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The evaluation of the kinetic rate constants of a given
kinetic scheme is usually done by a‘fitting pro¢edure of the

experimental results to the integral kinetic equations. For

this reason an important part of chemical kinetics courses is
devoted to the integration of the rate equations. The usual
presentation of this topic (1-3) consists in studying several
particular cases, namely first-order, second-order, first-or-
der consecutive, reversible first-order, etc. While this is

quite necessary, it mayleave the student with the impression.

that each case is somewhat unique.

The aim of this paper is to present a general approach
based on a matrix formulation of the differential kinetic
equations. This subject is only briefly treated in basic texts
of chemical kinetics (2, 4). In the first part of the paper we
present a general analytical solution for systems composed
only of unimolecular steps. The method presented is exem-
plified in the case of two consecutive unimolecular reactions.
In the second part the general case of kinetic systems com-
posed by steps of any order is analyzed. Numerical methods
are presented in terms of the same matrix formulation. Nu-
merical calculations are performed for a real complex kinetic
system and the results obtained are discussed.

The Matrix Formulation for Unimolecular Systems

It is well known that even moderately complex kinetic
systems present very complicated integral solutions. In most
cases closed form solutions are even impossible, and one is
forced to resort to implicit equations or infinite series (3, 5),
let alone numerical integration.

Unfortunately, no criterion exists that enable us to answer
the question: is this reaction kinetic scheme amenable t0:a
solution in terms of elementary functions? However there is
a class of kinetic systems known to always prompt the affir-
mative: those solely composed by unimolecular steps (6).

Let X; represent the concentration of species i, If there are
n such species, the general set of rate equatlons for a unimo-
lecular system will be

dX

—(—i—t_ = kqu + k12X2 +

ot kX,

dX,
L R ST &
........ GO, 1
dx, .
d—t_ = kn1X1 + kn2X2 + + hnan
or, in matrix form
dX
i 2
de KX @
where X (state vector) and K (rate matrix) ai'e ’
X, kyy klz o e ki
X, Ry Rog . . . Ro,
x| - K= e e @)
Xn knl an . - - knn

The solution of the differential'eq 2 is similar to the corre-
sponding scalar equation (7), i.e.,

X(¢) = exp(K£)X(0) @

where the exponential of the matrix (Kt) is defined by the
familiar expansion

exp(Kt) = U + Kt + (K)%/2! +. (5)

U being the unit matrix of order n.

The matrix exp(Kt) is called the state transition matrix,
and denoted by ®(t), in a‘different context (7). We will
conform to this usage here. In order to solve eq 2 we need to
compute the state transition matrix. There are - several meth-
ods to perform this: The calculation of successive powers of
K, followed by the use of eq 5, is-perhaps the most straight-
forward. However, this is a rather cambersome procedure. A
general method; based on the Cayley—Hamilton theorem (8),
allows the reduction of the infinite series (eq 5) to -
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a(t) = % (AU + AR + . .. + A,y (K™ ©)

where A is the Vandermonde determinant,

1w w1 . .. ;L'l'_l
1 o ;1.2 .o..owt

A= det 2o ? ™
L

and A, is the determinant obtained from eq 7 by substituting
exp(u1), exp(us2), . . . explun), for urt, o', . . . ua. The y; values
are related to the eigenvalues of K by

m=EAt G=1,2...,n) ®)
with the eigenvalues obtained from the equation
det(K—AU) =0 9

if the eigenvalues of K are all distinct, eq 6 can be recastin a
simpler form

() = Mlexp(xlt) + Moexp(Ast) + i + M, exp(X,t)  (10)
where the M; are matrices related to K and its eigenvalues by

n -
— J
M H A=A

i

@i=12,...,n) (11)

substitution of eq 10 in eq 4 yields
X(t) = C, exp(\yt) + Cpexp(gt) +. .. + Cpexp(e)  (12)
where the C; are column vectors
C,=MX0 (=1,2...,n (13)

Computation of the eigenvalues of the rate matrix K, togeth-
er with that of the C; vectors gives the solution of eq 2 in the
form of eq 12. Calculation of the C; vectors by use of eqs 11
and 13 is not usually the easiest procedure. In fact, substitu-
tion of eq 12 in both sides of eq 2 gives

KC=)xC  (i=1,2...,n (14)

which shows that these vectors are eigenvectors of the rate
matrix. Therefore, they may be directly obtained as eigen-
vectors of K and are completely defined, apart from a multi-
plicative constant (if C; verifies eq 14, then «C; also verifies
it, « being a scalar constant). In this way, eq 12 can be
rewritten as

X(t) = 0,CY exp(\t) + @,C) explot) + ... + @, Co exp(A,t)  (15)

where the C;° are arbitrarily chosen eigenvectors of K (asso-

(o T o: N 0. ) o
C,= Co G - - - Co a=|" (18)
A, ¢, . . . C° o,
hence
a = C;1X(0) (19

Therefore the solution of eq 2 (eq 15) is obtained in the
following three steps:

(i) Compute the eigenvalues of K (eq 9)
(i) Compute a set of eigenvectors of K (eq 14)
(iii) Compute the scalar coefficients (eq 19)

A Simple Example

Let us consider the following example of a consecutive
reaction with two unimolecular steps

E, k,
X =2 X—=>X

the system of rate e(jliations is

; X [~k 0 o X,
T Xyl=| by —ky 0O X, 20)
X, 0 k 0 X,
and therefore
[k 0 0
K=| &k —ky O 21)
0 ky O

the eigenvalues of K are easily found to be A\; = —k1, Ay = —kg
and A3 =0, and a set of particular eigenvectors to be

ky —k; 0 0
Cl=| Kk Ci=|1 ci=|o (22)
—ky -1 1

X,(0)
Ry -k,

ky (23)
ky— ky X0

X1(0) + X,(0) + X,;(0)
and by use of eq 15, the solution is

hence

[»4

Xy(0) —

X(0) exp(—Fkyt)

kR, X4(0)
ky—k,

X =

(exp(—Fk,t) — exp(—k,t)) + X,(0) exp(—k,t)

(29)

(1 + 1 (k; exp(—kqt) — ko exp(—klt)))Xl(O) + (1 — exp(—£k,t)) X,(0) + X;(0)

by =k,

ciated with \;) and «; unknown scalar constants. These are
determined by the initial conditions,

- X(0) = e CY+ @, Co +. ..+, C (16)

which is a system of n.equations in » unknowns. This system
~can be written in a matrix form,

Cia =X, 1
where Cb is the modal matrix, whose columns are the eigen-

vectors C;%, and « is the vector of the scalar coefficients.
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The Case of Degenerate Eigenvalues
If there are degenerate eigenvalues, eq 12 is no longer
applicable. From eq 6 it may be shown that if \; is n {imes
degenerate, there will be terms in exp(\t), texp(\it), ...,
t"Lexp(\it). For instance, if one of the eigenvalues, A; say, is
double degenerate, eq 12 is replaced by
X(t) = (C + Cit) exp(\t) + Cy exp(ht) + ...+ C,_; exp(\,_;t)
(25)



where the C; are eigenvectors and C'l- verifies
MC1+C =K (26)
as can be obtained by substituting eq 25 on both sides of eq 2.

In the above example, this case arrives if By = ko = k. One
then obtains, either by use of eq 6 or by use of eq 25

such approximations was questioned by several authors (15—
18). When a solution valid for all times and species involved
is desired, other methods, namely numerical integration,
should be applied. The simplest numerical procedure is to
approximate dX/dt by AX/At (Euler’s method).

X,(0) exp(—kt)

X(t) =

(RX,(0)t + X,(0)) exp(—kt) @2n

X;(0) + X,(0) + X;(0) — (RX(0)t + X,(0) + X,(0)) exp(—kt)

As stated before, if the kinetic system is composed solely
of unimolecular steps, an analytical solution always exists.
In practice the solution cannot be obtained in many cases
due to the impossibility of extracting the roots of the charac-
teristic polynomial of K, i.e., of obtaining its eigenvalues.

Some interesting applications where the explicit solutions
are obtainable, are given by Carpenter (9).

The formalism presented here is quite general and can be
found in different subjects like relaxation kinetics (10) and
radiationless energy transfer between identical molecules
1n.

Systems of Any Order

In the most general case (elementary steps of any order)
the rate equations may be written

ax,
= = OX; kX + .+ Ry (DX,
ax

d—tz = ko (X, + koo Xy +.. .+ Eo (DX,

............... (28)

dx,
= R OX; + k(X + L+ Ry (0X,

where the pseudoconstants k;;(t) contain the concentration
of species other than j. For example, the system

ks
X —> X,

ko
X, + X, % X,

gives
X0 [~k kX, 0 X, ,
(‘%Xz =1k —kX; 0 Xy (29)
X, 0 kX, 0 X,
or
X, [—ki+k:Xs) 0 0 X,
adz Xo|l=| ki—RX, 0 0 X (30)
X, kX, 00 X,

The rate matrix is then, in general not unique (an infinite
number of matrices can be written for the above example),
and is a function of time

dX

FTe KX (31)
Since the dependence of K on time is implicit (via concentra-
tions) exact integration of eq 31 is generally impossible.
Solutions for a large number of cases are nevertheless known
and can be found in refs 7-6. For complex systems approxi-
mations are often invoked (namely the steady-state and
preequilibrium approximations), in order to simplify the
mathematics (12-18). However, the general applicability of

AX _ X(t + At) - X(0)

A AL = K@)X(t) (32)

hence?,
X(¢ + At) = [U + K@)A]X () - (33)

Repeated application of eq 33 (with constant or variable
time increment At), assuming X(0) known, allows the calcu-
lation of the concentration of all species at any instant. This
method has a local error of the order (At)2 owing to the
truncation of the Taylor series expansion, that restricts its
accuracy. The global error (due to the accumulated errors in
each integration step) is difficult to estimate. Obviously it
depends on how X(¢) behaves and how close the approxima-
tions are in different steps. Oscillations in X(¢) can make the
errors cancel each other; conversely instability in the inte-
gration method can lead to large global errors even with a
very small local error. Instability is a very important prob-
lem in chemical kinetics (stiff systems), whenever the rates
differ by orders of magnitude and the variation in time of the
concentration of some species is very small (20, 21). A de-
tailed analysis of the problem is out of the scope of this
paper. Sophisticated numerical methods and the corre-
sponding software packages are accessible (22-24).

Besides Euler’s method, other simple methods of integra-
tion are known, and we refer here to the Runge-Kutta meth-
od (25) where a better accuracy can be obtained using a
larger integration step, reducing in this way the computation
time. In this method the step is subdivided and K(¢) is
computed at selected points in each subinterval. An approxi-
mate formula is used to calculate X(¢) for each step. Differ-
ent orders for this method are known depending on the
number of subdivisions used. For a differential equation of
the form

dy

ax flx, ) (34)

the Runge-Kutta method of fourth order gives,

ylx + Ax) = y(x) + Ax/6(k, + 2k, + 2k, + k) (35)
with
ky = £(x, y)
ky = flx + Ax/2,y + k,/2) (36)

ko= f(x + Ax/2, y + ky/2)
k4=f(x+ Ax,y+h3)

the method can be extended in order to solve matrix eq 31,
giving, in a compact form,

1 Formosinho et al. (79) using ‘“‘Markov chains’ arrive in a more
complicated way at a similar result. Their method is therefore purely
deterministic.
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X(t + At) = D(OX(1) 37
where the matrix D(¢) is a sum of matrices
D(t) = U + At/6[K(¢) + 2K, (£)A) + 2K, (1) B(t) + K;(£)C(t)]
(38)
with
A(t) = U + K(t)At/2
B(t) = U + K, (t)A(t)At/2 (39)
C(t) = U + K,() B(t) At

and K; are the matrices K evaluated in different points of the
interval, namely

K, (®) = K(A()X(1)
K,(t) = K(B(5)X(t)) (40)
K;(8) = K(C{)X(£)

X, (ke + k)
X Ry
X=X, K= 0
X, ky
X, 0

The matrix D(¢t) can be evaluated using egs 39 and 40,
knowing the matrix K(¢) and the interval At. Once known
D(t) for a given instant the value of X for the next instant (¢
+ At) is straightforwardly calculated using eq 37. In this way
successive applications of eq 37 allow the calculation of the
time dependence of the concentration of all species.

The local error in this integration procedure is of the order
(At)5. When compared with Euler’s method a better accura-
¢y is in general obtained. However, this method may not be
suitable for stiff systems (25) because of the prohibitively
large number of steps required to maintain stability. The
numerical formalisms presented are, in their matrix form,
quite appropriate for computational purposes, owing to
their generality and compactness?.

Application to a Real System

We will consider here the work of Williams and Bruice
(26) on the reduction of carbonyl compounds like pyruva-
mide by 1,5-dihydroflavines. A simplified mechanism for
these reactions, is

N kY ko

FIH, + >C—0 = CA = Im (1)
key’

FIH, + >C=0 — Fl,, + H>C—0H 42)
Ry

Fl,, + CA— CT + C—=0 3)
ks

CT = FIH, + Fl,, (44)

ks

The reduced flavin (FIH;) reacts with the pyruvic substrate
(—=C=0) to form a carbinolamide (CA) that can dehydrate
to an imine (Im) in a reversible step or return to the initial
reactants. The flavin can also be oxidized to Fl,; by the
carbonyl compound in step 3. The oxidized flavin can react
with the carbinolamide to form a charge-transfer complex
(CT) which dissociates to reform FIH; and Fl,, in a revers-
ible way. For high concentrations of the carbonyl compound
the following system of differential equations can be written
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dX; ‘

—(it— = —(k1 + ks)X1 + kleZ - k_5X1X4 + k5X5

dx,

=X~ G+ )X+ B X~ kXX,

dX,

T Ey Xy~ kX3 (45)
dX,

= keXy — RXoX, — R XX, + heXs

dX;

T = k4X2X4 + k_5X1X4 - k5X5

where ky = &, [>C=0] and k3 = k, [>C=0] are pseudo-
first-order rate constants and the different species are iden-
tified in the following way:

X, = FlHy X, = CA; X, = Im; X, = Fl; X, = CT

This system of equations can be written in a matrix formula-
tion (see eq 31) with the vectors of concentrations X and the
rate matrix K given by

k., 0 ~ks X, ks
=(koy k) Ry,  —RX, 0
ky —k_, 0 0 (46)
—kX, 0 —k_ X, ks
kX, 0 kX, —kj

We perform the numerical integration with the following
rate constants: k; = 2.74 X 1072 min~!, k_; = 1.51 X 102
min~1 ky = 1.34 X 1072 min~1, k_y = 6.31 X 10-3 min~}, ks =
2.76 X 1073 min~L, By = 2.05 X 102 M~ min~1, ks = 1.52 X
1072 min~1, k.5 = 2.17 X 102 M~! min~!, and the initial
concentrations [FIHy] = 7.0 X 1075 M and [ >C=0] = 0.10
M, corresponding to case D of ref 26.

Figure 1 shows the numerical integration using Euler’s
method (eq 33) with an integration step of 0.5 min. The
qualitative behavior of the time evolution of the concentra-

2 The program used (MS-DOS version) will be available from Pro-
ject SERAPHIM.
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Figure 1. Concentration versus time for species of mechanism described by
eqs 41-44 obtained by Euler’s method with an integration step of 0.5 min and
labelled at each 20 min; O, FiHy; O, CA; A, Im; ¢, Fly; *, CT.
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Figure 2. Concentration versus time for species of mechanism described by
eqs 41-44 obtained by the fourth-order Runge—Kutta method with an integra-
tion step of 0.5 min. Curves are labelled as in Figure 1.

tions of all species is recovered. Some difference between
these results and the published profiles, obtained by ana-
logue integration (26) can be observed. These differences
remain even if a smaller step is used. In Figure 2 the profiles
obtained using the fourth-order Runge-Kutta method (eq
37) with an integration step of 0.5 min are presented. The
same results are obtained using a smaller step (0.2 min),
which confirms that with the first integration step the meth-
od is already accurate. Figure 3 shows the plot of the per-
centage of difference for the time evolution of the concentra-
tion of all species as computed using Euler’s and Runge-
Kutta methods. A deviation is observed due mainly to the
errors involved in Euler’s method. The deviations are bigger
at the beginning due to the large variation of the concentra-
tions. These deviations are only slightly decreased when the
integration step in the Euler’s method is reduced. Compari-
son of the profiles obtained by the Runge-Kutta method
(Fig. 2) and the ones obtained in ref 26 shows some differ-
ences especially clear for the intermediates. This probably
reflects the lower precision of the analogue method (27).

Conclusions

The matrix formulation presented allows a general view of
the integration of rate equations and could be included in a
chemical kinetics or physical chemistry course. The required
mathematical background is usually covered in undergradu-
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Figure 3. Percentage of difference between the curves of Figures 2 and 1.
Symbols as in Figure 1.

ate algebra courses for science and engineering. This presen-
tation can be extended to cover topics such as stiff systems
integration and stability analysis.

Literature Cited

1. Laidler, K. J. Chemical Kinetics, 3rd ed.; Harper & Row: New York, 1987.

2. Moore, d. W.; Pearson, R. G. Kinetics and Mechanism, 3rd ed.; Wiley: New York, 1981.

3. Szabd, Z. G. In Comprehensive Chemical Kinetics; Bamford, C. H,; Tipper, C. F. H,,

Eds.; Elsevier: New York, 1969; Vol. 2; Chapter 1.
4. Eyring, H.; Lin, 8. H.; Lin, 8. M. Basic Chemical Kinetics, Wiley: New York, 1980.
5. Peterson, N. C. In Spectroscopy and Kinetics; Mattson, L. S.; Mark, H. B.; MacDon-
ald, H. C., Eds.; Dekker: New York, 1973; Chapter 6.
6. Rodiguin, N. M.; Rodiguina, E. N. Consecutive Chemical Reactions; Van Nostrand:
Princeton, 1960.
. Blackman, P. F. Introduction to State- Variable Analysis; Macmillan: London, 1977.
. See for example: Korn, G. A.; Korn, T. M. Mathematical Handbook for Scientists and
Engineers, 2nd ed.; McGraw-Hill: New York, 1968; Chapter 13.
9. Carpenter, B. K. Determination of Organic Reaction Mechanisms; Wiley: New York,

1984; Chapter 4.

10. Eigen, M.; De Maeyer, L. In Techniques of Organic Chemistry; Friess, S. L.; Lewis, E.
S.; Weissberger, A., Eds.; Interscience: New York, 1963; Vol. 8, Part 2, Chapter 18.

11. Riehl, d. P.J. Phys. Chem. 1985, 89, 3203,

12. Pyun, C. W. J. Chem. Educ. 1971, 48, 194.

13. Volk, L.; Richardson, W.; Lau, K. H.; Lin, S. H. J. Chem. Educ. 1977, 54, 95.

14. Fraser, 8. J. J. Chem. Phys. 1988, 88, 4732.

15. Farrow, L. A.; Edelson, D. Int. J. Chem. Kinetics 1974, 6, 787.

16. Summers, D.; Scott, J. M. W._Int. J. Chem. Kinetics 1987, 19, 553.

17. Edelson, D. J. Comput. Phys. 1973, 11, 455.

18. Laidler, K. J. J. Chem. Educ. 1988, 63, 250.

19. (a) Formosinho, S. J.; Miguel, M. G. J. Chem._ Educ. 1979,56, 582. (b) Formosinho, 8. 4.
J. Chem. Educ. 1982, 59, 281.

20. Gelinas, R. J. J. Comput. Phys. 1972, 9, 222.

21. Warner, D. D. J. Phys. Chem. 1977, 81, 2329.

22. Rice, J. R. Numerical Methods, Software, and Analysis; McGraw-Hill: New York,
1985.

23. Weigert, F. J.; McKinney, R. J. Quantum Chemistry Program Exchange, Indiana
University, Bloomington, Indiana; QCMP022.

24. Chesick, J. P. J. Chem. Educ. 1988, 65, 599.

95. Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T. Numerical Recipes,
The Art of Scientific Computing; Cambridge: New York, 1987; Chapter 15.

26. Williams, R. F.; Bruice, T. C. J. Amer. Chem. Soc. 1976, 98, 7752.

27. Wolf, D.; Williams, R. D. J. Chem. Educ. 1974, 51, 319.

o =3

Volume 67 Number 5 May 1990 379



