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3.1 INTRODUCTION

Radiative transfer, i.e. the transfer of energy mediated by real (as opposed to
virtual) photons, is ubiquitous in Nature. For instance, the first step of photo-
synthesis consists of radiative transfer from the Sun’s photosphere to the
chlorophyll molecules of green plant leaves. The donor and acceptor are in
this case 150 million kilometers apart, and the process takes eight minutes to be
completed. Radiative transfer is also of importance in astrophysics, plasmas
and in atomic and molecular luminescence, and it plays an important role in
solar concentrators, discharge and fluorescent lamps, scintillation counters, and
lasers.

The type of radiative transfer to be discussed in this chapter consists of the
emission of a photon by an electronically excited molecule, with subsequent
absorption by an identical ground-state molecule. It involves distances much
smaller than those of the above example, and consequently occurs on much
shorter timescales, usually determined by molecular excited-state lifetimes and
not by photon propagation times.

In assemblies of like atoms or molecules, one elementary process of radiative
transfer leads to another, until one of two things happens: (a) the excitation
energy is irreversibly lost through a nonradiative path (internal conversion,
intersystem crossing, quenching, etc.), or (b) the photon escapes from the
sample (Fig. 3.1). This repeated radiative transfer is known by a number of
names: radiative transport, radiative migration, self-absorption, reabsorption,
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Figure 3.1 A schematic representation of the two kinds of photon trajectory. In case
(a), the absorbed photon, of energy hv, never exits the sample, because the trajectory
ends in a nonradiative decay process. In case (b), and after several reabsorptions, a
photon of energy 4/ escapes from the enclosure.

radiation imprisonment, and radiation trapping. Its importance depends on
many factors: the extent of spectral overlap between absorption and emission,
absorption strength, fluorescence quantum yield, concentration, cell size and
shape, excitation and detection geometries, etc. In the molecular case, it plays a
particularly important role in solutions of highly fluorescent compounds with a
good absorption—emission spectral overlap, whether concentrated or in large
volumes. When present, radiative transport affects the measured fluorescence
decays and spectra, as well as the fluorescence polarization. These observables
are then functions of the excitation and emission wavelengths, concentration,
and excitation and detection geometries.

When preparing this review, it was realized that the theoretical and experi-
mental studies of radiative transport at a microscopic level have been con-
ducted thus far in two almost noncommunicating areas, one concerned with
atomic resonance radiation, mainly in the gas phase, and the other concerned
with molecular fluorescence, mainly in the condensed phases. While there are
aspects that are specific to each field, many concepts are common. Indeed, some
remarkably similar results have been independently obtained in the two fields.
In discussing molecular processes, mention of the relevant results obtained in
the atomic field is therefore appropriate.

3.2 OVERVIEW OF ATOMIC AND MOLECULAR
RADIATIVE TRANSPORT

3.2.1 Atomic resonance radiation

The first experimental study of radiative transport was made in 1912 by R, W,
Wood [67], the discoverer of resonance radiation, with mercury vapor. He
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observed that, upon continuous excitation of a given part of the vapor, 253.7
nm atomic mercury resonance radiation was emitted from a volume larger than
that irradiated. By interposing a quartz window, he confirmed that the spread
was due not to atomic motion, but rather to radiation scattering, by means of
repeated absorptions and re-emissions. In 1923, Compton [23] put forward the
first theory of radiative transport, considered by him as formally identical to
gaseous diffusion: denoting the (base e) absorption coefficient of the medium
by a, and by 7 the average interval between absorption and emission of a
quantum by an atom, the mean free path of the quanta is 1/a and the effective
average speed of the diffusing photons would be 1/(a7). From these results, it
followed that there was a ‘“tendency of resonance radiation to remain im-
prisoned within a gas for a time which may be enormous in comparison with
the time 7 of imprisonment within individual atoms,” in qualitative agreement
with previous experimental observations. It was concluded that this effect
should be important whenever the mean free path of the radiation was smaller
than the dimensions of the apparatus (discharge tube). Compton’s diffusion
theory was later refined by Milne [43].

In 1927, Zemansky [68] carried out the first quantitative study of the phe-
nomenon, again on the mercury 253.7 nm resonance line. He was able to show
that the effective decay time of the radiation emitted in the central part of a
discharge tube could be a thousand times greater than the intrinsic atomic state
lifetime. An essential discrepancy between the experimental results and the
Compton-Milne theory predictions was nevertheless found. Zemansky drew
attention to several possible causes, including the effect of the line shape.
However, he incorrectly assumed that “the radiation composing the whole
absorption line diffused as a whole through the vapour,” a mean absorption
coefficient being thus applicable.

In 1932, Kenty [34] attempted to take into account the variation of the
absorption over the frequency spectrum of the emission, by considering a
Doppler line profile. He arrived at the surprising conclusion that, for an infinite
medium, the average diffusion coefficient was infinite. This is indeed so, on
account of the overwhelming contribution of the few photons originating at the
band wings (that supposedly extend to infinite frequencies). This showed the
general inapplicability of the diffusion equation to the radiative transport
problem, an aspect that was, however, only clearly recognized in 1947, by
Holstein [30, 311 and, independently, by Biberman [12]. Both derived a Boltz-
mann-type integro-differential equation for radiative transport, whose solution
for a cutoff experiment was obtained by Holstein as a sum of time exponentials.
An approximate solution, valid for sufficiently long times, was then given in
terms of the slowest decaying exponential, whose argument was numerically
obtained for two idealized enclosure geometries (infinite slab and infinite cylin-
der) and various spectral line shapes [30, 31]. Reasonable agreement with part of
Zemansky’s results was obtained. A refined experimental study of the mercury
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253.7 nm line by Alpert, McCoubrey, and Holstein [2] yielded still better agree-
ment, but also disclosed several complications not accounted for by the theory,
namely the increasing contribution of collisional broadening with density.

Later studies of radiative transport in atomic gases have mainly dealt with
refinements and experimental tests of approximate solutions to the Holstein—
Biberman equation, taking into account aspects such as hyperfine structure
{2, 62], simultaneous Doppler and Lorentz (collisional) broadening [62], Hei-
senberg (natural) broadening [32], incomplete frequency redistribution
[50,52,54,55], and inhomogeneous broadening [39]. Other works include
approximate calculation of the full solution to the Holstein—Biberman equa-
tion, i.e. of the parameters in the sum of time exponentials (up to 20 terms), for
the infinite slab [44, 60], for the infinite cylinder [45, 51, 61] and for the sphere
[45], and the calculation of approximate solutions in the low-opacity region
[20, 44], for which Holstein’s long-time limit is of little use.

More recently, Wiorkowski and Hartmann developed and applied to experi-
mental results [21, 64-66] a multiple scattering approach that allows calculation
of the time dependence of the fluorescence, in response to an excitation pulse, in
terms of an infinite series of unknown coefficients. The equivalence between
this treatment and that based on the Holstein-Biberman equation has been
shown [25, 36]. The multiple scattering approach: is physically appealing, math-
ematically simpler and more flexible with respect to refinements. The unknown
parameters of the theoretical decay law can be evaluated by Monte Carlo
simulation {21, 64-66]. Lai, Liu, and Ma [36] have recently pointed out that,
given the equivalence of the Holstein—Biberman equation and the multiple
scattering method, the solution of this last treatment should asymptotically
converge to the long-time exponential decay of the Holstein—Biberman equa-
tion. They then obtained formulas similar to those of the multiple scattering
method directly from the Holstein—Biberman equation. Combining both types
of solutions, it was shown that a single formula, with a finite number of terms,
was able to reproduce both the short- and long-time behavior. The same result
can also be used to obtain the steady state response of the system in terms of a
finite sum [38].

3.2.2 Molecular fluorescence

Molecular radiative transport studies, theoretical or experimental, have not
relied explicitly on the Holstein—Biberman equation. In fact, the only approx-
imate solution of this equation known for many years, based on the funda-
mental mode, is often not appropriate to the molecular case. The typical
mojecular absorption coefficients and molecular absorption—-emission overlaps
are much smaller than those of atoms. Also, the fluorescence quantum yield is
always smaller than unity. These three unfavorable factors render radiative
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transport much less efficient in molecular ensembles than in atomic ensembles.
As a consequence, the average macroscopic decay times of molecular ensembles
seldom attain values more than three or four times the intrinsic lifetime — while
for atoms, values one to three orders of magnitude higher than the intrinsic
lifetime are common. In this way, molecular fluorescence decays under the
influence of radiative transport are usually nonexponential, and show no
signs of the fundamental mode — which manifests itself only at very late
times, when the intensity is negligible.

In the molecular field, motivation for the study of radiative transport per se
came from two applied subjects: scintillation counting [13, 15, 35] and analytic
fluorescence spectrometry [37,42, 49]. Particularly in the last case, reabsorption
was, and still is, an unwanted complication in determination of the true fluor-
escence spectrum, quantum yield and lifetime. The first attempt to seriously
model self-absorption was that of Birks [14]. He proposed an admittedly simple
kinetic model to account for the increase of the macroscopic decay time. In this
model, excited molecules were classified according to generation, and a com-
mon self-absorption probability was used for all photons. This implied an
exponential decay. Later, Birks [17] recognized that the self-absorption prob-
abilities of the successive generations were in general different, but failed to
notice that the theoretical decay would no longer be exponential. Birks’s
approximate treatment was also presented in his influential reviews of molecu-
lar luminescence [16, 18, 19]. For this reason, and also because of the inherent
simplicity, it became widely used; see, ¢.g., [5, 7,24, 28, 53, 58].

Notwithstanding this, Kilin and Rozman [35], following a kinetic approach
similar to that used later by Birks [16, 17, 19], had in 1959 obtained not only the
correct (nonexponential) time dependence, rediscovered in 1985 by Wiorkowski
and Hartmann [65] for the atomic case, but also the influence of self-absorption
on the emission spectrum. However, their work remained little known until it
was revived and extended [40,41,46]. Almost simulianeously, a similar
approach, although lacking the emission wavelength dependence, was pre-
sented and applied to experimental results [33,56,57]. A stochastic theory of
radiative transport was afterwards presented [10], allowing the calculation of all
observables (including the time dependence of the polarization) from known
parameters [10, 47]. This approach was recently refined and extended to include
the contribution of nonradiative transport [11].

3.3 THE HOLSTEIN-BIBERMAN EQUATION
3.3.1 Delta-pulse excitation

Although derived with regard to the resonance radiation transport problem,
this equation — slightly generalized — is equally appropriate for the molecular
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case. Consider a given atomic or molecular ensemble, in a convex enclosure of
otherwise arbitrary shape. Suppose that a small fraction of the ensemble is
excited at time zero by a delta pulse, generating Ny excited atoms or molecules,
with a spatial distribution characterized by the number density »(7, ). Then,
the time evolution of the number density of excited species n(7, ) will be given
by

on(7, 1)
ot

= —I'n(7,t)+k, /f—"")nr )ydr’, 3.1

which is the Holstein—Biberman equation [12, 30]. In Eqn 3.1, the integration
goes over the whole volume of the enclosure; I' is the reciprocal atomic or
molecular lifetime,

P+l =, (3.2)
T0

and k, and k,, are the radiative and nonradiative decay constants, respectively.
In the atomic case, k, is due to quenching and is usually negligible. The
function f (7,7') is the average probability that a photon emitted by an excited
atom or molecule at point 7/ will be absorbed by a ground-state atom or
molecule in a unit volume element around point 7,

fEF) = /OOO F(v)k(v)——l—;Fexp[—k(v)IF— 7'|]dv, (3.3)

4r|F —

where F(v) is the normalized emission spectrum, in the atomic case usually
proportional to k(v), the latter being the (base e) absorption coefficient of the
medium.

Implicit in this derivation is: (i) neglect of the time of flight of the photons in
comparison with the intrinsic lifetime 79. This is usually a very good approx-
imation, breaking down only for very extended media of low opacity, where
retardation effects are significant. Other usually valid approximations con-
tained in Eqn 3.1 are (ii) neglect of boundary effects such as reflection or wall
quenching, (iii) supposition of isotropic emission, (iv) assumption of spatial
homogeneity of ground state species, and (v) neglect of material transport of
excitation (diffusion, convection). Finally, (vi) complete frequency redistribu-
tion is assumed, i.e. a single emission frequency distribution F(v) is valid for all
atoms or molecules. This last approximation is not always valid, especially
for atoms, and suitable extensions of Eqn 3.1 have been carried out [50, 52,
54, 55].

It is useful to define the spatial distribution function of excited species,

p(#. 1),
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pl7) =00 mnD (34)

/ nGoar VO
14

where N (1) is the total number of excited atoms or molecules in the enclosure at
time ¢. Using Eqn 3.4, Eqn 3.1 can be rewritten as

dp

1) _ 7,7 (', 0 — p(F 7, 7)p(F, £)d7 dF"
OO | [ 16600 o6 [ [ remeeosrar|. 69

From Eqn 3.5 and, on physical grounds, one sees that a stationary spatial
distribution is attained for long times, obeying, irrespective of the initial dis-
tribution,

| 167per
ps(F) = ——% : (3.6)
/ /f(?’, #\ps(F)a7 d7’
vJv
Equation 3.6 can be rewritten as
ps(r) = Ot;(?) » (3.7)

where the numerator is the average probability that a photon, originating from
an excited-state population distributed according to the stationary spatial dis-
tribution, will be absorbed in a unit volume element around point 7; the
denominator is the average probability that a photon originating from an
excited-state population distributed according to the same distribution will be
absorbed.

From Eqns 3.1 and 3.4, and using the definition of N(¢), one obtains

_‘_g - [r —k /V /V FEFp(F, 0)d7 di”} N=[-ka@®N, (38

where a&(7) is the probability that a photon originating from an excited-state
population distributed according to the spatial distribution p(7,¢) will be
absorbed. Integration of Eqn 3.8 gives

N(&) = Np exp(—I't)exp [k, /0 t&(u)du], (3.9)
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and hence the normalized (i.e. scaled to one at ¢t = 0) decay of intensity of the
radiation emitted by the enclosed ensemble, integrated over all directions, p(?),
is given by

o(t) = %E—&%exp(—Ft)exp [k, /Otd(u)du]. (3.10)

It follows, both from Eqn 3.10 and from the stabilization of the average
absorption probability with time, that a single exponential decay will result for
sufficiently long times, with a lifetime given by

70

— A1
1—&5@0’ (3 )

Ty =

where @ is the intrinsic emission quantum yield, &, = k./I" = k7.

In this way, to obtain the long-time limit solution of the radiative problem,
one needs only to compute the average absorption probability corresponding to
the long-time stationary distribution. This distribution can in turn be numeric-
ally obtained from Eqn 3.6, for each particular geometry, ground state density
and line shape.

It may be noted that the maximum possible value for 7 is attained for unit
absorption probability in Eqn 3.11, -

1
To,max =7 (3.12)

nr

The general solution of Eqn 3.1 can be written as [30]
A=Y mHe ¥, (3.13)

where the n;(7) are the stationary (but not necessarily positive for all values of 7)
solutions of Eqn 3.1, and the §; are the corresponding eigenvalues. The eigen-
value equation is obtained by insertion of Eqn 3.13 into Eqn 3.1, and takes the
form

ni(7) — k, / P m(F)AF = Bimi(7). (3.14)

Integrating both sides of Eqn. 3.14 over space, one obtains, for the eigenvalues,
Bi =TI —kvay, (3.15)

where the generalized absorption probability &; is
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&) = //f FI\dF dF, (3.16)

and the generalized distribution function p;(¥) is

. ni(7) n;(7)
i) = =m\) (3.17)
/V n@ar N

Insertion of Eqn 3.15 into the eigenvalue equation 3.14, rewritten in terms of
the generalized distribution functions p;(¥), shows that these functions are
solutions of Eqn 3.6, i.e. they are indeed stationary distributions. Like the
stationary solutions n,( 7), these generalized distributions may take negative
values, which are again devoid of direct physical meaning, except for the
long-time solution, p,(¥), that belongs to the smallest eigenvalue, 3 = 1/,
which is always positive.

From Eqns 3.13-3.17, the time-dependent distribution function can be writ-
ten as

A i
pF 1) =— =
S (e T
v H 1

i

(3.18)

the coefficients ¢; being the fraction of the excited population associated with
the ith eigenvalue,

(i=1,2,..). (3.19)

Using &(¢) as defined for Eqn 3.8, one obtains, from Eqn 3.18,

Z ;o elerdit
Z cielrdit
and inserting it in Eqn 3.10, this yields the sought-for solution:
p(t) = exp(—1I) Za, exp (k. &;t) Za, exp(—0Git) Ea,- exp(—t/7),
(3.21)

(3.20)
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Equation 3.26 becomes, after normalization,
p(1,7) = ape™, (3.28)
i

where

(1 — O_éb,')C,'

ap = e=————
' Z(l - O—zbi)ci,

1

(3.29)

and is similar in form to the overall decay, Eqn. 3.21.

A further case of interest is the direction- and frequency-resolved decay. This
experimental situation is much less common in atomic than in molecular
spectroscopy, probably on account of the much smaller emission spectral
width. Such a decay is obtained from Eqn 3.26 by just removing the integration
over frequencies carried out in Eqn 3.27:

p(t, v, 7)) = Zab,-(v)e_ﬂ"’, (3.30)
where
(o) — [ — ap(v)lci 3.31
) = S e @30
and where
(V) = / (7, V)P, (3.32)
14
with
[Fo—71
ap(7,v) =/0 k(v)exp[—k(v)x]dx. (3.33)

3.3.2 Continuous excitation (photostationary state)

For decays in response to temporal profiles other than delta excitation, and still
under the assumption of nonsaturating conditions, the decay is obtained from
linear response theory as the convolution of the excitation profile with the deita
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where
= B (3.22)
>l —a@e
and
70
e 3.23
Ti 1— &P ( )
The average decay time 7 is therefore
7= bm (3.24)

with

b = (T%c,) / (Z 11__;4‘50 > (3.25)

In this way, 7 reduces to 7, only when b; ~ 1.

In most experiments, the measured decay corresponds to a given direction
or solid angle, and not to the integrated signal over the surface of the en-
closure. In such a case, and unless the excitation process and the enclosure
geometry are such as to preserve a high symmetry (e.g. excitation along the
central axis of a long cylinder), the decay will be a function of the direction of
observation. Considering, for instance, that the recorded signal corresponds
to the photons reaching a given point 7, at the system’s boundary, the decay
will be

o1, F) o /V [~ as(MalF, HdF = SN - a)e ', (326)

where a;(F) is the average probability that a photon emitted by an excited atom
or molecule at point 7, and toward 7;, will be absorbed by a ground-state atom
or molecule before reaching the enclosure’s surface at 7;:

=7 poo
ab(?'):/o /0 F(v)k(v)exp[—k(v)x]dv dx. (3.27)
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response function (e.g. [8] and references therein). For continuous excitation,
the steady state intensity is in this way shown to be proportional to >, a:/8;,
and we obtain, for the overall intensity I,

I ¢ l—&;
T QSO—ZQI—C—W@O, (3.34)
where [y is the intensity expected in the absence of radiative transport, and @ is
the macroscopic emission quantum yield.

As might be expected, radiative transport causes a decrease in the overall
intensity only when the intrinsic emission quantum yield is smaller than one. In
such a case, the decrease may be strong, even for moderate optical densities,
owing to the nonlinear dependence on &. In this regard, Eqn 3.34 can be made
clearer by rewriting it as

g{; = Zci(l — 5&,‘) [1 + a; $o + (&i¢0)2 + (5&,‘ @0)3 =+ .. .], (335)

i

where the first term in brackets corresponds to the escape probability for the ith
eigenmode, whose photons may suffer zero, one, two, three, etc. reabsorptions
before escape.

Similarly, for the direction-resolved case, the steady state intensity, obtained
from Eqn 3.30, is given by

I @ 1 — @y
o Zc T (3.36)
Now, some a&p; may be negative, in such a way that, for some directions, the
apparent quantum yield of emission will be larger than the intrinsic one. Of
course, a compensation will exist, so that the integrated yield over all directions
will be according to Eqn 3.34, as follows from Eqn 3.36.

Finally, for the direction- and frequency-resolved cases, one obtains for the
steady state

L) = InF() 3 e 1= only) (3.37)

—~ T —audo

This equation can be used to account for the deformation of spectral shape
caused by radiative transport. In the atomic case, this effect is known as self-
reversal [22, pp. 62-65] (Fig. 3.2). In the molecular case, there is a strong
decrease in the blue side of the emission, the only side to significantly overlap
absorption (Fig. 3.3).
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Figure 3.2 A schematic representation of atomic resonance line self-reversal. Curve 1 is
the intrinsic absorption and emission spectrum. Increase of the atomic concentration
leads to a progressive deformation of the emission spectrum (curves 2 and 3) to the point
of yielding two apparently distinct lines.
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Figure 3.3 Absorption and fluorescence spectra (1 cm cell, right-angle geometry,
excitation wavelength 530 nm) of the dye rhodamine 101 in acidified ethanol. Fluores-
cence spectra are normalized at the maximum. The emission spectrum of the concen-
trated solution shows a noticeable decrease of intensity on its blue side.
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As mentioned above, with the exception of the long-time solution (corres-
ponding to the eigenvalue (), all eigenfunctions take negative values at some
points, and cannot thus be identified with physical distributions. This has been
considered a drawback of the Holstein solution, being based on modes of
difficult physical interpretation [21, 25, 36, 38, 64-66]. In fact, the negative
values are essential to account for the possibility of rise times and increased
apparent quantum yields of emission in some directions of space. These, in
turn, have a clear meaning (see Section 3.5). Nevertheless, the original solution
of the Holstein-Biberman equation, as given by Holstein, suffers from some
real limitations: (i) the eigenvalues and eigenfunctions are not easily calculated;
and (i) it cannot be used to obtain the polarization of the emitted radiation.
The approaches described in the next two sections overcome these difficulties.

3.4 MULTIPLE SCATTERING REPRESENTATION
3.4.1 Connection with the Holstein—Biberman equation
As mentioned in Section 3.2, Lai, Liu, and Ma [36] showed that the solution to

the Holstein—Biberman equation could be given in a form alternative to that of
Holstein’s {30]. Rewriting Eqn 3.1 as

%’l = (~I + kL)n(# 1), (3.38)
where the operator L is
Lin, 0] = / FEF G ) (3.39)
v

the symbolic solution of Eqn 3.38 is therefore
n(7, 1) = exp(—I't + k,tL)n(7,0) = exp(—I't)exp(k,tL)n(7,0), (3.40)
where the exponential of an operator A is defined as

AA AAA
eXp(A)=1+A+T+‘—3‘T—+.... (3.41)

Equation 3.40 thus becomes [36]

(k,2)’
il

n(rt) = e_”ini(?)

i=0

, (3.42)
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n;i(F) = L'n(7,0). (3.43)
It follows from Eqn 3.43 that

i1 (F) = L (7). (3.44)

From Eqn 3.42, the spatial distribution function p(¥,t) can be computed as

p(r,t)=[z m"’)}/l

and the time-dependent absorption probability as

a(t) = [ZN,H (ert) } / [ZN (e, ’)} (3.46)

hence, from Eqn 3.10, and in agreement with [25],

} (3.45)

— Nip1 (k1)
~I‘t 1+1
plt) = Z NN @ (3.47)

It is seen that numerical values for this solution to the Holstein—Biberman
equation can be obtained more easily than for that based on the eigenvalues.
However, the asymptotic behavior toward a single exponential is not apparent
from Eqn 3.47, and so computation of the solution for long times may demand
a prohibitive number of terms. A remedy for this situation was proposed in [36]
(see Eqn 3.66 below).

3.4.2 Kinetic model

The terms of the expansion given in Eqn 3.47 admit a simple physical inter-
pretation: each corresponds to a given generation of excited atoms or mole-
cules. More specifically, the ith term corresponds to the ith generation. It is in
fact possible to directly obtain an equation with the same time- dependence as
Eqn 3.47 from a kinetic model that considers the various generations, without
invoking the Holstein-Biberman equation [35, 41, 65]. To do so, it is convenient
to consider the following kinetic scheme:
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I(t) i kr (73,5 p_1 ke Ty ke

> A} > A > Ap -

1(1 -0 1)kr+knrl(1 'az)kr'l'knr l“ -a n-1 )kr+knrl(1 -a n)kr+knr

where Ni(f) is the number of first-generation molecules, directly excited by the
pulse I(z), N2(¢) is the number of second-generation molecules, excited by
absorption of the photons emitted by the first-generation molecules, etc., and
&; 1s the average absorption probability of photons emitted by ith generation
molecules. For delta-pulse excitation, one obtains [35, 41, 65]:

Ni(t) = Noai%%exp(—Ft), (3.48)
with
i-1
a=]]a (a=0). (3.49)
j=1

The intensity due to N; that will reach the boundary, at a given point 7, and for
a given emission wavelength A, will be

Ibi()\, I) = ky[l — ab,-()\)]N,-(t). (350)

Hence the total emission intensity is

L\t = i[bi()\, t) = k.No i[l - ab,()\)] ( ﬁ ) Ek t)ll—)' exp(=T1),
=]

=1 j=1

(3.51)

and the decay will be

_r ab,()\ (k t)l—l
r 21 o) =T (3.52)

while for the emission integrated over wavelengths and directions the decay is

i-1
plt) = —”Zl_al (i‘_‘)l) (3.53)
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This equation is identical to Eqn 3.47, as will be shown in Section 3.5. However,
a physically clearer approach, without the involvement of unknown para-
meters, is desirable. We describe this in the next section.

3.5 STOCHASTIC APPROACH

3.5.1 Formulation and delta-pulse response

Consider the absorption of a photon at ¢ =0, according to a given spatial
distribution P; (). The excited molecule generated at time ¢ = 0 will relax to the
ground state, yielding a probability p,(A, ¢) that, between ¢ and ¢ + dr, a photon
with wavelength A will hit the boundary at point 7, and thus leave the sample
(neglecting reflection). This probability can be written as

pb(/\, t) = ipbn(}\, t), (354)
n=1

where py, (A, 1) is the probability that a photon with wavelength X will cross the
boundary at a point ¥,, between ¢ and ¢+ dt, after exactly n absorption—
emission events. This probability can in turn be written as

pbn(A, t) '__fbn()‘)gn(t)a (355)

where fp,()\) is the probability that a photon with wavelength A will hit the
boundary at point 7, (thus leaving the sample), after exactly » absorption—
emission events, and g,(f) is the probability that an nth-generation molecule
will emit a photon between ¢ and ¢ + d¢, given that it will emit one. Assuming
that the photon propagation time is negligible, this probability (the normalized
density function) is given by (see Appendix A)

n—1
gn(t) = r((f—’_)l—)!e—“ (3.56)
The probability fz, () is
1 - o
Sin) = 3= BoF () / [1 = s (F, NP (P, (3.57)
™ 14

where o4(F,A) is given by Eqn 3.33 and P,(7), the probability that an nth-
generation photon will be emitted at 7, is
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)= [ [ oo [ 1O R0 TS Fror o)
Bo f(F2, 1) P1(F1)dFpy dFpz - - - dFy, (3.58)

with f(7,7') given by Eqn 3.3. Equation 3.58 can be written as a recurrence
relation:

Pra(®) = &0 [ 1.7 Pali) (3.59)

From it, one obtains the spatial distribution function p,(¥) of the nth genera-
tion,

Pn(?) _ ./Vf(r, rn—l)pn—l(rn—~1)drn—l
/Pn(7)d7 / /f(?, P )Pn—1(Fn1)dF,—y dF
14 vVJv

pa(F) = , (3.60)

which shows the equivalence between this approach and that based on the
Holstein-Biberman equation (compare with Eqns 3.6 and 3.44).
The normalized decay law will thus be

o [ 1= s NI o

pb(>‘> t) —It
pp(A 1) = =) . (3.61)
P(2,0) = / [ — ap (7, N PR dr ™~ D!
14
where PY(7) denotes P;(¥) when &, = 1. Using Eqn 3.60,
. | PO o
(1) =e TS LT oen(A) Jy et)” (3.62)

n=1 1 - abl()\)/VP?(?)d?(n — 1)"

Taking into account Eqns 3.59 and 3.60 and the definition of &; (see Eqn 3.16)
one has

[ g o
g—-=]la (3.63)
Aﬂ@ﬁ =

and Eqn 3.62 becomes identical to Eqn 3.52,
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pp(N 1) =e " ’Z - ZZI(;\)H 5, Lo t)n_ (3.64)

The emission integrated over wavelengths and directions is

/ i q)dr—/ / SEFVE)A7 A g e
- 1/p0 dr_//f 7 7 »)drd_.,(n—l)!

—e It io: 1 O /V Pﬁ(?)d? (k,t)n_l . (3‘65)

= 1-—& /I/P?(?)d?(n - 1)'

Using Eqn 3.63 again, Eqn 3.65 becomes identical to Eqn 3.53.
Knowing that a stationary distribution is reached for the higher generations
(@n — &;), one obtams

- anl— ].110" (ki)”l)‘!
I (ﬁ‘I)%"”%
e R e (P
oS () ) 1 ()
+i:§‘j (ﬁo:3> glras=I)t

=1

n i

ze”“ i A
11"
n=

i=1

n—1

(3.66)

which shows that a long-time exponential is asymptotically attained. The
approximation made in Eqn 3.66 is of course better the higher m is. A similar
approximation holds for Eqn 3.64. The usefulness of this approach has been
demonstrated [36].

Some experimental results [48] and their comparison with theoretic predic-
tions are now presented. The systems to be discussed are solutions of the
fluorescent dye rhodamine 101 in acidified ethanol or ethanol-methanol (9 : 1
v/v) (¥ = 0.9 and 7, = 4.3 ns at room temperature), whose absorption and
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emission spectra are depicted in Fig. 3.3. The enclosure under consideration is a
typical lcm x 1cm fluorescence cell. Two common detection geometries are
considered: front-face (30°/60°) and right-angle (see Fig. 3.4).

The fluorescence decay of a 107> M solution of rhodamine 101, recorded
with the front-face geometry, is shown in Fig. 3.5. The decay is nonexponential
and the average lifetime is almost the double of the intrinsic lifetime. The fit to
the theoretical decay, Eqn. 3.64, is quite good. In Fig. 3.6 a comparison is made
between the experimental and calculated average lifetimes (from the equation,
with the amplitudes evaluated by Monte Carlo simulation [47]). Again, there is
a general agreement between experiment and theory [48]. The observed trend
with emission wavelength deserves a comment: the average lifetime is lower in
the overlap region than in the red side of the emission. This occurs because
“blue” photons are either emitted close to the boundary, at early times, or are
reabsorbed, later to appear as “red” photons.

The fluorescence decay of a 5 x 10~* M solution of rhodamine 101 shown in
Fig. 3.7, recorded with right-angle geometry, displays a significant rise time.
The fit to the theoretical decay, Eqn. 3.64, is quite good. In Fig. 3.8 a compar-
ison is made between the experimental and calculated average lifetimes (again
with amplitudes evaluated by Monte Carlo simulation [47]). It is seen that the
agreement between experiment and theory is good [48]. The observed trend

A 3cem
exc

a7 d ) S
Front-face
detection

1 .
om — Right-angle
1cm detection

Figure 3.4 Experimental excitation and emission geometries, also reproduced in the
Monte Carlo simulations. The enclosure size and shape correspond to a typical fluores-
cence cell. (Reprinted with permission from E. J. Nunes Pereira, M. N. Berberan-Santos,
and J. M. G. Martinho, J. Chem. Phys. 104 (1996) 8950. Copyright 1996 American
Institute of Physics.)
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Figure 3.5 The fluorescence decay of a 10~3 M solution of rhodamine 101 in ethanol, at
room temperature, front-face geometry. Excitation wavelength 294 nm; emission wave-
length 620 nm. The average decay time is 8.4 ns. The fit to Eqn 3.64, with the intrinsic
lifetime fixed at the dilute solution value of 4.34 ns, is quite good (upper residuals plot
and reduced chi-squared value), while the fit to a single exponential is poor (lower
residuals plot and reduced chi-squared value.)
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Figure 3.6 A comparison of experimental and predicted average lifetimes of rhodamine
101 for the front-face geometry, as a function of concentration and emission wavelength.
Excitation wavelength 294 nm.

with emission wavelength is, however, opposite to that observed in front-face:
the average lifetime is higher in the overlap region than in the red side of the
emission. This occurs because “blue” photons, often absorbed, on average
suffer more reabsorptions than “red” photons, on their way to the detector.
The rise time, only observed in the blue [47], precisely reflects this waiting time
for the arrival of “blue” photons. Holstein’s solution of the Holstein—Biberman
equation, in terms of eigenfunctions, provides for the rise times through negat-
ive amplitudes for some eigenmodes, at some points of space, as discussed in
Section 3.3.2.

The physical picture can be made clearer by considering the spatial distribu-
tion of several generations of excited molecules, obtained by Monte Carlo
simulation [47], as shown in Figs 3.9 and 3.10. As can be seen, the distribution
of first-generation molecules is dictated by both the direction of the excitation
beam and the opacity of the medium at the excitation wavelength, which
controls its penetration. Excitation “diffusion” is more or less rapid according
to the opacity in the spectral overlap region. For the front-face geometry
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Figure 3.7 The fluorescence decay of a 5 x 10~ M solution of rhodamine 101 in
ethanol, at room temperature; right-angle geometry. Excitation wavelength 300 nm;
emission wavelength 576 nm. There is a pronounced rise time. The fit to Eqn 3.64,
with the intrinsic lifetime fixed at the dilute solution value of 4.34 ns, is quite good
(residuals plot and reduced chi-squared value).

(Fig. 3.9), excited molecules are initially close to the boundary point for which
emission is recorded, and then diffuse away from it. On the contrary, for the
right-angle geometry (Fig. 3.10), excited molecules are initially far from the
boundary point for which emission is recorded, but become closer over time.
Only for very high generations (and whose contribution to the decay is very
small), is the distribution close to the stationary distribution, corresponding to
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Figure 3.8 A comparison of experimental and predicted average lifetimes of 10~* M
solutions of rhodamine 101 for the right-angle geometry, as a function of the emission
wavelength. Excitation wavelength 300 nm.

the fundamental mode of the Holstein—Biberman equation. This limiting dis-
tribution is centered in the middle of the cell and has approximately radial
symmetry. Some tenth-generation distributions (see Plates 1 and 2) are already
close to it.

3.5.2 Continnous excitation (photostationary state)

From Eqns 3.64 and 3.65 one may also obtain the steady state intensities,

L) =F(X) Z [1 — opn(N)] (H a,) o, (3.67)

Iy

L _ i(l_abn (HO") , (3.68)

Iy 99 A
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) n—1
i z_%: Z(l — Qi) (Hd,) @g_l =(1—-a)+(1-a)Pd1+.... (3.69)
i=1

IO n=1

These equations may be compared with Eqns 3.34, 3.36, and 3.37. Note also
that they can be converted into finite sums by means of approximations similar
to that carried out for Eqn. 3.66.

3.5.3 Fluorescence anisotropy

It is well known that nonradiative transport decreases the ensemble fluores-
cence anisotropy. For a pair of randomly oriented and nonrotating molecules,
and for the Forster dipolar mechanism, Galanin calculated in 1950 [1,27] that
the acceptor fluorescence anisotropy is only 4% of that of the donor. This result
was later shown to be in fact the zero-time value of the indirectly excited
molecule anisotropy [9]. In any event, neglect of the contribution of indirectly
excited molecules to the ensemble anisotropy is a good and frequently made
approximation in nonradiative transport studies, where theoretic efforts con-
centrate on calculation of the survival probability of directly excited molecules.
This calculation is difficult on account of the possibility of excitation return.
Nevertheless, good approximations ([6] and references therein), extensively
tested experimentally (see, e.g., [5, 29]) are available.

The situation with radiative transport is, in a sense, the opposite of that with
nonradiative transport. In fact, and owing to its long-ranged nature, the return
of excitation has negligible probability. On the other hand, the contribution of
indirectly excited molecules to the overall anisotropy is considerable, and
cannot be neglected: the radiative mechanism has a higher orientational select-
ivity than the nonradiative one [3,4]. For the purposes of computing the effect
of radiative transport on fluorescence anisotropy, we consider only results for
directions contained in the horizontal plane (including the usual front-face and
right-angle geometries), for which the anisotropy of fluorescence takes the
highest value. We further suppose that molecular rotational motion is negligible
during the lifetime and that the exciting photons carry vertical polarization.

We start with the calculation of the depolarization due to radiative transfer
of electronic excitation energy. To conform to usage, we write as ry the aniso-
tropy of first- generation molecules (the fundamental anisotropy), implying
that r1 = rp. The anisotropy of second-generation molecules, indirectly excited
by reabsorption, will be

ra = Bro, (3.70)

where (3 is the depolarization factor (8 < 1). In contrast to nonradiative trans-
port, the probability of excitation return to the original molecule is negligible,
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and therefore the anisotropy of fluorescence of molecules belonging to the nth
generation is obtained by repeated application of Eqn 3.70:

rm=0""r (n=1,2,...). (3.71)

A quantum-electrodynamical calculation of the depolarization factor (3, by
Andrews and Juzelitinas [4], gave § = 0.28 (an identical value is obtained by
classical electrodynamics [10]; see Appendix B). This value may be compared to
that of the nonradiative dipole—dipole transfer mechanism, which is g = 0.04
[1,4,9,27]. The polarization retained after one transfer is thus seven times
greater for the radiative case — precluding, as mentioned above, the common
approximation in nonradiative transport of neglecting the contribution of
higher order generations.

For excitation with vertically polarized light, the definition of anisotropy is

_ 4L

Pl T 3.72

where the parallel-and perpendicular intensities are measured for at right-angles
to the excitation, and contained in the horizontal plane. The denominator of
Eqn 3.72 is usually proportional to the intensity emitted in all directions. An
alternative measure of linear polarization is the polarization p,

I"—IJ_
P=7=7
|+ 4L

(3.73)

where the denominator is the intensity emitted in the direction of measure-
ment. In most fluorescence experiments, anisotropy is a more useful parameter
than polarization, because the denominator is proportional to the intensity of
decay, and simpler expressions result. When several incoherent sources are
present (e.g. from a mixture of fluorescent compounds), both polarization
and anisotropy can be expressed as a sum of contributions, the weight of
each being the fraction of the intensity emitted in all directions (anisotropy),
or the fraction of the intensity emitted in the direction of measurement (polar-
ization).

When radiative transport is present, the denominator of Eqn 3.72 is no
longer proportional to the intensity decay. In fact, the symmetry of the emitting
ensemble is lowered, and a complicated positional pattern of polarizations
emerges. Both anisotropy and polarization become local quantities (i.e. relative
to the measurement point 7). From an experimental point of view, Eqn 3.72
can still be used. However, from a theoretic viewpoint, information is limited to
the decay at a given boundary point (Eqn 3.64), which is proportional to
Ij(#) + I.(f) and not to Iy(¢) 4+ 21, () (both measured at 7). Polarization, as
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given by Eqn 3.73, is therefore of more direct meaning. Nevertheless, given that
anisotropy is the parameter used in the absence of radiative transport, it is
important to obtain a generalized, albeit local anisotropy, that will reduce to
the usual result in the limiting situation of negligible radiative transport. To do
s0, one takes into account the relation between the local anisotropy and local
polarization,

= 3.74
P=5 (3.74)
or
2p
= 3.
r=3 — (3.75)
The total polarization is first obtained:
Db ()‘7 t) = Z abn(Aa t)pn, (376)
n=1

where p, is the polarization of the nth generation. From Eqns 3.71 and 3.74;

_ Sﬂ”_lro
Pn= Tt iy (3.77)
The fractional contribution ag,(t) is
CIwND) [ .\ !
a0 0 =700 = {{1 (A <,I,I1 Y RCEN
= (3.78)
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and, finally, the anisotropy is obtained from Eqn 3.75:

f oo n—1 n—1
ro(A 1) = ro{ (1 — cn(X)] (11 5"’) (2 T ﬁln—lro) (éc;;ﬂ_t)l)! }/
n=1 = (380
. n—1 1 kr n—1
(- o) 5}

n=1

)

By a reasoning similar to that for Eqn 3.66, it may be shown that for long times
the anisotropy becomes

re( X, 1) = 1y exp[—as(l — B)k.1]. (3.81)
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Figure 3.9 Theoretical anisotropy decays of 10~> M rhodamine 101 in a rigid medium,
front-face geometry, as a function of emission wavelength. Excitation wavelength 570
nm. (Reprinted with permission from E. J. Nunes Pereira, M. N. Berberan-Santos, and
J. M. G. Martinho, J. Chem. Phys. 104 (1996) 8950. Copyright 1996 American Institute
of Physics.)



136  Dynamics of radiative transport

0.40

030t

0.20 |

z
£ 0.10
S 0.08 |
2 J
< 0.06

0.04

0.02 . 1 L 1 . :

0 10 20 30 40
t/ns

Figure 3.10 Theoretical anisotropy decays of 5 x 107> M rhodamine 101 in a rigid
medium, right-angle geometry, as a function of emission wavelength. Excitation wave-
length 300 nm. (Reprinted with permission from E. J. Nunes Pereira, M. N. Berberan-
Santos and J. M. G. Martinho, J. Chem. Phys. 104 (1996), 8950, Copyright 1996
American Institute of Physics.)

Similarly, the polarization will then be

P\ 1) = 3o expl-ais(1 — Bk (3.82)

It should be stressed that the reabsorption probabilities of Egns 3.79-3.82 must
be computed with an absorption probability whose orientational dependence is
that of a radiating electric dipole, and not that of an isotropic emitter, because
it is now assumed that molecular rotation is frozen during the lifetime. How-
ever, the results are expected not to greatly differ.

Theoretical results for the anisotropy decay of rhodamine 101 in a rigid
medium, computed from Eqn 3.80, are now presented. In Fig. 3.9 the decay is
displayed for a 10~* M solution and with front-face geometry. It is faster for
“red” photons than for “blue” ones, because the latter are on average
“younger”, i.e. of a lower generation, than the “red” ones, and thus more
polarized. In Fig. 3.10 the decay for a 5 x 10~ M solution, with right-angle
geometry, is displayed. Conversely, this is faster for “blue” photons than for
“red”” ones, because the latter are on average “older”, i.e. of a higher genera-
tion, than the “red’”” ones, and thus less polarized.
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3.6 COMBINED RADIATIVE AND NONRADIATIVE
TRANSPORT

3.6.1 Importance of nonradiative transport

The contribution of nonradiative energy transport has been completely
neglected up to now. Nonradiative transport will be present whenever the
average distance between molecules is smaller or of the order of the Forster
radius for self-transfer. Because some of the parameters that favor radiative
transport (such as high absorption—emission spectral overlap and a high mole-
cular radiative constant) also favor nonradiative transport by the dipole—dipole
mechanism, the Forster radius for self-transfer tends to be significant. It is
therefore important to discuss the effects of nonradiative transport on the
macroscopic observables such as the fluorescence intensity decay, quantum
yield and anisotropy decay.

In a system in which both mechanisms are operative and, neglecting
coherence, the excitation will perform a series of short-range hops by the
nonradiative mechanism, alternating with long-distance jumps by the
radiative one. What conclusions can be drawn from this picture? First, it
is well known that the decay law is unaffected by pure nonradiative
transport -[26]. In this way, each series of short hops will not change the
decay probability of that sub-ensemble. Secondly, because the hops are
performed locally, the excitation spread during the lifetime does not exceed
a few Forster radii, and cannot change significantly the spatial distribution of
the generations considered in the radiative model. An interesting consequence
of the nonradiative hops is the efficient randomization of the orientation of
the emitting dipole. In this way, and depending on the importance of the
nonradiative mechanism, the assumption of isotropic emission may be appro-
priate even in cases in which molecular rotation is insignificant during the
excited-state lifetime. All of these considerations lead to the conclusion that
nonradiative transport leaves the decay law and quantum yield practically
unchanged.

3.6.2 Fluorescence anisotropy

As regards the anisotropy decay, the contribution of nonradiative transport
may be quite important. Invoking again the model of series of short hops
alternating with long jumps, a strong depolarization is expected for each series
of hops. Nonradiative transport will therefore contribute to the anisotropy
decay — when significant, it may even be the dominant mechanism. It is thus
of interest to obtain an expression for the combined effect of radiative and
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nonradiative transport.- To do so, we try to modify the anisotropy decay for
pure radiative transport (Eqn 3.80). Following the nth radiative step, an
(n + Dth-generation molecule is excited (at a certain time 7,41). Owing to the
nonradiative hops, there is a probability G(¢ — #,,;) that the excitation will
remain in that molecule. If the next radiative jump (1 + 1 — n + 2) occurs from
the initially excited molecule, one may still apply the depolarization equation
(3.70). If, on the other hand, the radiative jump originates from an indirectly
excited molecule by the nonradiative mechanism, total depolarization is
expected. In this way, the emission probability for polarized emission will
be, for each radiative step, g(¢)G(?), where g(¢) is given by Eqn A.2 and G(r)
is the probability that the excitation is in the directly excited molecule, when
nonradiative transport is operative. The function G(f) is given by several
theoretic treatments. For three-dimensional rigid media, a simple but accurate
formula is the so-called HHB approximation [6, 29]:

G(f) = exp( 0.8452 Ny /”g > (3.83)

where N is the average number of molecules contained in a sphere of radius
equal tothe Forster radius for self-transfer. In this way, the probability of the
emission of polarized radiation by nth-generation molecules will be

g () =gG2gG®...Q gG, (3.84)

nx

while the populatlon of that generation will continue to be proportional to
g.(t) = I[(I't)"" /(n — 1)l]e " (see Appendix A). Hence, Eqn 3.71 is replaced
by

() =5 "“r°§f,’—8 (385)
and Eqn 3.79 and 3.80 by
> n—i n 1
Pb(/\, t) = Z[l - O«’bn ( Oé,) ——&E—)—@Al /
"~ - B (3.86)

g,,(l‘)

o0 n—1
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Figure 3.11 The fluorescence anisotropy decay of 1.2 x 10~* M rhodamine 101 in
acidified ethanol-methanol (9 : 1 v/v) at 100 K, right-angle geometry. The fit to Eqn
3.87, with due allowance for nonradiative transport, is quite good (upper residuals plot
and reduced chi- squared value), while the fit to Eqn 3.80, where only radiative transport
is considered, is clearly worse (lower residuals plot and reduced chi-squared value.)
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Figure 3.12 The fluorescence anisotropy decay of 6.2 x 10-% M rhodamine 101 in
acidified ethanol-methanol (9 : 1 v/v) at 100 K, right-angle geometry. The fit to Eqn
3.87, with due allowance for nonradiative transport, is good (upper residuals plot and
reduced chi-squared value), while the fit to Eqn 3.80, where only radiative transport is
considered, is much worse (lower residuals plot and reduced chi-squared value.)
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Figure 3.13 Theoretical anisotropy decays corresponding to Figs 3.11 and 3.12, but
explicitly showing the effect of nonradiative transport.
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It must be remarked that the above considerations and formulas are not
completely general. A unified treatment of the problem of combined radiative
and nonradiative transport that includes the continuous variation from the
r~6 interaction to the r~2 interaction [3] is wanting. We have considered
only the combined effect of the (extreme) radiative and nonradiative (dipole—
dipole) processes. Nevertheless, this is expected to be valid for most situa-
tions.

Some experimental time-resolved and steady state anisotropies for rhoda-
mine 101 in an ethanol-methanol (9 : 1 v/v) glass at 100 K, for the right-
angle geometry (cell edge detection), are now presented and briefly
discussed. In Figs 3.11 and 3.12 the anisotropy decays of 1.2 x 10~ M and
6.2 x 1074 M solutions are displayed. In both cases, the fit to Eqn 3.87 (with
due allowance for nonradiative transport) is good, while neglect of the non-
radiative transport contribution leads to significantly worse fits, deviations
being higher for the highest concentration. The effect of nonradiative
transport is shown, in Fig. 3.13, to be especially important for the 6.2 x 10~*
M solution.

3.7 CONCLUSION

An integrated view of atomic and molecular radiative transport theories has
been presented, stressing the similarities between the two fields. It has been
shown that the two main treatments of radiative transport dynamics, one based
on the Holstein—Biberman equation and the other on a stochastic formulation,
are essentially equivalent. However, the latter appears to be physically clearer
and more versatile — allowing, for instance, for consideration of the combined
effect of radiative and nonradiative transport. The applicability of the theoretic
results presented has, in several cases, been illustrated by comparison with
experimental results.
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Appendix A: Probability of emission of a photon between t and t + dt
by an nth-generation molecule

In order to compute g,(?), it suffices to consider that the instant of emission for

a given realisation of an n-step process is (neglecting at first the photon
propagation time between molecules)

n
t=>_ Ay, (A1)
i=1

where Atf; is the waiting time for the ith excited molecule involved in the
sequence. Now the At; are independent random variables with the common
density function

g(Ar) = e~ T4, (A2)

Owing to the independence of the At;, the random variable ¢ has a density
function given by-the repeated convolution of Eqn A.2,

Tyt
=1 i

g()=g®gR...0g=TI
"

nx

(A3)

which is Eqn 3.56. The propagation time is neglected in this derivation. Its
consideration is unnecessary for samples of a few centimeters, if the intrinsic
decay lifetimes are of at least some nanoseconds. In such cases the decay times
will be two or more orders of magnitude longer than the propagation times of
individual hops (1/¢ ~ 3 ps/mm).

Appendix B: Depolarization factor for radiative transfer according
to classical electrodynamics

Consider Fig. B.1. The depolarization factor 3 is given by [59, 63]

_ 3{cos® w) — 1

e (B.)

where w is the angle formed by the transition moments of the donor and of the
acceptor, and corresponds to the rotation of the transition dipole when the
energy transfer occurs. This rotation can be thought to occur in two steps: first,
the donor’s transition moment rotates by an angle y, becoming coincident with
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Figure B.1 A schematic representation of donor (D) and acceptor (A) relevant para-
meters for the computation of the depolarization factor: fiz and ji, are the donor and
acceptor transition moments, d and 7i are the unit vectors along the transition moment of
the donor and along the direction joining D and A, and E; is the electric field of the
donor at the acceptor. (Reprinted with permission from M. N. Berberan-Santos, E. J.
Nunes Pereira, and J. M. G. Martinho, J. Chem. Phys. 103 (1995) 3022. Copyright 1995
American Institute of Physics.)

the direction of the electric field of the donor at the acceptor; it then rotates
again by an angle # so as to coincide with the direction of the acceptor’s
transition moment. Because these two angles are independent (x depends
only on the orientation of the donor; 8 depends only on the orientation of the
acceptor; and the donor and acceptor have uncorrelated orientations) Eqn B.1
can be rewritten as a product of two Soleillet factors [59, 63]:

3(cos?w) —1 3(cos? x) — 1 g 3{cos® §) — 1

8= 5 5 3 (B.2)
The electric field of the donor at the acceptor is, for the radiative zone,
Ei= c[(ﬁ L d)i - Zz"]] = C(cos ¥ 7 — d), (B.3)

C being a distance-dependent factor. Now the absorption probability is pro-
portional to

|Ey - fal* o |Eq|*cos? 6 = sin® 9 cos? 6. (B.4)

Because the orientational distribution function for the donor is
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f@)=siny,  velog] (B.5)

and given Eqn B.4, the ¢ orientational distribution for pairs with excited
acceptors will be

3

g(¥) =35 sin’ 4. (B.6)
On the other hand,
cos x = a}édE}d = —sin ¥; (B.7)
hence
(costx) = Gsn® ) = ["sin® p g0 = 3. (B.8)
0 5

In the same way, the @ distribution function for pairs with excited acceptors will
be

2(0) = %cos2 6 sin 6 (B.9)

and therefore

(cos? 6) = /0 cos? 0 g(6)d6 = -i- (B.10)

Finally, from Eqns B.2, B.8, and B.10, the depolarization factor is
7 2 7
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