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Electronic energy transfer in polymers labeled at both ends
with fluorescent groups
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Abstract

The energy transfer between chromophores attached at the ends of an isolated polymer chain was studied. Chains
labeled with different or equal fluorophores at the ends were considered. Interpolated analytical expressions dependent
on a unique parameter, were derived for the fluorescence decay curves taking into account the distribution of end-to-

end separations in both y and good solvents for the polymer. The donor decay curves for chains with dissimilar
chromophores were compared with the exact solution obtained by numerical integration. The derived expressions
reproduce the decay for all times with a precision better than 1% for pseudo-ideal chains (y solvents) and 3% for chains

in good solvents. The inhomogeneous broadening of chromophore spectra is important when its width is larger than
20% of the homogeneous broadening width.
The fluorescence decay curves in the presence of Brownian motion were also calculated after solving the

Smoluchowski diffusion equation for the end-to-end separation distance distribution function. Chain dynamics is
important for donors with long lifetimes, high diffusion coefficients and donor–acceptor pairs with small F .oorster radius.
r 2002 Elsevier Science B.V. All rights reserved.

Keywords: Polymers; Fluorescence; Electronic energy transfer; Inhomogeneous broadening

1. Introduction

The fluorescence of polymers has been used to
extract relevant structural and dynamic informa-
tion on polymer systems, both in solution and in
the bulk. Particularly useful is the study of the
energy transfer between similar or different fluor-
ophores attached to the polymer chain [1,2]. In
general, the energy transfer occurs by both short
and long range interactions, but the long range
dipole–dipole term is usually dominant [3]. The

energy transfer rate by a dipole–dipole coupling
mechanism has a 1=r6 dependence on the donor–
acceptor separation and so the fluorescence
decay curves strongly reflect the distribution
of distances between the chromophores, providing
relevant information on the conformation and
dynamics of polymers. For moderate polymer
densities, the fluorescence observables become
very complex due to the intermolecular energy
transfer processes [1,4]. For this reason, the
experiments are generally performed under very
dilute conditions, allowing intermolecular excita-
tion transfer to be neglected.
Three different types of chromophore

attachment to a linear polymer chain can be
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considered: The simplest case consists of polymers
with simply one donor and one trap chromophores
[5,6]. Fluorescent tagged polymers synthesized
from macromolecules with functional groups of
much different reactivity towards the donor and
traps and some biomolecules belong to this
category. The second case consists of donor and
trap chromophores randomly distributed among
the sites of each polymer chain [1,4,6–11]. The
occupancy of a particular site is independent of the
type and number of chromophores substituted at
other sites. Such polymers can be synthesized by
esterification of long chain dialcohols with acids
(containing a donor or a trap) that have equal
reactivity towards the alcohol. The third and last
case consists of polymers with a regular distribu-
tion of donor chromophores along the chains,
while the acceptor distribution is random [1,2,12–
14]. The aromatic vinyl polymers with very low
concentration of excimer forming sites (traps)
belong to this group.
The aim of this work is to study the direct

incoherent energy transfer from an electronic
excited fluorophore at one polymer chain end to
a similar or different molecule at the opposite end.
Interchain transfer events are neglected, which
supposes the use of very dilute solutions. It was
also assumed that the polymer adopts a coil
conformation with known end-to-end distance
distribution function for both y and good solvents
and that the energy transfer occurs by a dipole–
dipole coupling mechanism. First, the influence of
the end-to-end chain distance distribution function
was studied, considering an immobile chain during
the energy transfer events (static transfer). Next,
chain dynamics is introduced using a Smoluchows-
ki diffusion equation for the chain end-to-end
distance distribution function of a harmonic
spring chain (dynamic transfer).

2. Static energy transfer

2.1. Donor-to-acceptor energy transfer

The energy transfer rate between a donor and
an acceptor separated by a distance r; and
considering only the dipole–dipole interaction

term, is given by

wðrÞ ¼
1

t
R0
r

� �6
; ð1Þ

where R0 is the F .oorster radius and t the
fluorescence lifetime of a donor in the absence of
acceptors. For a polymer chain with a donor at
one end and an acceptor at the other one and
neglecting the back transfer, the number density of
donor excited molecules obeys the rate equation

d

dt
pðr; tÞ ¼ �wðrÞpðr; tÞ: ð2Þ

The intrinsic processes of deactivation of the
donor are not considered because they are
independent of the transfer events and can be
included by multiplication of the final expressions
by the intrinsic donor decay, expð�t=tÞ: For a
constant chain end-to-end distance, the integration
of Eq. (2) gives

pðr; tÞ ¼ pðr; 0Þ�exp½�twðrÞ�; ð3Þ

where pðr; 0Þ is the initial density of donor excited
molecules. However, as the polymer is polydis-
perse and several conformation chains with
different end-to-end distances exist in solution,
Eq. (3) should be averaged. Considering a mono-
disperse polymer with N statistical segments and
end-to-end distance distribution function, gNðrÞ;
the averaged excited donor density, for pðr; 0Þ ¼
1:0; is

pðtÞ ¼ 4p
Z

N

0

r2gNðrÞe
�twðrÞ dr: ð4Þ

The conformation of a polymer in solution varies
with temperature. At the y temperature the
attraction and repulsion between polymer seg-
ments cancel out, the second virial coefficient
vanishes and the behavior of the polymer becomes
ideal. The solvent at this temperature is named a y
solvent for the polymer, and the end-to-end
distance distribution function is given by [5,15]

gNðrÞ ¼ A1expð�B1r
2Þ ð5Þ

with

A1 ¼
3

2p R2N
� �

 !3=2
; B1 ¼

3

2 R2N
� �: ð6Þ
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In a good solvent the chain is expanded due to the
dominance of the polymer segment–segment re-
pulsion (exclude volume effects), being the chain
conformation described by a self-avoiding walk
(SAW) in a lattice. The distribution function is no
more Gaussian, being then

gNðrÞ ¼ A2r
5=18expð�B2r

5=2Þ ð7Þ

with

A2 ¼ 0:289058= R2N
� �59=36

;

B2 ¼ 1:22271= R2N
� �5=4

; ð8Þ

where R2N
� �

is the average square end-to-end dis-
tance ( R2N

� �
¼ Nl2 for a pseudo-ideal chain and

R2N
� �

¼ N6=5l2 for a SAW chain), l is the statistical
segment length (Kuhn length).
Fig. 1 shows the distribution function, gNðrÞ

versus the reduced distance x ¼ r=
ffiffiffiffiffiffiffiffiffiffiffi
R2N
� �q

for both

a pseudo-ideal (Eq. (5)) and a SAW chain
(Eq. (7)). These distribution functions reproduce
well (within 2%) the computer-simulation data and

their accuracy is in general sufficient to describe the
conformations of real polymer chains [15].
Inserting Eq. (5) into Eq. (4) and using the new

variable of integration y ¼ 3
2 r
2= R2N
� �

; we obtain
for the pseudo-ideal chain

pidðtÞ ¼
2

p1=2

Z
N

0

y1=2exp �y�
27T

8y3

� �
dy ð9Þ

with

T ¼
R60

R2N
� �3 tt: ð10Þ

Eq. (9) depends on a single parameter, T : The
integral was evaluated by the method of steepest
descendent [5] and the asymptote for long times,
ðt=t441Þ; obtained as

pidðt-NÞpT1=4expð�25=4T1=4Þ: ð11Þ

Taking into account this asymptotic form and the
decay limits of Eq. (9) for initial and long times,
the interpolation equation

pidðtÞ ¼ ð1þ bT1=4Þexpð�25=4T1=4Þ ð12Þ

Fig. 1. Plot of the end-to-end separation distribution functions for an ideal (FF) and a SAW (yy) polymer chains versus x ¼

r=
ffiffiffiffiffiffiffiffiffiffiffiffi
R2N
� �q

:
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was used in a linear least-squares fit to the
numerical values to calculate the best value of b:
The best value of b was 2.45. Therefore, an
approximate decay law that replaces Eq. (9) is

pidðtÞ ¼ ð1þ 2:45T1=4Þexpð�25=4T1=4Þ: ð13Þ

This equation describes well the decay for all times
with a precision better than 1%.
For a chain with excluded volume interactions

(SAW chain),

pSAWðtÞ ¼
1

Gð1þ 14=45Þ

�
Z

N

0

y14=45exp �y�
Gð19=9Þ
Gð59=45Þ

� �3
T

y12=5

" #
dy;

ð14Þ

where y ¼ B2r
5=2:Working similarly as for the case

of the Gaussian chain, the interpolation formula

pSAWðtÞ ¼ ð1þ 1:75T73=306Þexpð�2:1122T5=17Þ
ð15Þ

was obtained. Eqs. (13) and (15), after being
multiplied by expð�t=tÞ; can be used to fit the
experimental decays. These analytical expressions

have great advantages over the integral Eqs. (9)
and (14), because the calculation of the integral is
avoided in each step of the fitting procedure to the
experimental decays. In the past both numerical
integration [6] and its asymptotic forms for long
times ðt=t441Þ [5] were used. By fitting the
experimental donor decays, it is possible to recover
R2N
� �

and predict the quality of the solvent to the
polymer. However, the solution of this problem is
not trivial, because the shape of the decay
predicted by Eqs. (13) and (15) is identical (see
Fig. 2). A better discrimination procedure can be
envisaged if polymer chains of several molecular
weights are studied. In this case the power law

dependence of
ffiffiffiffiffiffiffiffiffiffiffi
R2N
� �q

with the degree of polymer-
ization gives a different exponents for y solvents
(0.5) and good solvents (0.6).

2.2. Donor-to-donor transfer

We will consider now the case of a chain both
ends labeled with the same flurophore. The decay
of the donor is described by the following

Fig. 2. Fluorescence donor decay, p(T) for pseudo-ideal (FF) and a SAW (yy) polymer chains versus T ¼ R60= R2N
� �3� 


t=t; from
Eqs. (9) and (14), respectively.
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equations:

d

dt
p1ðr; tÞ ¼ �wðrÞ p1ðr; tÞ � p2ðr; tÞ½ �; ð16aÞ

d

dt
p2ðr; tÞ ¼ wðrÞ p1ðr; tÞ � p2ðr; tÞ½ �: ð16bÞ

The solution to these equations, assuming that the
donor 1 is excited at time zero, pðr; 0Þ ¼ 1:0; is

p1ðr; tÞ ¼ 1
2þ

1
2 exp �2twðrÞ½ �: ð17Þ

The ensemble-average probability that an origin-
ally excited molecule is still excited at time t; GsðtÞ;
is obtained by averaging Eq. (17) with the dis-
tribution function gNðrÞ: G

sðtÞ contains contribu-
tions from the original excited molecules and from
re-excitations after one or more transfer events.
Proceeding in a similar way as before, the
interpolation formulas for the pseudo-ideal chain
(precision >1%)

Gs
idðtÞ ¼

1
2þ

1
2 ð1þ 2:45T

1=4
1 Þexpð�25=4T1=4

1 Þ ð18Þ

and for the SAW chain (precision >3%)

Gs
SAWðtÞ ¼

1
2þ

1
2 ð1þ 1:75T

73=306
1 Þ

� expð�2:1122T5=17
1 Þ ð19Þ

were obtained, with

T1 ¼ 2T ¼
2R60

R2N
� �3 tt: ð20Þ

The anisotropy of fluorescence rðtÞ and GsðtÞ are
related by

rðtÞ ¼ r0G
sðtÞ; ð21Þ

where r0 is the anisotropy at the initial time
[4,11,16]. Fig. 3 compares the values of GsðtÞ
calculated by Eqs. (18) and (19). As expected
GsðtÞ-1=2 at long times, because each chain
contains exactly two donors and the excitation
has equal probability of being in each one at
infinity time, since no intrinsic deactivation pro-
cesses were considered.

Fig. 3. Ensemble average probability GsðTÞ; that an originally excited chromophore remains excited at time t; versus T ¼
R60= R2N

� �3� 

t=t; for a pseudo-ideal ideal (FF) and a SAW (yy) polymer chain, calculated from Eqs. (18) and (19), respectively.
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2.3. Inhomogeneous broadening

In recent years special attention has been paid to
polymer containing donor and acceptor chromo-
phores with inhomogeneous spectral broadening
[2]. In these polymers the fluorescence decays, at a
given temperature, are influenced by both the
excitation wavelength and pulse spectral width. In
the case of inhomogeneous spectral broadening,
the donor decay curve (under non-selective excita-
tion), can be written as

pinhðtÞ ¼
Z

gDðE1Þ dE1

Z
gAðE2Þ dE2

�
Z
dr4pgNðrÞe

�twðE1�E2;rÞ; ð22Þ

where wðE1 � E2; rÞ is the rate of energy transfer
from a donor to an acceptor having transition
energies E1 and E2; and gDðE1Þ and gAðE2Þ are the
normalized distributions of donor and acceptor
chromophores over transition energies. For sim-
plicity, we will consider Gaussian distributions
with equal widths, s; and maximums located at the
transition energies ED and EA;

gDðEÞ ¼
1ffiffiffiffiffiffi
2p

p
s
exp �

ðED � EÞ2

2s2

� �
ð23aÞ

gAðEÞ ¼
1ffiffiffiffiffiffi
2p

p
s
exp �

ðEA � EÞ2

2s2

� �
ð23bÞ

and that the homogeneous spectra of emission of
donors and absorption of acceptors have also a
Gaussian shape of width, d=O2: The rate of energy
transfer by dipole–dipole mechanism (being pro-
portional to the overlap integral of the spectra [3])
can be written as

wðE1 � E2; rÞ ¼
1

t
RðE1 � E2Þ

r

� �6
ð24Þ

with

R6ðE1 � E2Þ ¼ R60 exp �
ðE1 � E2Þ

2

d2

�

þ
ED � EA

d

� �2#
; ð25Þ

where R0 is the F .oorster radius of energy transfer
from a donor to an acceptor having transition
energies E1 ¼ EA and E2 ¼ ED:
The third integral in Eq. (22) was calculated as

in Section 2.1. Using this result and substituting
Eq. (24) into Eq. (22), we obtain

pinhðtÞ ¼
Z

gDðE1Þ dE1

�
Z

gAðE2Þ dE2½1þ 2:45T
1=4ðE1 � E2Þ�

�exp½�25=4T1=4ðE1 � E2Þ� ð26Þ

with

TðE1 � E2Þ ¼
t

t
R60

R2N
� �3

�exp �
ðE1 � E2Þ

2

d2
þ

ED � EA
d

� �2" #
: ð27Þ

Fig. 4 shows the results of the numerically
integration of Eq. (26) for ED ¼ EA: It can be
seen that the increase of inhomogeneous broad-
ening (the ratio s=d) slows down the emission
decay, because the broadening decreases the rate
of energy transfer for all donor–acceptor pairs (see
Eqs. (24) and (25)).
The donor decays were also calculated for

ED � EA ¼ 2s and the results are plotted in
Fig. 5. In this case the decay is faster at the
beginning but at long times become slower,
because the rate of energy transfer increases for
donor–acceptor pairs with E1 � E2oED � EA and
decreases for pairs with E1 � E2 > ED � EA(see
Eqs. (24) and (25)). In any case, the influence of
inhomogeneous broadening can be observed only
for s=d > 0:2:

3. Polymer dynamics

The donor decay can be written as [17–21]

pdif ðtÞ ¼ 4p
Z

N

0

r2gNðr; tÞ dr; ð28Þ

where the end-to-end distribution function for
excited pairs, gNðr; tÞ; is a function of time. For
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Fig. 4. Donor decay curve, pðTÞfor a pseudo-ideal polymer chain considering the inhomogeneous spectra broadening, calculated from
Eq. (26). The maximum of the fluorescence spectrum of the donor and the maximum of absorption spectra of the acceptor are at the

same transition energy ðED ¼ EAÞ: The curves are labeled with the ratios between the inhomogeneous (s) and homogeneous (d) widths
of spectral broadening.

Fig. 5. Donor decay curve, pðTÞ; for a pseudo-ideal polymer chain considering the inhomogeneous spectra broadening, calculated
from Eq. (26). The maximum of the fluorescence spectrum of the donor ðEDÞ and the maximum of absorption spectra of the acceptor

ðEAÞ are at different transition energies ðED ¼ EA þ 2sÞ: The curves are labeled with the ratios between the inhomogeneous ðsÞ and
homogeneous ðdÞ widths of spectral broadening.
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t ¼ 0; gNðr; t ¼ 0Þ ¼ gNðrÞ: For longer times, this is
no longer the case, owing to two different factors:
(i) preferential depletion of the pairs at short
distances, owing to faster transfer; (ii) chain
motion, owing to diffusion, counteracting deple-
tion by energy transfer. This second factor is of
course the more important the longer the lifetime
of the donor, and the more fluid the solvent. When
diffusion is fast enough to compensate for deple-
tion by energy transfer, gNðr; tÞCgNðrÞ for all times
and the decay becomes single exponential (fast
diffusion limit). When the diffusion is negligible,
the results of Section 2.1 are retrieved. We will deal
here with the situation intermediate between the
two extreme cases mentioned.
The most appropriate chain model is the bead-

spring model of Rouse [22] and Zimm [23]. The
polymer chain is modeled as a system of n beads
and n�1 entropic harmonic springs, being the
mass concentrated in the beads that move in
solution with friction coefficient, x: The Zimm
model considers the hydrodynamic interactions,
resulting from the coupling, mediated by the
solvent, between the flow fields in different beads,
which were disregarded in the primitive Rouse
model. Both models predict a spectrum of relaxa-
tion times characteristic of large scale as well as
short scale diffusive motions. In our case only the
large scale diffusive motions are relevant, which
simplify the problem. In this case the very simple
harmonic spring model (two beads connected by a
spring) can be used to describe the dynamics.
When the distance between chromophores at-
tached at the polymer chain ends change by small
steps compared to R0, the distribution function,
gNðr; tÞ obeys the diffusion equation [17,18],

q
qt

gNðr; tÞ ¼D
1

r2
q
qr

r2
q
qr

gNðr; tÞ

þD
1

r2
q
qr

r2gNðr; tÞ
qV
qr

� �
� wðrÞgNðr; tÞ; ð29Þ

where D is the diffusion coefficient of the chain,
and

VðrÞ ¼ UðrÞ=kT ¼ �ln gNðrÞ: ð30Þ

UðrÞ is a pseudo-potential of interaction between
the beads, k is the Boltzmann constant and T the
absolute temperature.
To obtain the time evolution of the distribution

function the diffusion equation must be solved
with appropriate boundary and initial conditions

q
qr

gNðr; tÞ þ
q
qr

VðrÞjr¼r0
¼ 0; ð31aÞ

gNðr; 0Þ ¼ gNðrÞ; ð31bÞ

where r0 is the distance of closest approach.
The first two terms on the right-hand side of

Eq. (29) describe the change of the distribution
function gNðr; tÞ due to Brownian motion in the
spherical potential UðrÞ; while the third one takes
into account the decrease of the number of
conformations due to the energy transfer events.
The reflecting boundary condition ensures that the
chromophores at both chain ends cannot ap-
proach closer than the distance r0:
Eq. (29) was solved numerically for a short

polymer chains (N between 4 and 22) and chain
end-to-end distribution function for both SAW
chains [17,20,21] and pseudo-ideal polymer chains
[18,19].
Introducing the dimensionless variables:

x ¼
rffiffiffiffiffiffiffiffiffiffiffi
R2N
� �q ; ð32aÞ

Dr ¼
Dt R2N
� �2
R60

ð32bÞ

and the new function, f ðx;TÞ

gNðx;TÞ ¼ f ðx;TÞgNðxÞ: ð32cÞ

Eq. (29) can be rewritten as

q
qT

f ðx;TÞ ¼ Dr
q2

qx2
f þDr

q
qx

f
2

x
�

qV
qx

� �
�
1

x6
f

ð33Þ

with the initial and boundary conditions

f ðx; 0Þ ¼ 1; ð34aÞ

q
qx

f ðx;TÞjx¼x0
¼ 0: ð34bÞ
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The normalized potential, VðxÞ obey the equation

qV
qx

¼ 3x ð35Þ

as expected since the chain harmonic spring model
was used. The donor decay curve is given by

pdif ðtÞ ¼ 4p
Z

N

0

x2f ðx; tÞgNðxÞ dx: ð36Þ

Fig. 6 shows the donor decay from Eq. (36) after
performing the numerical integration of Eq. (33)

with x0 ¼ r0=
ffiffiffiffiffiffiffiffiffiffiffi
R2N
� �q

¼ 0:01 and boundary condi-

tions given by Eq. (34a) and (34b). The results
show that diffusion becomes important for values
of the reduced diffusion coefficient, Dr ¼
Dt R2N
� �2

=R60 > 10
�5:

For sufficiently long times the decay is
exponential

pdif ðtÞ ¼ expð�kdif tÞ ð37Þ

with a rate constant given by (rapid diffusion limit)

kdif ¼
1

t
4p
Z

N

r0

R0
r

� �6
gNðrÞr

2 dr: ð38Þ

To obtain analytical results from this equation the
distribution function gNðrÞ; was approached by a

rectangular function with width equal to
ffiffiffiffiffiffiffiffiffiffiffi
R2N
� �q

and r05
ffiffiffiffiffiffiffiffiffiffiffi
R2N
� �q

: For an ideal polymer chain (see

Eq. (5)), we obtain

kiddifD
1

t
R60

R2N
� �3=2

r30

; ð39Þ

while for a SAW polymer chain (see Eq. (6)),

kSAWdif D
1

t
R60

R2N
� �ð3þ5=18Þ=2

r
3�5=18
0

: ð40Þ

The differences between kiddif and kSAWdif are very
small, owing to the small differences on the
distribution function, gNðrÞ; for y and good
solvents.

4. Conclusions

The energy transfer between chromophores
attached to the ends of an isolated polymer chain

Fig. 6. Fluorescence donor decay curves, pdif ðtÞ; calculated from Eq. (36), for a pseudo-ideal polymer chain, considering the variation

of end-to-end separation distance during the energy transfer time. The curves are labeled with the reduced diffusion coefficient,

Dr ¼ D t R2N
� �2

=R60:
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was studied. Chains labeled at both ends with
different or identical fluorophores were consid-
ered. Interpolated analytical expressions were
derived for the fluorescence decay curves taking
into account the distribution of end-to-end separa-
tions in both y and good solvents for the polymer.
The donor decay curves for chains with dissimilar
chromophores were compared with the exact
solution obtained by numerical integration. The
derived expressions depend on a single parameter,
T ; and reproduce the decay for all times with a
precision better than 1% for pseudo-ideal chains
and 3% for chains in good solvents.
The inhomogeneous broadening of chromo-

phore spectra influences the decay curves for
widths of inhomogeneous broadening, s > 0:2d;
where d is the width of homogeneous broadening.
The effect of chain dynamics was described by a

diffusion equation considering the chain harmonic
spring model. Chain dynamics are important for
values of the reduced diffusion coefficient, Dr ¼
Dt R2N
� �2

=R60X10
�5; which implies donor fluoro-

phores with long lifetimes, polymer chains with
large diffusion coefficients and end-to-end separa-
tions, and fluorophores with small F .oorster energy
transfer radius.
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