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Laplace transforms find application in many fields, including time-resolved lumi-
nescence. In this work, relations that allow a direct (i.e., dispensing contour integra-
tion) analytical calculation of the original function from its transform are re-derived.
The results are used for the determination of distributions of rate constants of several
relaxation functions, including the stretched exponential and the compressed hyperbolic
luminescence decay laws, and the asymptotic power law relaxation function.
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1. Introduction

The Laplace transform F(s) of a function f (t) is defined by [1–3]

F(s) =
∫ ∞

0
f (t)e−stdt, (1)

where F(s) = 0 for s < 0 by definition. A brief history of this important integral
transform is presented by Deakin [4, 5].

The Laplace transform is a powerful tool for solving ordinary and partial
differential equations, linear difference equations and linear convolution equa-
tions. For this reason, it finds application in many fields. Furthermore, in relaxa-
tion processes, including time-resolved luminescence spectroscopy, the relaxation
function is either the transform or the original function of a Laplace transform
pair, the other function of the pair being also of physical relevance.

Luminescence decays are widely used in the physical, chemical and
biological sciences to get information on the structure and dynamics of molec-
ular, macromolecular, supramolecular, and nano systems [6]. In the simplest
cases, luminescence decay curves can be satisfactorily described by a sum of
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discrete exponentials, and the respective pre-exponential factors and decay times
have a clear physical meaning. However, the luminescence decays of inorganic
solids are usually complex. Continuous distributions of decay times or rate
constants are also necessary to account for the observed fluorescence decays of
molecules incorporated in micelles, cyclodextrins, rigid solutions, sol-gel matri-
ces, proteins, vesicles and membranes, biological tissues, molecules adsorbed on
surfaces or linked to surfaces, energy transfer in assemblies of like or unlike
molecules, etc.

In such cases, the luminescence decay is written in the following form:

I (t) =
∫ ∞

0
H(k)e−ktdk (2)

with I (0) = 1. This relation is always valid because H(k) is the inverse Laplace
transform of I (t), which is a well-behaved function. The function H(k), also
called the eigenvalue spectrum (of a suitable kinetic matrix), is normalized, as
I (0) = 1 implies that

∫ ∞
0 H(k)dk = 1. In most situations (e.g., in the absence

of a rise-time in the decay), the function H(k) is nonnegative for all k > 0, and
H(k) can be understood as a distribution of rate constants (strictly, a probability
density function, PDF). This PDF, or distribution of rate constants, gives impor-
tant information of the dynamics of the luminescent systems [7–10], but is not
always easy to infer from the decay law I (t). In the remaining of this work, and
in view of the specific application to be considered, the notation of equation (2)
will be retained.

The more difficult step in the application of Laplace transforms is the inver-
sion of the transform to obtain the desired solution. In many cases, the inversion
is accomplished by consulting published tables of Laplace transform pairs [1–3].
More generally, and in the absence of such a pair, the inversion integral can be
applied [2, 3]. This integral is

H(k) = 1
2πi

∫ c+i∞

c−i∞
I (t)ektdt, (3)

where c is a real number larger than c0, c0 being such that I (t) has some form
of singularity on the line Re(t) = c0 but is analytic in the complex plane to the
right of that line, i.e., for Re(t) > c0. Equation (3) is usually evaluated by con-
tour integration [2, 3].

2. A step further

Performing the change of variable t = c + iω, equation (3) becomes

H(k) = eck

2π

∫ ∞

−∞
I (c + iω)eikω dω (4)
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or

H(k) = eck

2π

[∫ ∞

−∞
I (c + iω) cos(kω)dω + i

∫ ∞

−∞
I (c + iω) sin(kω)dω

]
. (5)

Writing

I (c + iω) = Re[I (c + iω)] + i Im[I (c + iω)], (6)

Equation (5) becomes

H(k) = eck

2π

{∫ ∞

−∞
[Re[I (c + iω) ] cos(kω) − Im[I (c + iω)] sin(kω)]dω

+i

∫ ∞

−∞
[Re[I (c + iω) ] cos(kω) + Im[I (c + iω)] sin(kω)]dω

}
. (7)

Given that H(k) is a real function,

0 =
∫ ∞

−∞
[Re[I (c + iω) ] cos(kω) + Im[I (c + iω)] sin(kω)]dω, (8)

and equation (7) reduces to

H(k) = eck

2π

∫ ∞

−∞
[Re[I (c + iω) ] cos(kω) − Im[I (c + iω)] sin(kω)]dω. (9)

But, from equation (2),

Re[I (c + iω)] =
∫ ∞

0
e−ckH(k) cos(kω) dk

(10)
Im[I (c + iω)] = −

∫ ∞

0
e−ckH(k) sin(kω)dk,

hence the integrand in equation (9) is of even parity, and equation (9) can be
rewritten as

H(k) = eck

π

∫ ∞

0
[Re[I (c + iω) ] cos(kω) − Im[I (c + iω)] sin(kω)]dω. (11)

Using equations (8) and (10), equation (11) can be rewritten for k > 0 either as

H(k) = 2eck

π

∫ ∞

0
Re[I (c + iω)] cos(kω)dω, (12)

or

H(k) = −2eck

π

∫ ∞

0
Im[I (c + iω) ] sin(kω)dω. (13)
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Writing

I (c + iω) = ρ(ω) eiθ(ω). (14)

Equations (11), (12) and (13) become, respectively,

H(k) = eck

π

∫ ∞

0
ρ(ω) cos [kω + θ(ω)] dω, (15)

H(k) = 2eck

π

∫ ∞

0
ρ(ω) cos [θ(ω)] cos kω dω = −2eck

π

∫ ∞

0
ρ(ω) sin [θ(ω)] sin kω dω.

(16)

These relations allow a direct calculation of H(k) from I (t) dispensing contour
integration. It is surprising that the mentioned equations are not found in text-
books, e.g., [1, 3] and monographs on the Laplace transform, e.g., [2], given their
simplicity and usefulness. The author has initially derived them (for c = 0) from
Fourier transform theory, only to find out, after a careful literature search, that
they were already available in a more general form, but somewhat hidden in pub-
lications on the numerical inversion of Laplace transforms [11–15]. Nevertheless,
the relations are also interesting for the analytical calculation of inverse trans-
forms, as will be shown in the next sections.

3. Some simple examples

Consider the elementary case

I (t) = 1
t − a

, (17)

whose inverse is exp(ak). Application of equation (12), for instance, with c > a,
yields

H(k) = 2(c − a) eck

π

∫ ∞

0

cos(kω)

(c − a)2 + ω2
dω = eak. (18)

A similar calculation for

I (t) = t

t2 + 1
, (19)

allows to obtain (with c = 1)

H(k) = 2 ek

π

∫ ∞

0

(ω2 + 2) cos(kω)

ω4 + 4
dω = cos k. (20)
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The definite integrals become rapidly of difficult evaluation in closed form, even
for simple cases. On the other hand, they allow to obtain very easily results
that are not so direct with contour integration, and are also suited for numer-
ical evaluation of the original functions (by numerical integration [11–15]). The
analytical calculation of the PDF’s of luminescence decays and other relaxation
functions is discussed in the next section.

4. Application to luminescence decays and other relaxation functions

In the case of luminescence decay functions, physical reasons preclude the
existence of singularities, and the constant c in equations (11)–(16) can always
be set to zero.

(a) Exponential decay

I (t) = e−t/τ0,

I (iω) = e−i ω/τ0,

H(k) = 1
π

∫ ∞

0
cos

[
ω

(
k − 1

τ0

)]
dω = δ

(
k − 1

τ0

)
. (21)

(b) Stretched exponential (Kohlrausch)

For the stretched exponential (or Kohlrausch) decay law

I (t) = exp

[
−

(
t

τ0

)β
]

, (22)

One has,

I (iω) = exp

[
−

(
iω

τ0

)β
]

= exp

[
−

(
ω

τ0

)β

cos
(

βπ

2

)]

× exp

[
−i

(
ω

τ0

)β

sin
(

βπ

2

)]
. (23)

and therefore, from equation (15),

H(k) = 1
π

∫ ∞

0
exp

[
−

(
ω

τ0

)β

cos
(

βπ

2

)]

× cos

[
kω −

(
ω

τ0

)β

sin
(

βπ

2

)]
dω. (24)
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Performing the change of variable u = ω/τ0 it is finally obtained that

H(k) = τ0

π

∫ ∞

0
exp

[
−uβ cos

(
βπ

2

)]
cos

[
kτ0u − uβ sin

(
βπ

2

)]
du. (25)

From equation (16) alternative forms are (k > 0)

H(k) = 2τ0

π

∫ ∞

0
exp

[
−uβ cos

(
βπ

2

)]
cos

[
uβ sin

(
βπ

2

)]
cos (kτ0u)du, (26)

and

H(k) = 2τ0

π

∫ ∞

0
exp

[
−uβ cos

(
βπ

2

)]
sin

[
uβ sin

(
βπ

2

)]
sin (kτ0u)du. (27)

Any normalised linear combination of equations (26) and (27) is also a
valid solution. H(k) can be expressed by elementary functions only for β =
1/2 [3, 16, 17],

H(k) = e − 1/(4kτ0)√
4πk3τ0

(28)

and is variously called Smirnov [16] and Lévy [17] PDF.
Pollard’s relation [18], which is the only previously known integral form for

H(k),

H(k) = τ0

π

∫ ∞

0
exp (−kτ0u) exp

[−uβ cos (βπ)
]

sin
[
uβ sin (βπ)

]
du. (29)

was obtained from the Bromwich integral (complex inversion integral) by defin-
ing a special contour. Equation (25) can of course also be obtained by contour
integration [10], but not so directly.

(c) Compressed hyperbola (Becquerel)

For the compressed hyperbolic decay [10]

I (t) = 1[
1 + (1 − β) t

τ0

]1/(1−β)
, (30)

one has, successively,

I (iω) = 1[
1 + (1 − β) iω

τ0

]1/(1−β)
=

[
1 +

(
(1 − β) ω

τ0

)2
]−1/(2(1−β))

× exp


−i

arc tan
(

(1−β) ω

τ0

)

1 − β


 , (31)
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H(k) = 1
π

∫ ∞

0

[
1 +

(
(1 − β) ω

τ0

)2
]−1/(2(1−β))

cos


kω −

arc tan
(

(1−β) ω

τ0

)

1 − β


 dω,

(32)

H(k) = τ0

π (1 − β)

∫ ∞

0

(
1 + u2)−1/(2(1−β))

cos
(

kτ0u − arc tan u

1 − β

)
du, (33)

and from equation (16),

H(k) = 2τ0

π (1 − β)

∫ ∞

0

(
1 + u2)−1/(2(1−β))

cos
(

arc tan u

1 − β

)
cos (kτ0u) du, (34)

H(k) = 2τ0

π (1 − β)

∫ ∞

0

(
1 + u2)−1/(2(1−β))

sin
(

arc tan u

1 − β

)
sin (kτ0u) du. (35)

Equations (33)–(35) are alternative forms of the Gamma PDF,

H(k) = τ0

1 − β

(kτ0/(1 − β)β/(1−β) exp (−(kτ0/(1 − β)))

� (1/(1 − β))
. (36)

(d) Asymptotic power law

The asymptotic power law [19, 20]

I (t) = 1
1 + (t/τ0)

α (37)

with α < 1, was suggested as an alternative to the stretched exponential relax-
ation function, for the description of peptide folding kinetics [20], and indeed
also successfully fitted experimental data spanning seven orders of magnitude
[20]. However, this equivalence does not hold for excited state kinetics: equation
(37) is not a valid luminescence decay law over the entire time range, given that∫ ∞

0 I(t) dt is divergent for α < 1.
It is interesting to compute the inverse Laplace transform of equation (37),

i.e., the respective PDF of rate constants. Application of equation (12) yields

H(k) = 2τ0

π

∫ ∞

0

uα cos (απ/2) + 1
u2α + 2uα cos (απ/2) + 1

cos (kτ0u) du, (38)

and equivalent expressions can be obtained from equations (11) and (13). A
more complex expression for H (k) is available [21]. Series expansion of equation
(37) in powers of τ0/t , followed by termwise Laplace inversion, allows to express
H (k) in terms of the generalized Mittag–Leffler function Eα,β(x)[21],

H(k) = τ0 (τ0k)α−1 Eα,α (− (τ0k)α) , (39)
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where

Eα,β (x) =
∞∑

n=0

xn

�(αn + β)
. (40)

For α = 1/2 equation (38) reduces to

H(k) = τ0

[
1√

πτ0k
− exp (τ0k) erfc

(√
τ0k

)]
. (41)

5. Conclusions

Laplace transforms find applications in several areas of physical and
chemical relevance, including time-resolved luminescence and other relaxation
phenomena. In this work, relations that allow a direct (i.e., dispensing con-
tour integration) calculation of the original function from its transform were
re-derived and applied to the analytical calculation of the distributions of rate
constants of the stretched exponential and compressed hyperbolic luminescence
decay laws, and also to the asymptotic power law relaxation function.
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