Fama [14],

states that market prices follow a random walk and

cannot be predicted based on their past behavior.

According to the EMH there are three degrees of

market efficiency. The strong form states that all

information that is knowable is immediately factored

into the market’s price for a security. If this is true,

then all of those stock analysts are definitely wasting

their time, even if they have access to private infor-

mation. In the semi-strong form of the EMH, all

public information is considered to have been

reflected in price immediately as it became known,

but possessors of private information can use that

information for profit. The weak form holds only that

any information gained from examining the security’s

past trading history is immediately reflected in price.

Of course, the past trading history is public informa-

tion, which implies that exceptions and counter-exam-

ples to the weak form also apply to the strong and

semi-strong forms.

Discoveries of ‘‘anomalies’’, relationships that can

be used to earn abnormal returns, which appear to

violate the EMH in its strong and semi-strong form

are numerous in the finance literature. Well-known

anomalies involve abnormal returns in relation to:

unexpected earnings announcements, firm size, month

of January, day of the week, analysts’ recommenda-

tions, impact of the federal budget deficit announce-

ment, and others. Raghubir and Das [42] catalog

anomalies and provide extensive literature references.

Also, see Refs. [22,23].

Even though they are both futile endeavors accord-

ing to the EMH, two approaches to the analysis of

stock market price prediction dominate practice: fun-

damental analysis and technical analysis. These

approaches differ in their underlying assumptions.

Fundamental analysis accepts the weak form of the

EMH and ignores the semi-strong form. Fundamental

analysts assume that prices in financial markets are

based on economic principles, and prices may be

predicted based on fundamental and publicly available

economic data, such as earnings and market share,

interest rates, cost trends, competitive forces, and so

forth. Graham and Dodd [19] wrote the classic guide

to fundamental analysis of investments years ago. On

the other hand, those who practice technical analysis

accept most tenets of the semi-strong form of the

EMH (that is, that available knowledge of the eco-

nomic fundamentals and market conditions affecting a

particular investment are available to all and have

been factored into the current stock market price) and

ignore the weak form of the EMH. Technical analysts
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are concerned with the dynamics of the market price

and volume behavior itself, rather than with the fun-

damental economic nature of specific securities that

are traded. Charles Dow developed the original Dow

Theory for technical analysis in 1884, and a modern

explication is found in Edwards and Magee [12].

The EMH, in particular its weak form, is generally

interpreted to imply that the technical approach to

price prediction is invalid. Papers on technical analy-

sis appear frequently in the practitioner literature (for

example Refs. [36,38]) but, until recently, rarely in the

academic literature except in negative or defensive

form (for example Ref. [48]). In the last 2 years major,

positive reports as to the effectiveness of ‘‘momentum

trading rules’’, which are based only on price and

volume historical information (but do not involve

price and volume patterns which we investigate in

this article), have appeared more than once in the

most respected finance journals (for example Refs.

[22,23]). These momentum anomalies appear to neg-

ate the EMH in its weak form, though there is a debate

going on over whether this is true [3], and the aca-

demic acceptance of the effectiveness of momentum

trading effectiveness possibly marks a change in the

way technical analysis research work will be accepted.

Our work uses the weak form of the EMH as a null

hypothesis. We test our forecast against the overall

average 20-day horizon price increase experienced in

the period we are using. For our work with a broad-

based composite index, the overall average in the

period is equivalent to the return from a buy-and-hold

or random-selection trading strategy, which are im-

plied as optimal by the weak form of the EMH. We

consider the discovery of a forecasting method that

can be applied as a trading strategy yielding stat-

istically significant returns that are better than the

overall average for the period to be a failure to con-

firm our null hypothesis, which is the weak form of

the EMH.

Gencay [16] uses only price history and applies

neural networks to implement moving-average fore-

casting rules, which are momentum rules, to predict

the Dow Jones Industrial Average. Results are not

reported in such a way as to be able to tell whether a

trading rule based on the methods in the paper would

do better than buy-and-hold or random purchases, and

there is no way to compare the results of Gencay with

our work. Gencay’s major result is that the nonlinear,

neural network implementations of the moving-aver-

age rules consistently outperform the linear regression

implementations by a modest amount.

We work with one price and volume pattern heu-

ristic of technical analysis. We have found no rigorous

testing of this pattern or other pattern heuristics of

technical analysis anywhere.

3. Experiment A: recognizing the bull flag with

pattern recognition

The sort of technical analysis that we use is based

on the identification of certain graphical patterns of

price and volume time series data to identify buy (and

sell) signals. Our work concentrates on one technical

analysis pattern, the bull flag. The definition of flag

from Downes and Goodman [9]:

FLAG—technical chart pattern resembling a flag

shaped like a parallelogram with masts on either

side, showing a consolidation within a trend. It

results from price fluctuations within a narrow

range, both preceded and followed by sharp rises

or declines.

A bull flag pattern is a horizontal or sloping flag of

consolidation followed by a sharp rise in the positive

direction, the breakout.

The template we use for the bull flag pattern is

shown in Fig. 1. This is a 10-by-10 grid with weights

ranging from � 2.5 to + 1.0 in the cells. The weight-

ing is used to define areas in the template for the

descending consolidation and for the upward-tilting

breakout portions of this bull flag heuristic pattern.

The 10� 10 grid is applied to the time series of

price or volume data one trading day at a time, with

the leftmost time series data point being the values for

the trading day which precedes the current day by 59

trading days, and the rightmost time series data point

being the trading day which is currently being ana-

lyzed. Values for the earliest 10% of the trading days

(6 days of the 60 in the rolling window) are mapped to

the first column of the grid, values for the next-to-

earliest 10% of the trading days are mapped to the

second column of the grid, and so on, until the most

recent 10% of the trading days are mapped to the

rightmost column.
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We fit the 10� 10 grid to a rolling window of 60

trading days at a time. The vertical fitting process is

adaptive: the highest value in the window is made to

correspond with the top of the grid, and the lowest

value in the window is made to correspond with the

bottom of the grid. The percentage of values that fall

in each cell of a column is multiplied by the weight in

the corresponding cell of the bull flag template (a

cross-correlation computation).

For example: There will be 6 trading days repre-

sented in each column of a single 60 trading day

window. If all 6 of these trading days have price

values which are in the lowest decile of the 60 price

values for the day, then 100% (6 values out of a total

of 6 in the column) will be the value in the lowest cell

of the 10 cells in the column. If this column is the

leftmost of the columns in the window, then this 100%

will be multiplied by the value in the corresponding

cell in the bull flag template (which is the one in the

lowest left-hand corner), which has the value of � 1.0

(See Fig. 1), to result in a cell fit value of � 1.0�
100%=� 1.0. This is done for the 10 cells in the

column and summed, resulting in a fit value for the

column of � 1.0, since there will be 0.0% in the other

nine cells of the column.

In this way, 10 column fit values for price and 10

column fit values for volume are computed for each

trading day. Summing all 20 values for a trading day

results in a total fit for the trading day. (This process is

an example of template matching as described in

Duda and Hart [10]).

Results of this template fitting process, imple-

mented with Microsoft’s Excel spreadsheet tool, for

price and volume data for the New York Stock

Exchange Composite Index for the period January 1,

1981 to December 31, 1996, appear in Fig. 2. On this

scatter-plot a point represents each trading day in the

period. The horizontal axis is the total fitting value for

the trading day point (the sum of the 10 column fit

totals for price and the 10 column totals for volume

for the time series of 60 days including and preceding

the trading day), and the vertical axis shows the

percentage of increase (or decrease) in the NYSE

Composite Index price observed 20 trading days after

that trading day.

The third-order polynomial trend-line plotted on

Fig. 2 indicates that the higher total fitting values

correlate somewhat with higher price increases. Fig. 3

isolates the total fit and 20-day price change values

for the trading days, which have total fit values at

Fig. 2. Scatter-plot of total fit for each trading day versus price

change after 20 days with third-order polynomial trend-line.

Fig. 1. Bull flag template used in this study. The first seven columns

represent a consolidation and the last three columns represent a

breakout.
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the 90-percentile level or better (which we will de-

signate as our identified bull flags.) It may be seen

from Fig. 3 that trading days meeting this 90-percen-

tile or better criteria are spread throughout the period

under study.

Note that the percentile for total fit is calculated on

a running basis, that is, the percentile for the 100th

trading day, for example, is calculated relative to the

set of the first 100 trading days, and the percentile for

the 345th trading day is calculated relative to the set of

the first 345 trading days, and so forth. Calculation of

percentile in this way uses only prior knowledge,

which makes this analysis applicable to the develop-

ment of forecasting and trading rules.

Table 1 contains statistics for a comparison of the

complete set of data with the subset of the data having

at least 90-percentile total fit values, which we use as

our identified bull flags for Experiment B and Experi-

ment C. The statistics are computed in two sections:

for the trading days before 1994 and for the trading

days from 1994 to the end of 1996. (We establish

these two sections as a training sample and a holdout

test sample for subsequent experiments. The break

between the training and test samples was selected to

have enough data points in each set for meaningful

significance testing). Table 1 indicates that a selection

of trading days based on the 90-percentile or better

value results in significantly higher price changes than

selection of trading days at random, and this result is

true for the pre-1994 set and for the 1994-later set. T-

test significance for the comparison of 90-percentile

fit or better with all of the days in the sample is 0.0000

for the pre-1994 data and 0.0052 for the 1994-later

data, and this indicates a failure to support the null

hypothesis implied by the weak form of the EMH that

prices cannot be predicted through use of price and

volume data alone.

Fig. 3. Ninety-percentile and better trading days by date showing the price change 20 trading days afterward.

Table 1

Comparison of mean price increase for 90th percentile and better

trading days to all trading days in training sample and in holdout test

sample

Pre-1994 1994-Later

For all trading days in period:

Mean price increase after 20 trading days 0.84% 1.35%

Standard deviation 0.0423 0.0296

Number of trading days in period 3289 1011

For identified bull flag trading days (90-percentile or

better total fit):

Mean price increase after 20 trading days 2.00% 2.36%

Standard deviation 0.0297 0.0268

Number of trading days meeting criteria 264 52

Comparison:

Difference in means 1.15% 1.02%

Significancea 0.0000 0.0052

a For one-tailed, two-sample unequal variance t-test on means

in column.
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4. Experiment B: forecasting price with neural

networks

Neural networks are nonparametric, nonlinear

models that can be trained to map past values of a

time series, for purposes of classification or function

estimation. We use a feedforward neural network with

backpropagation learning, which is the most conven-

tional sort of neural network. The feedforward neural

network computes input-to-output mappings based on

calculations occurring in a system of interconnected

nodes, which are arranged in layers; the output of each

node is calculated as a nonlinear function of the

weighted sum of inputs from the nodes in a layer

which precedes it in computation order. The process

of back-propagation learns the weights for the con-

nections between the nodes through training from

data, resulting in a minimized least-mean-square error

measure between the actual, desired values and the

estimated values from the output of the neural net-

work. Seminal work in neural networks includes Refs.

[25,44]. Neural network principles and practices in the

financial context are discussed in many places (for

example Refs. [1,11,24,37,40,43,50,54]); and fore-

casting is a common application [26,55]; and neural

networks are used in decision support systems [21,

46,49]. Several researchers report modest, positive

results with the prediction of market prices using

neural networks [20,28,45], but not by using price

and volume histories alone, and no one uses technical

analysis pattern heuristics.

Our network configuration consists of 22 input

nodes, 1 hidden layer with 6 nodes, and 1 output

node. The input nodes correspond to the 20 column

fitting values (10 for price and 10 for volume) and 2

window height values (the difference between the

lowest price and the highest price in the 60-day price

window, and the corresponding for volume.) The

single output node supplies the prediction of the

future price at a 20-trading-day forecasting horizon.

We normalize input values to the neural network pa-

rameter learning using a zero-mean unit-variant

(zscore) procedure. The neural network software used

is the Pattern Recognition Workbench, developed and

marketed by Unica Technologies (Lincoln, MA) and

documented in Ref. [27]. Other parameter settings

used were the product’s default values. Fig. 4 is a

block diagram showing the relationship between the

rolling window template fitting mechanism and the

neural network system.

Fig. 4. Relationship between rolling window template fitting mechanism and the neural network system. The window height adapts to the range

of values occurring in the window.
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Our initial approach is to use all of the trading days

in the pre-1994 sample for training and all of the

trading days in the 1994-and-after holdout sample for

testing. After training the neural network, the average

price increase for simulated purchases on those trad-

ing days in the testing sample, which had neural

network estimated values for the 20-day price change

greater than zero (simulating a trading rule of ‘‘buy

and hold for 20 days if the total fit is at the 90-

percentile level or better’’), were not significantly

different from the overall price change average for

the testing sample—as expected. The mean price

change was within 0.03% and the standard deviation

was within 0.004 of the respective values for the

overall averages reported for the 1994-and-after hold-

out; testing sample reported on Table 1.

However, a second approach achieves marked

success. Training with only the trading days occurring

at the end of identified (90-percentile and better) bull

flags from the pre-1994 training sample, and testing

on only the 90-percentile and better trading days in the

1994-and-after holdout sample gives better results;

shown in Table 2. The simulated trading rule of

‘‘buy and hold for 20 days if the fit value for the

trading day is at the 90-percentile level or better’’

results in 46 purchases in the holdout sample period

(passing up buying on 6 of the 90-percentile and

better identified days in the holdout test sample).

The improvement in the price change for 20 days

for those trading days with a neural network estimated

price change greater than zero over the mean value for

all of the identified (90-percentile and better) bull flag

trading days in the holdout test sample of 0.66% is

significant at the .0866 level. (Note that the first 90-

percentile and better trading days in the holdout test

sample occurred in the end of April, 1984, and the last

90-percentile and better trading days in the training

sample occurred at the end of May, 1993, an 11-

month gap, so there is no pollution of the training

sample with any element of the test sample due to the

20-day horizon which is used for training).

The significance level of the t-test comparison with

the mean for all trading days in the 1994-later sample

is 0.0000, and this is the probability that the improve-

ment in price prediction (compared to random chance)

achieved by the combined template matching and

neural network results from random chance. We

successfully predict future price from past price and

volume history. This fails to confirm the null hypoth-

esis implied by the weak form of the EMH, that is,

that price cannot be predicted from price and volume

history.

5. Experiment C: improving R2 with a genetic

algorithm

Genetic algorithms are heuristic search procedures

(explained in many places, for example Ref. [18]),

which may be used in an optimum-seeking manner to

configure neural networks [1,35,47]. We use a genetic

algorithm to determine the subset of our 22 input

variables to use to improve the R2 correlation between

the neural network estimated price increase and the

actual, experienced price increase. We use the Pattern

Recognition Workbench genetics algorithm software

(Unica Technologies) for reducing the number of

input variables to a neural network. The genetic

algorithm and the default parameter settings, which

we use, are documented in Ref. [27].

As the genetic algorithm is a generate-and-test

procedure, we divide the 90-percentile and better

pre-1994 training sample into subsets to use for

training and testing of the genetic algorithm. We use

Table 2

Comparison of mean price increase for identified bull flags (90-

percentile and better fitting trading days) which have an Experi-

ment-B-neural-network-estimated price change for 20 days greater

than zero to all trading days in holdout test sample

1994-Later

For identified bull flag trading days (90-percentile or

better total fit):

Mean price increase after 20 trading days 2.36%

Standard deviation 0.0268

Number of trading days meeting criteria 52

For identified bull flag trading days which have neural network

price increase estimate > 0.0%:

Mean price increase after 20 trading days 3.02%

Standard deviation 0.0207

Number of trading days meeting criteria 46

Comparison:

Difference in means 0.66%

Significancea 0.0866

a For one-tailed, two-sample unequal variance t-test on means

in column.
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the first 200 trading days for training and the next 64

for testing (from the pre-1994 set of 90-percentile fit

and better fit trading days.) The best R2 value found

on the 64 trading day test set was 0.324. Fig. 5 shows

that the reduction of the number of input variables did

result in improved correlation in several cases during

the genetic algorithm’s search and testing with the 64-

day test set.

Table 3 lists the output coefficients from the best

neural network configuration found by the genetic

algorithm’s search. These output coefficients are the

weights used for the respective input variable values

in the neural network prediction. The weights in Table

3 may be interpreted as implying that the consolida-

tion part (first seven columns) of the pattern for price

is more important for forecasting 20-day horizon price

than the consolidation part of the pattern for volume,

and that the breakout part (last three columns) of the

pattern for volume is more important than the break-

out part of the pattern for price.

The best neural network model found by the ge-

netic algorithm yielded a 0.558 R2 value for the 52

identified bull flag trading days (90-percentile fit and

better) in the holdout test sample. This is better than

the 0.356 R2 value resulting from the Experiment B

neural network that uses all 22 input variables. How-

ever, the improvement in forecasting ability is

achieved at a cost. This neural network configuration

with a reduced number of input variables, with the

improved R2, only delivered a 2.50% mean price

improvement, which is less of an increase over the

average for all trading days than that achieved by the

original neural network configuration of Experiment

B using all 22 input variables (3.02%) and is not much

better than the average price increase experienced for

identified (90-percentile fit and better) bull flag trad-

ing days overall (2.36%). The trade-off between risk

and performance is always with us, it seems.

Fig. 6 shows for the final, reduced neural network

configuration, the values for the estimated profit

increase on the identified bull flag trading days in

the holdout test sample compared with the actual,

experienced profit increase on those trading days.

The quality of the correlation is striking when we

Fig. 5. R2 value achieved versus number of input variables for each

configuration of the neural network generated and tested by the

genetic algorithm.

Table 3

Output coefficients for the best Experiment C neural network model

Price window height 0

Volume window height 0

Price fit column 1 0.1339

Price fit column 2 0.2636

Price fit column 3 0.0947

Price fit column 4 0.0407

Price fit column 5 0.0645

Price fit column 6 0.0266

Price fit column 7 0

Price fit column 8 0.0480

Price fit column 9 0

Price fit column 10 0

Volume fit column 1 0

Volume fit column 2 0.0693

Volume fit column 3 0

Volume fit column 4 0

Volume fit column 5 0

Volume fit column 6 0

Volume fit column 7 0

Volume fit column 8 0.1454

Volume fit column 9 0.0401

Volume fit column 10 0.0734

The fitting columns in the variable names in Table 3 are numbered

from oldest, 1, to most recent, 10.
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realize that this Experiment C neural network model

is trained-and-tested on pre-1994 data (as old as the

beginning of 1981) and is used to identify buying

opportunities in an interval from the beginning of

1994 to the end of 1996.

6. Experiment D: cross-validation

The universal approximation ability of neural net-

works often makes it possible to find a model that fits

well if enough variations in modeling parameters are

tried. Thus, critics may accuse neural network model-

ing efforts of ‘‘data snooping’’, or modeling from

hindsight. The use of significantly long time series,

convincing out-of-sample tests, and cross-validation

designs is a defense against criticisms of data snoop-

ing bias.

We perform this experiment somewhat later than

the previous three experiments and have more test

data for the New York Stock Exchange Composite

Index, this time for the period from 08/06/80 to 06/10/

99. The input nodes to the neural network are for the

10 columns of the bull flag pattern template fitting for

price and for the window height for price, normalized

by the maximum price in the 60-trading-day window

(that is, the difference between the maximum and

minimum prices occurring in the 60 trading days,

divided by the maximum price.) Note that in experi-

ment D we use price only, not price and volume as

were used in Experiments A, B, and C. There is no

pre-processing to select identified bull flag trading

days using the pattern recognizer and the 90-percen-

tile rule, as was done before the application of the

neural network for Experiment B. All of the training

and test data is input to the neural network in Experi-

ment D.

We employ a sliding-window time series cross-

validation methodology for evaluation (similar to that

used in Ref. [26]). The data is in time series order. We

train on 1000 trading days of data, skip 20 days, and

test on the subsequent 80 days of data; then slide the

training window 80 days forward, train on 1000 days

again, skip the next 20, and test on 80 days again; and

so forth. The 20 trading days are skipped before the

test set begins so that testing is done with a neural

network that is trained with at least 20-day-old data,

which is the case when forecasting 20 days in

advance. In this way we test on 47 folds of 80 trading

days each. The setting of each time period’s param-

eters based on the previous period’s performance, as is

accomplished in this sliding-window validation meth-

odology, is known as reoptimization and results in a

system that adapts to market drift and testing that has

out-of-sample results [33].

For Experiment D we configure the neural net for

classification, to differentiate the trading days into

three classes: (1) those which are expected to experi-

Fig. 6. Values from the 1994-and-later holdout sample for the actual and Experiment-C-neural-network-estimated profit increases for each

identified bull flag trading day.
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Table 4

Results by fold for Experiment D1

Fold Fold values Cumulative values

Average profit Days T-test Average profit Days T-test

Overall (%) Purchase (%) Difference (%) Overall (%) Purchase (%) Difference (%)

1 0.03 0.71 0.68 12 0.1441 0.03 0.71 0.68 12 0.144114

2 2.35 1.64 � 0.71 70 0.0936 1.19 1.50 0.31 82 0.221751

3 0.97 1.13 0.16 72 0.3586 1.11 1.33 0.21 154 0.240151

4 2.36 4.17 1.80 38 0.0002 1.43 1.89 0.46 192 0.046996

5 3.60 4.25 0.65 54 0.1143 1.86 2.41 0.55 246 0.016830

6 0.22 0.29 0.07 74 0.4437 1.59 1.92 0.33 320 0.079914

7 0.76 0.76 0.00 80 0.5000 1.47 1.69 0.22 400 0.172560

8 4.36 4.36 0.00 80 0.5000 1.83 2.13 0.30 480 0.084785

9 1.07 1.76 0.70 63 0.1215 1.75 2.09 0.34 543 0.047696

10 � 5.19 � 6.21 � 1.02 36 0.3158 1.05 1.57 0.52 579 0.028433

11 2.41 4.71 2.30 17 0.0005 1.18 1.66 0.49 596 0.032347

12 0.63 1.36 0.73 64 0.1177 1.13 1.63 0.50 660 0.020493

13 0.61 1.33 0.73 65 0.0478 1.09 1.61 0.52 725 0.011859

14 1.28 1.17 � 0.11 72 0.4211 1.10 1.57 0.46 797 0.015241

15 2.30 2.30 0.00 80 0.5000 1.18 1.63 0.45 877 0.011896

16 1.87 1.87 0.00 80 0.5000 1.23 1.65 0.43 957 0.011096

17 � 1.34 � 0.90 0.45 71 0.2107 1.08 1.48 0.40 1028 0.012820

18 1.57 2.26 0.69 56 0.1144 1.10 1.52 0.42 1084 0.008318

19 � 2.80 � 3.77 � 0.97 18 0.0664 0.90 1.43 0.53 1102 0.000955

20 0.51 1.14 0.64 48 0.1979 0.88 1.42 0.54 1150 0.000613

21 4.16 4.16 0.00 80 0.5000 1.03 1.60 0.56 1230 0.000348

22 0.84 1.35 0.51 60 0.0464 1.02 1.59 0.56 1290 0.000212

23 0.61 0.61 0.00 80 0.5000 1.01 1.53 0.52 1370 0.000343

24 0.77 1.20 0.43 65 0.2414 1.00 1.51 0.52 1435 0.000271

25 0.73 1.62 0.89 32 0.0181 0.99 1.52 0.53 1467 0.000134

26 0.66 0.67 0.02 66 0.4825 0.97 1.48 0.51 1533 0.000155

27 1.07 1.16 0.09 77 0.3716 0.98 1.46 0.49 1610 0.000151

28 0.14 0.14 0.00 80 0.5000 0.95 1.40 0.45 1690 0.000229

29 0.77 1.35 0.58 49 0.0086 0.94 1.40 0.46 1739 0.000133

30 0.30 0.75 0.45 9 0.2254 0.92 1.40 0.48 1748 0.000058

31 � 1.05 � 1.42 � 0.37 20 0.3083 0.86 1.37 0.51 1768 0.000016

32 0.83 1.68 0.85 32 0.0020 0.86 1.37 0.52 1800 0.000008

33 0.68 1.32 0.64 35 0.0489 0.85 1.37 0.52 1835 0.000005

34 2.49 2.63 0.15 64 0.1723 0.90 1.41 0.51 1899 0.000003

35 1.92 1.92 0.00 80 0.5000 0.93 1.43 0.51 1979 0.000002

36 2.27 2.27 0.00 80 0.5000 0.96 1.47 0.50 2059 0.000002

37 1.37 1.16 � 0.21 61 0.2795 0.98 1.46 0.48 2120 0.000002

38 0.49 0.85 0.37 69 0.2667 0.96 1.44 0.47 2189 0.000002

39 2.53 2.53 0.00 80 0.5000 1.00 1.48 0.47 2269 0.000001

40 1.75 1.75 0.00 80 0.5000 1.02 1.49 0.46 2349 0.000002

41 2.87 2.87 0.00 80 0.5000 1.07 1.53 0.46 2429 0.000001

42 1.03 1.14 0.10 79 0.4257 1.07 1.52 0.45 2508 0.000002

43 3.60 3.17 � 0.44 62 0.1734 1.12 1.56 0.43 2570 0.000003

44 � 1.99 � 0.40 1.59 59 0.0221 1.05 1.51 0.46 2629 0.000001

45 2.19 1.83 � 0.37 72 0.3611 1.08 1.52 0.44 2701 0.000002

46 2.19 2.19 0.00 80 0.5000 1.10 1.54 0.44 2781 0.000002

47 � 0.03 0.27 0.30 69 0.3160 1.08 1.51 0.43 2850 0.000002

‘‘Purchase’’ refers to the profit resulting from execution of recommendations from the neural net and holding for 20 trading days. ‘‘Days’’ refers

to the number of trading days on which purchasing was recommended. The ‘‘T-test’’ column values are probabilities of random choice leading

to the results found, in a one-tailed t-test between the ‘‘Purchase’’ average profit and the ‘‘Overall’’ average profit.
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Table 5

Results by fold for Experiment D2

Fold Fold values Cumulative values

Average profit Days T-test Average profit Days T-test

Overall (%) Purchase (%) Difference (%) Overall (%) Purchase (%) Difference (%)

1 0.03 – – 0 – 0.03 – – 0 –

2 2.35 1.22 � 1.13 11 0.0478 1.19 1.22 0.03 11 0.4819179891

3 0.97 1.76 0.79 1 – 1.11 1.26 0.15 12 0.3899939971

4 2.36 1.74 � 0.62 3 0.2932 1.43 1.36 � 0.07 15 0.4391756372

5 3.60 6.85 3.25 10 0.0000 1.86 3.55 1.69 25 0.0078948191

6 0.22 � 0.77 � 0.99 31 0.0719 1.59 1.16 � 0.43 56 0.2131117889

7 0.76 – – 0 – 1.47 1.16 � 0.31 56 0.2818479124

8 4.36 4.02 � 0.34 53 0.2396 1.83 2.55 0.72 109 0.0227083408

9 1.07 – – 0 – 1.75 2.55 0.80 109 0.0121966080

10 � 5.19 – – 0 – 1.05 2.55 1.50 109 0.0000502505

11 2.41 – – 0 – 1.18 2.55 1.37 109 0.0001462467

12 0.63 3.20 2.57 16 0.0043 1.13 2.63 1.50 125 0.0000104428

13 0.61 2.18 1.58 31 0.0020 1.09 2.54 1.45 156 0.0000010418

14 1.28 2.21 0.93 41 0.0689 1.10 2.47 1.37 197 0.0000003376

15 2.30 4.04 1.74 41 0.0000 1.18 2.74 1.56 238 0.0000000001

16 1.87 2.10 0.23 27 0.2786 1.23 2.68 1.45 265 0.0000000001

17 � 1.34 � 0.58 0.76 12 0.1534 1.08 2.54 1.46 277 0.0000000000

18 1.57 4.23 2.66 8 0.0079 1.10 2.58 1.48 285 0.0000000000

19 � 2.80 – – 0 – 0.90 2.58 1.69 285 0.0000000000

20 0.51 – – 0 – 0.88 2.58 1.71 285 0.0000000000

21 4.16 – – 0 – 1.03 2.58 1.55 285 0.0000000000

22 0.84 1.21 0.37 4 0.3034 1.02 2.56 1.54 289 0.0000000000

23 0.61 0.24 � 0.37 3 0.3582 1.01 2.54 1.53 292 0.0000000000

24 0.77 1.22 0.45 6 0.1664 1.00 2.51 1.52 298 0.0000000000

25 0.73 2.52 1.79 20 0.0000 0.99 2.51 1.53 318 0.0000000000

26 0.66 1.58 0.92 37 0.0155 0.97 2.42 1.44 355 0.0000000000

27 1.07 – – 0 – 0.98 2.42 1.44 355 0.0000000000

28 0.14 � 0.42 � 0.55 24 0.0566 0.95 2.24 1.29 379 0.0000000000

29 0.77 – – 0 – 0.94 2.24 1.30 379 0.0000000000

30 0.30 – – 0 – 0.92 2.24 1.32 379 0.0000000000

31 � 1.05 – – 0 – 0.86 2.24 1.38 379 0.0000000000

32 0.83 – – 0 – 0.86 2.24 1.38 379 0.0000000000

33 0.68 1.84 1.16 14 0.0059 0.85 2.22 1.37 393 0.0000000000

34 2.49 3.09 0.60 36 0.0006 0.90 2.30 1.40 429 0.0000000000

35 1.92 2.11 0.19 70 0.2394 0.93 2.27 1.34 499 0.0000000000

36 2.27 3.18 0.91 56 0.0147 0.96 2.36 1.40 555 0.0000000000

37 1.37 0.29 � 1.08 4 0.0889 0.98 2.35 1.37 559 0.0000000000

38 0.49 4.79 4.30 8 0.0000 0.96 2.38 1.42 567 0.0000000000

39 2.53 3.24 0.70 48 0.0542 1.00 2.45 1.44 615 0.0000000000

40 1.75 8.14 6.39 14 0.0000 1.02 2.57 1.55 629 0.0000000000

41 2.87 4.82 1.95 29 0.0006 1.07 2.67 1.61 658 0.0000000000

42 1.03 3.26 2.23 46 0.0000 1.07 2.71 1.65 704 0.0000000000

43 3.60 4.37 0.77 20 0.1266 1.12 2.76 1.63 724 0.0000000000

44 � 1.99 � 0.13 1.86 29 0.0175 1.05 2.65 1.59 753 0.0000000000

45 2.19 – – 0 – 1.08 2.65 1.57 753 0.0000000000

46 2.19 3.03 0.84 58 0.0402 1.10 2.67 1.57 811 0.0000000000

47 � 0.03 2.49 2.52 28 0.0001 1.08 2.67 1.59 839 0.0000000000

See the caption for Table 4 for explanation of headings.
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ence a price increase of less than 0.0% in the follow-

ing 20 trading days; (2) those which are expected to

experience a 20-day price increase greater than or

equal to 0.0% but less than or equal to 1.0%; and (3)

those which are expected to experience a 20-day price

increase greater than 1.0%. The neural network has

three output nodes, one for each of the classes. The

output value for each node is a prediction confidence

value for each class, respectively, C1, C2, and C3. The

design and tuning of a neural network system is more

art than science and many decisions are involved. We

use the default settings supplied by our commercial

neural network tool, identified in a previous section,

in all cases. We do no optimization or ‘‘snooping’’

with these settings.

For Experiment D1 we use a trading rule of ‘‘buy if

C3>C1,’’ and for Experiment D2 we us a trading rule

of ‘‘buy if C3>3�C1.’’ Table 4 shows the results for

Experiment D1, and Table 5 shows the results for

Experiment D2. The trading rule for Experiment D2 is

more discriminating than the one in Experiment D1,

and the number of trading days that receive buy

recommendations is considerably smaller, but the

profit percentage realized on that smaller number of

days is higher, and the significance is higher. The

rightmost five columns in each table contain cumu-

lative results, with overall cumulative results for all

folds and all trading days in the bottom line of the

table. Results are significant and fail to confirm the

null hypothesis, which is that the 20-day horizon

profit realized using the trading rule will be no better

than the overall average, which is equivalent to the

weak form of the EMH.

The sliding-window cross-validation mechanism of

Experiment D can be deployed directly in a decision

support context to make a purchasing decision for a

current day. The training set would end 21 days before

the current day. The testing set, now a forecast set,

would be reduced to 1 trading day, the current day.

Each day the training and forecast sets are moved 1

trading day forward, instead of 80 as in Experiment D,

to make use of the latest information.

7. Discussion

The representation of the time dimension in neural

network models may be approached with recurrent

node architectures to give the network memory. Re-

current node architectures are complex [13]. The

approach illustrated in this work brings to bear the

universal approximation power of the neural net to a

time series forecasting problem in a different way.

The technical analysis pattern heuristic paradigm em-

bodies a spatial representation of time, the 10� 10

template, which we use to transform the price fore-

casting problem into an isolated pattern recognition

problem out-of-time for the neural network. Then we

apply the resulting neural network pattern recognizer

to each trading day individually, to re-introduce the

dimension of time.

A financial trader is interested in a trading recom-

mendation, rather than in a forecast. Researchers and

developers of financial trading applications are inter-

ested in the results of applying the resulting trading

rule—and they are not interested in the quality of the

forecast by conventional forecasting error measures.

This difference in orientation and its implications is

discussed in Ref. [32]. The output of a price forecast-

ing system may be converted to a trading rule by

translating forecasts greater than some minimum per-

centage into a stock purchase recommendation. We

use a forecasted increase of more than 0.0% to signal

purchase in Experiment B and two different trading

rules based on classification confidence to signal

purchase in Experiment D.

A trading rule system is a classification system,

matching moments in time with a trading recommen-

dation. The use of multiple classifiers to make a single

recommendation, such as is the case in Experiment B,

results in a multiple classifier system. Multiple classi-

fier systems can be organized as a ‘‘conditional,’’

‘‘serial’’, ‘‘hybrid’’, or ‘‘parallel’’ combinations of

pattern recognition, neural network, and/or other clas-

sifier methods [31]. In the conditional architecture, a

primary classifier, which has low cost or generally

applicability, is used first, and if it fails to come to a

decision with the desired level of confidence, then a

secondary classifier is used. In the serial topology,

classifiers are applied in succession, with the output of

one classifier used as the input to the next. Ref. [29] is

an example of the use of the serial topology. The

hybrid organization uses the output of one classifier to

indicate which classifier to use subsequently. Exam-

ples of this are Refs. [21,41]. A parallel multiple

classifier system applies all of the classifiers simulta-
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neously to the problem, and the individual results are

combined to produce a final decision. A parallel

system whose individual decisions are combined by

some system of weighted or unweighted voting is an

ensemble classifier [8]. Recently developed ensemble

combination methods include bagging and boosting

[2], and ensemble classifiers generally perform better

than their constituent classifiers alone [2]. These

multiple classifier methods may be generalized to

include multiple forecasting systems and multiple

combinations of classifier and forecasting systems.

The pattern recognizer in Experiment A is a single

classifier system. Our work in Experiment B is an

example of use of the serial architecture for a multiple

classifier system, as only the trading days which are

identified as purchase opportunities by the pattern

recognizer are given to the neural network for learn-

ing, testing, and decision-making. Experiment C

involves model optimization rather than classification.

Experiment D integrates the pattern recognition and

the neural network into a single classifier—perhaps

constituting a hybrid multiple classifier organization,

if you analyze the resulting neural network, but we are

not sure this distinction is useful in this case.

The experimental mechanism in Experiment D is

directly adaptable as a deployable decision support

system. That decision support system could be ex-

tended to a multiple classifier form. Knowledge devel-

oped from the use of multiple window widths, multiple

price horizons, and/or multiple pattern heuristics could

be integrated into the decision support system by a

parallel, ensemble method. The possibility exists in

this stock trading domain to purchase the net summed

value of the recommendations of all of the recommen-

dations rules which might apply at a particular point in

time, possibly based on a weighting by some learned

confidence in the different windows, horizons, and/or

pattern heuristics. Contradictory actions would cancel

each other out in the net recommended purchase (or

sale). Pattern heuristic selection might be supplied by

an expert system, such as is used in Ref. [51] to adap-

tively select models to use in a forecasting system. A

case-based approach (such as is used in Ref. [29])

might be used to coordinate the application of the

different technical analysis pattern heuristics. An

expert system for cash management could be included.

All of this is an area of research and development that

we consider to be in the nature of future work.

8. Contributions

Many years of accumulated technical analysis

knowledge are available in thousands of books and

articles in the practitioner literature. This knowledge

was developed by ‘‘data mining’’ and through the

application of the ‘‘knowledge discovery in data-

bases’’ (KDD) process [15], even though we academ-

ics had not coined those terms or ‘‘invented’’ these

methods when this technical analysis development

work was done. Most of this technical analysis knowl-

edge is in subjective and qualitative forms, such as

anecdotes and cases, and is not in the sort of precise

algorithmic form that is required by hard computing

automation. This knowledge is more amenable to

application through the tools of soft computing, such

as fuzzy rules, neural networks, and genetic algo-

rithms. It remains to engineer this knowledge so that it

may be tested, evaluated and applied in a consistent

manner. The work in this paper is an early step in the

direction of engineering technical analysis lore so that

they it may be tested and deployed.

The method we devise for using neural networks to

improve the effectiveness of template matching is

novel. The isolation of the individual column cross-

correlation values as variables, which are input to the

neural network, and the modularity of the hybrid

pattern recognition and neural network method as a

whole allow the application of the genetic algorithm

to identify the most useful column variables, as is

illustrated in Experiment C.

We test the bull flag price and volume pattern

heuristic in a rigorous way, which has not been done

before. Experiments A, B, and D have robust exper-

imental design frameworks, and all have significant

out-of-sample results that fail to confirm the null hy-

pothesis that the markets are EMH weak form effi-

cient. The realization that the weak form of the EMH

fails to hold in the case of momentum is beginning to

dawn in the academic finance community. New theory

is being invented to account for this, based on

information diffusion rates [23] or behavioral phe-

nomena, such as ‘‘herding’’ [5] or ‘‘overconfidence’’

[6]. Perhaps our purely empirical paper, which com-

prises ‘‘measurement without theory’’ [30], will has-

ten the acceptance of technical analysis and accelerate

its development from its present state as a ‘‘weak-

theory domain’’ (defined in Ref. [39]). The passing of
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the EMH paradigm is an interesting story in itself. The

reversed order [17] and extended delay between

theory and practice in the case of technical analysis

is certainly not typical of other modern technologies.

We survey the currently active research area of

combining classifiers. The development and under-

standing of this technology is critical if we are to

realize the decision support potential of the new soft

computing tools. Experiments B, C, and D demon-

strate application of multiple tools, and Experiments

B and D illustrate the power in multiple classifier

systems.

We are continuing this work to the investigation of:

1) Other window widths, forecasting horizons,

and technical analysis pattern heuristics.

2) Architectures for combining the use of multi-

ple window widths, forecasting horizons, and

technical analysis pattern heuristics into a

single multiple classifier system. There is

opportunity here for the integration of fuzzy

and expert systems technology.

3) Regression to refine the effectiveness of the

template matching, instead of neural net-

works.

4) Wavelets analysis as a pattern identifier,

instead of template matching.

5) A genetic algorithm based method to mine for

new technical patterns.

9. Conclusion

We foresee that research and practice in DSS is

entering a romantic period characterized by the use of

combinations of recently developed and exotic-seem-

ing decision analysis and data modeling tools, highly

nonlinear and connectionist models, machine learning

techniques, the employment of high-performance

computing and gigantic data warehouses on and from

the desktop, and by iconoclastic attitudes toward

existing theories and accepted beliefs. The experi-

ments reported herein combine pattern recognition,

neural network, and genetic algorithm techniques in a

novel way to forecast price changes for the NYSE

Composite Index, illustrate the romantic style of DSS,

and exemplify the superior decision-making results

that may be achieved through this approach. In ad-

dition, the high quality of the results attained in the

experiments reported in this paper spotlights the

potential value of stock market technical analysis,

particularly the pattern heuristics of technical analysis.
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