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Properties of the Mittag-Leffler relaxation function
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The Mittag-Leffler relaxation function, Eα(−x), with 0 � α � 1, which arises
in the description of complex relaxation processes, is studied. A relation that gives the
relaxation function in terms of two Mittag-Leffler functions with positive arguments is
obtained, and from it a new form of the inverse Laplace transform of Eα(−x) is derived
and used to obtain a new integral representation of this function, its asymptotic behav-
iour and a new recurrence relation. It is also shown that the fastest initial decay of
Eα(−x) occurs for α = 1/2, a result that displays the peculiar nature of the interpo-
lation made by the Mittag-Leffler relaxation function between a pure exponential and
a hyperbolic function.
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1. Introduction

The Mittag-Leffler function Eα(z), named after its originator, the Swedish
mathematician Gösta Mittag-Leffler (1846–1927), is defined by [1–4]

Eα (z) =
∞∑

n=0

zn

�(αn + 1)
, (1)

where z is a complex variable and α � 0 (for α = 0 the radius of convergence
of equation (1) is finite, and one has by definition E0 (z) = 1/(1 − z)). The Mit-
tag-Leffler function is a generalization of the exponential function, to which it
reduces for α = 1, E1 (z) = exp(z). For 0 < α < 1 it interpolates between a pure
exponential and a hyperbolic function, E0 (z) = 1/(1 − z). The precise nature of
this interpolation is the subject of the present study. The Mittag-Leffler function
obeys the following relations [3]:

E1/n(z
1/n) = ez

[
n −

n−1∑

k=1

�(1 − k/n, z)

�(1 − k/n)

]
n = 2, 3, . . . , (2)
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Emα(z
m) = 1

m

m−1∑

k=0

Eα(z e2πik/m) m = 2, 3, . . . . (3)

It follows that E1/2 (z) = exp(z2)erfc(−z) and E2 (z) = cosh(
√

z). An explicit
expression for any rational value of the parameter α = m/n can be obtained
from equations (2) and (3).

The generalized Mittag-Leffler function is [3]

Eα,β (z) =
∞∑

n=0

zn

�(αn + β)
, (4)

so that Eα,1 (z) = Eα (z). In the simplest form α, β � 0. Algorithms for the com-
putation of the generalized Mittag-Leffler function were recently discussed [5].

There has been much recent interest in the Mittag-Leffler and related func-
tions in connection with the description of relaxation phenomena in complex
physical and biophysical systems [6–18], namely within the framework of frac-
tional (non-integer) kinetic equations. In this work, and having in view the appli-
cations of this function to relaxation phenomena, the discussion will be generally
restricted to Eα(−x) that corresponds to a relaxation function when x is a non-
negative real variable (usually standing for the time) and 0 � α � 1.

2. Basic relation

Using equations (1) and (4), Eα(−x) can be written in terms of two
Mittag-Leffler functions with positive arguments,

Eα (−x) = E2α

(
x2) − x E2α,1+α

(
x2) . (5)

A particular case of equation (3) follows immediately from equation (5),

E2α

(
x2) = Eα (x) + Eα (−x)

2
. (6)

It also follows from equation (5) that

Eα (−iω) = E2α

(−ω2) − iω E2α,1+α

(−ω2) , (7)

a result that will be used in the next section.
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3. Inverse Laplace transform

A simple form of the inverse Laplace transform of Eα(−x) can be obtained
by the method outlined in [17]. Briefly, the three following equations can be used
for the direct inversion of a function I(x) to obtain its inverse H(k),

H(k) = eck

π

∫ ∞

0
[Re[I (c + iω) ] cos(kω) − Im[I (c + iω)] sin(kω)]dω, (8)

H(k) = 2eck

π

∫ ∞

0
Re[I (c + iω)] cos(kω)dω k > 0, (9)

H(k) = −2eck

π

∫ ∞

0
Im[I (c + iω)] sin(kω)dω k > 0. (10)

where c is a real number larger than c0, c0 being such that I(z) has some form
of singularity on the line Re(z) = c0 but is analytic in the complex plane to the
right of that line, i.e., for Re(z) > c0.

Using equation (7), application of equation (9) to Eα(−x) with c = 0,
implying 0 � α � 1, yields a general relation for its inverse Laplace transform
Hα(k),

Hα(k) = 2
π

∫ ∞

0
E2α(−ω2) cos(kω)dω k > 0, 0 � α � 1, (11)

hence, for instance

H1(k) = 2
π

∫ ∞

0
cosh(iω) cos(kω)dω = 2

π

∫ ∞

0
cos(ω) cos(kω)dω = δ(k − 1),

(12)

H1/2(k) = 2
π

∫ ∞

0
e−ω2

cos(kω)dω = 1√
π

e−k2/4, (13)

H1/4(k) = 2
π

∫ ∞

0
eω4

erfc(ω2) cos(kω)dω, (14)

H0(k) = 2
π

∫ ∞

0

cos(kω)

1 + ω2
dω = e−k. (15)

Another integral representation of Hα(k), based on the Lévy one-sided distribu-
tion Lα(k) [8], was obtained by Pollard [19] (see also [17,18]),

Hα(k) = 1
α

k−(1+ 1
α )Lα

(
k− 1

α

)
. (16)
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If equation (8) is used instead of equation (9), and taking into account equation
(7),

Hα(k) = 1
π

∫ ∞

0

[
E2α(−ω2) cos(kω) + ωE2α,1+α(−ω2) sin(kω)

]
dω 0 � α � 1.

(17)

This form is less simple than equation (11), but is (formally) necessary for find-
ing the asymptotic expansion of Eα(−x), as will be done in Section 5.

4. Complete monotonicity

It is known [19,20] that Eα(−x) is completely monotonic for x � 0 if 0 �
α � 1, i.e., that

(−1)n
dnEα(−x)

dxn
� 0, x � 0, 0 � α � 1. (18)

We remark here that this result follows immediately from

(−1)n
dnEα(−x)

dxn
=

∫ ∞

0
knHα(k)e−kxdk, (19)

by noting that Hα(k) > 0 for k � 0 if 0 � α � 1(Hα(k) is a probability density
function), as could be conjectured simply by plotting the function Hα(k) for sev-
eral values of α. Demonstration that Hα(k) > 0 for k � 0 is direct for 0 � α �
1/2, using equation (11) and knowing that Eα(−x) (α � 1) is always positive
and decreases monotonically. General demonstrations for 0 � α � 1 were given
by Feller [20] and Pollard [19].

5. Behaviour near the origin

Any relaxation function I(x) can be written as

I (x) = exp
(

−
∫ x

0
k(u)du

)
, (20)

where k(x) is a x-dependent rate coefficient. When the relaxation is exponential,
k(x) is obviously constant. For the Mittag-Leffler relaxation function,

k(x) = − d
dx

ln Eα(−x) = 1
Eα(−x)

∞∑

n=0

(n + 1) (−x)n

�(1 + α + αn)
, (21)

whose initial value is finite and close to unity,

k(0) =
∫ ∞

0
k Hα(k)dk = 1

�(1 + α)
. (22)



M.N. Berberan-Santos / Mittag-Leffler relaxation function 633

It follows nevertheless from equation (22) that the fastest initial decay occurs for
α = 1/2, a result hitherto unnoticed, and that shows the peculiar nature of the
interpolation between a pure exponential and a hyperbolic function performed
by the Mittag-Leffler relaxation function.

6. Asymptotic behaviour

Expansion of equation (17) in a power series gives

Hα(k) = 1
π

∞∑

n=0

an(α) kn, 0 � α < 1, (23)

with
a0(α) =

∫ ∞

0
E2α(−ω2)dω. (24)

The Laplace transform of equation (23) is the asymptotic expansion of Eα(−x),

Eα(−x) = 1
π

∞∑

n=0

an(α)

xn+1
, 0 � α < 1. (25)

Since a0(α) �= 0 for 0 � α < 1, the Mittag-Leffler relaxation function has a
hyperbolic (x−1) asymptotic decay for 0 � α < 1, and an exponential decay
only for α = 1. The cross-over between the initial exponential-like decay and the
asymptotic hyperbolic decay occurs at a value of x that is the shorter, the smaller
the α. It follows from equation (25) that Eα(−x2) asymptotically decays as x−2,
hence equation (24) is clearly convergent for 0 � α < 1/2.

7. A recurrence relation

By taking the Laplace transform of equation (11), a recurrence relation is
obtained,

Eα(−x) = 2x

π

∫ ∞

0

E2α(−ω2)

x2 + ω2
dω, 0 � α � 1. (26)

This relation works in the opposite way of equation (6), and allows the direct
calculation of Eα(−x) from E2α(−x2). In this way, it follows, for instance, that

E1(−x) = 2x

π

∫ ∞

0

cosh(iω)

x2 + ω2
dω = e−x, (27)

E1/2(−x) = 2x

π

∫ ∞

0

e−ω2

x2 + ω2
dω = ex2

erfc(x), (28)



634 M.N. Berberan-Santos / Mittag-Leffler relaxation function

E1/4(−x) = 2x

π

∫ ∞

0

eω4
erfc(−ω2)

x2 + ω2
dω. (29)

The asymptotic behaviour of Eα(−x) also follows directly from equation (26) for
large x(α < 1).

8. Integral representations

The starting point is the known Laplace transform of Eα(−xα), J α
α (s),

which can be obtained in closed form directly from the definition,

J α
α (s) =

∫ ∞

0
Eα(−xα) e−sxdx = sα−1

1 + sα
. (30)

Application of inversion equation (9) to equation (30) yields

Eα(−xα) = 2
π

sin(απ/2)

∫ ∞

0

ωα−1 cos(xω)

1 + 2ωα cos (απ/2) + ω2α
dω, (31)

hence a new integral representation for the Mittag-Leffler relaxation function is

Eα(−x) = 2
π

sin(απ/2)

∫ ∞

0

ωα−1 cos(x1/αω)

1 + 2ωα cos (απ/2) + ω2α
dω. (32)

Analogous representations are obtained with equations (8) and (10).
The previously known integral representation for Eα(−xα),

Eα(−xα) = sin(απ)

π

∫ ∞

0

kα−1

1 + 2kα cos(απ) + k2α
e−xkdk, (33)

was obtained from the Bromwich inversion integral [5]. It follows from equation
(33) that

Eα(−x) = sin(απ)

π

∫ ∞

0

kα−1

1 + 2kα cos(απ) + k2α
e−x1/αkdk. (34)

Performing an integration by parts, equation (34) can be rewritten as

Eα(−x) = 1 − 1
2α

+ x1/α

π

∫ ∞

0
arctan

(
kα + cos(απ)

sin(απ)

)
e−x1/αkdk. (35)

Equation (34) can be used to compute the numerical coefficient of the leading
term of the asymptotic expansion of Eα(−x). Equation (24) becomes

a0(α) = α

π
�(α) sin(2απ)

∫ ∞

0

kα−1

1 + 2k2α cos(2απ) + k4α
dk, α <

1
2
. (36)
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9. Conclusions

The Mittag-Leffler relaxation function, Eα(−x), with 0 � α � 1, which
arises in the description of complex relaxation processes, was studied. From
equation (5) that gives the relaxation function in terms of two Mittag-Leffler
functions with positive arguments, the inverse Laplace transform of Eα(−x) was
obtained, equation (11), and used to derive a new integral representation of this
function, equation (32), its asymptotic behaviour, equations (25) and (36), and
a new recurrence relation, equation (26). It was also shown that the fastest ini-
tial decay of Eα(−x) occurs for α = 1/2, a result hitherto unnoticed, and that
shows the peculiar nature of the interpolation between a pure exponential and a
hyperbolic function performed by the Mittag-Leffler relaxation function.
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