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Properties of the Mittag-Leffler relaxation function
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The Mittag-Leffler relaxation function, E,(—x), with 0 < « < 1, which arises
in the description of complex relaxation processes, is studied. A relation that gives the
relaxation function in terms of two Mittag-Leffler functions with positive arguments is
obtained, and from it a new form of the inverse Laplace transform of E,(—x) is derived
and used to obtain a new integral representation of this function, its asymptotic behav-
iour and a new recurrence relation. It is also shown that the fastest initial decay of
E,(—x) occurs for « = 1/2, a result that displays the peculiar nature of the interpo-
lation made by the Mittag-Leffler relaxation function between a pure exponential and
a hyperbolic function.
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1. Introduction

The Mittag-Leffler function E,(z), named after its originator, the Swedish
mathematician Gosta Mittag-Leffler (1846-1927), is defined by [1-4]

oo n

Z
E, (2) ZZm, (D

n=0

where z is a complex variable and @ > 0 (for « = 0 the radius of convergence
of equation (1) is finite, and one has by definition Ey (z) = 1/(1 — z)). The Mit-
tag-Leffler function is a generalization of the exponential function, to which it
reduces for « = 1, E; (z) = exp(z). For 0 < « < 1 it interpolates between a pure
exponential and a hyperbolic function, Ej (z) = 1/(1 — z). The precise nature of
this interpolation is the subject of the present study. The Mittag-Leffler function
obeys the following relations [3]:

n—1
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m—1

1 |
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k=0

It follows that E;) (z) = exp(z?)erfc(—z) and E; (z) = cosh(y/z). An explicit
expression for any rational value of the parameter « = m/n can be obtained
from equations (2) and (3).

The generalized Mittag-Leffler function is [3]

oo n

z
Eyp(2) = ,12:(:) Tantp)’ 4)

so that E, | (z) = E, (2). In the simplest form «, 8 > 0. Algorithms for the com-
putation of the generalized Mittag-Leffler function were recently discussed [5].

There has been much recent interest in the Mittag-Leffler and related func-
tions in connection with the description of relaxation phenomena in complex
physical and biophysical systems [6—18], namely within the framework of frac-
tional (non-integer) kinetic equations. In this work, and having in view the appli-
cations of this function to relaxation phenomena, the discussion will be generally
restricted to E,(—x) that corresponds to a relaxation function when x is a non-
negative real variable (usually standing for the time) and 0 < o < 1.

2. Basic relation

Using equations (1) and (4), E,(—x) can be written in terms of two
Mittag-Leffler functions with positive arguments,

Ey (—x) = Exy (XZ) =X E 140 (x2) . 5

A particular case of equation (3) follows immediately from equation (5),

_ Ea () + Eq (=)

Eq (x7) 7 (6)
It also follows from equation (5) that
Eq (—iw) = Ezy (—0°) — i Ezg14a (—07) (7)

a result that will be used in the next section.
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3. Inverse Laplace transform

A simple form of the inverse Laplace transform of E,(—x) can be obtained
by the method outlined in [17]. Briefly, the three following equations can be used
for the direct inversion of a function /(x) to obtain its inverse H(k),

ck 00
H(k) = % / [Re[I (¢ + iw) Jcos(kw) — Im[I (¢ + iw)] sin(kw)]dw, (®)
0

eck

H(k) = foo Re[I(c 4+ iw)]cos(kw)dw &k > 0, 9)
0

ck
H(k) = ——

/OO Im[/(c 4+ iw)]sin(kw)dw k& > 0. (10)
0

where ¢ is a real number larger than ¢y, ¢y being such that /(z) has some form
of singularity on the line Re(z) = ¢¢ but is analytic in the complex plane to the
right of that line, i.e., for Re(z) > cy.

Using equation (7), application of equation (9) to E,(—x) with ¢ = 0,
implying 0 < o < 1, yields a general relation for its inverse Laplace transform
Hy(k),

2 o0
H, (k) = —/ Ere(—?) costkw)dw k>0, 0<a <1, (11)
T Jo
hence, for instance

Hy(k) = % /oocosh(ia)) cos(kw)dw = % /oocos(a)) cos(kw)dw = 6(k — 1),
T Jo T Jo

(12)
2 R 7(02 1 7](2/4
Hip(k) = ;/ e “ cos(kw)dw = ﬁe , (13)
0
Hyja(k) = ;/ e“ﬁerfc(wz) cos(kw)dw, (14)
0
2 [ cos(kw) _
Ho(k)=;/0 T dw = e, (15)

Another integral representation of H,(k), based on the Lévy one-sided distribu-
tion L, (k) [8], was obtained by Pollard [19] (see also [17,18]),

H, (k) = % -+ L, (k—é) . (16)
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If equation (8) is used instead of equation (9), and taking into account equation

(),
Hy (k) = % / [Ese(—0?) cos(kw) + wEn 1+a(—0?) sin(ko)|do 0 < a < 1.
0

(17)

This form is less simple than equation (11), but is (formally) necessary for find-
ing the asymptotic expansion of E,(—x), as will be done in Section 5.

4. Complete monotonicity

It is known [19,20] that E,(—x) is completely monotonic for x > 0 if 0 <
a <1, 1e., that

d"E,(—
iy LB S S0 o<a<l (18)
dx”
We remark here that this result follows immediately from
d"E,(— o0
(S B0 / K" H,, (k)e " dk, (19)
dx” 0

by noting that H,(k) > 0 for k > 0 if 0 < a < 1(H,(k) is a probability density
function), as could be conjectured simply by plotting the function H, (k) for sev-
eral values of «. Demonstration that H,(k) > 0 for £ > 0 is direct for 0 < a <
1/2, using equation (11) and knowing that E,(—x) (¢ < 1) is always positive
and decreases monotonically. General demonstrations for 0 < o < 1 were given
by Feller [20] and Pollard [19].

5. Behaviour near the origin
Any relaxation function /(x) can be written as

I(x) = exp(— /x k(u)du) , (20)
0

where k(x) is a x-dependent rate coefficient. When the relaxation is exponential,
k(x) is obviously constant. For the Mittag-Leffler relaxation function,

d I« (D"
k(x) =——InE,(—x) = , 21
O =-G b= ;F(l+a+an) @)
whose initial value is finite and close to unity,
o0 1
k(0) = k Hy(k)dk = ———. 22
O = [ kH 0k = s (2)
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It follows nevertheless from equation (22) that the fastest initial decay occurs for
a = lh, a result hitherto unnoticed, and that shows the peculiar nature of the

interpolation between a pure exponential and a hyperbolic function performed
by the Mittag-Leffler relaxation function.

6.  Asymptotic behaviour

Expansion of equation (17) in a power series gives

1 o0
Ho(k) = =D an(@) k", 0<a <], (23)

T n=0

with ~
ap(a) = / Ex(—0))dw. (24)
0
The Laplace transform of equation (23) is the asymptotic expansion of E,(—x),
I o an(a)

Eo(-0)=—) —5, 0<a<l (25)

n=0

Since ag(a) # 0 for 0 < o < 1, the Mittag-Leffler relaxation function has a
hyperbolic (x~!) asymptotic decay for 0 < « < 1, and an exponential decay
only for « = 1. The cross-over between the initial exponential-like decay and the
asymptotic hyperbolic decay occurs at a value of x that is the shorter, the smaller
the «. It follows from equation (25) that E,(—x?) asymptotically decays as x 2,

hence equation (24) is clearly convergent for 0 < o < 1/2.

7. A recurrence relation

By taking the Laplace transform of equation (11), a recurrence relation is
obtained,

2x [ Exy(—o?
x[ Eu=00) 4, 0<a<l (26)
0

Fal=x) = T X2+ ?

This relation works in the opposite way of equation (6), and allows the direct

calculation of E,(—x) from E»,(—x?). In this way, it follows, for instance, that

2x /‘X’ cosh(iw)
0

Ei(—x)=—" | =222
1(=%) T x2 + w?

do = e, 27)

2

2x [ e
El/z(—X) = ;/0 mda) = exzerfC(X), (28)
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2x /°° e erfc(—w?)
0

E1/4(—)C) = ; x2 n a)2 dow. (29)

The asymptotic behaviour of E,(—x) also follows directly from equation (26) for
large x(a < 1).

8. Integral representations

The starting point is the known Laplace transform of E,(—x%), J(s),
which can be obtained in closed form directly from the definition,

[e9) sot—l
Jo(s) = Ey(—x%) e dx = . 30
“(s) fo (xe = (30)
Application of inversion equation (9) to equation (30) yields
2 . b @* ! cos(xw)
ED( —x“ = — 2 d ) 31
(=) T sin(err/ )/0 1 + 202 cos (am/2) + w* @ D)

hence a new integral representation for the Mittag-Leffler relaxation function is
o cos(x/?w)

1 + 2w* cos (am/2) + w*

E,(—x) = %sin(an/Z) /:O (32)

Analogous representations are obtained with equations (8) and (10).
The previously known integral representation for E,(—x%),

sin(arr) [ ket -
E,(—x%) = *dk, 33
(=) T /0 1 + 2k« cos(am) —|—k2“e (33)

was obtained from the Bromwich inversion integral [5]. It follows from equation
(33) that

sin(aw) [ ket Ve
E,(—x) = Rk, 34
(=) T /0 1 + 2k% cos(am) + k2« © (34)

Performing an integration by parts, equation (34) can be rewritten as

1 1/a oo ko .
Ey(—x)=1——+ a / arctan M ek dk. (39)
2a T Jo sin(oor)

Equation (34) can be used to compute the numerical coefficient of the leading
term of the asymptotic expansion of E,(—x). Equation (24) becomes
k1 1
dk, —. 36
[ 2k cosQam) + 0k @ <3 (0

ao(@) = LT (a) sinQar) /OO
T 0
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9.  Conclusions

The Mittag-Leffler relaxation function, E,(—x), with 0 < « < 1, which
arises in the description of complex relaxation processes, was studied. From
equation (5) that gives the relaxation function in terms of two Mittag-Leffler
functions with positive arguments, the inverse Laplace transform of E,(—x) was
obtained, equation (11), and used to derive a new integral representation of this
function, equation (32), its asymptotic behaviour, equations (25) and (36), and
a new recurrence relation, equation (26). It was also shown that the fastest ini-
tial decay of E,(—x) occurs for « = 1/2, a result hitherto unnoticed, and that
shows the peculiar nature of the interpolation between a pure exponential and a
hyperbolic function performed by the Mittag-Leffler relaxation function.
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