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Abstract

The fluorescence dynamics of chromophores randomly attached to an isolated flexible polymer chain was studied.
For immobile chains (i.e., when the polymer chain conformation does not change during the excited state lifetime of the
donor chromophore) analytical equations for the donor decay curves were obtained for both pseudo-ideal (Gaussian)
and self-avoiding walk (SAW) polymer chain models. It is also concluded that the inhomogeneous broadening of
chromophore spectra must be taken into account for ratios of the inhomogeneous to homogeneous spectral widths
larger than 0.2. The luminescence of mobile chains was obtained in the limits of slow and fast diffusion. The donor-to-
donor excited state transport was also studied for polymers randomly labeled with a single chromophore. The ensemble
average probability that an originally excited chromophore is still excited at time ¢ was obtained for frozen chains with
both gaussian and SAW conformational distributions. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Polymers can exhibit intrinsic fluorescence (e.g.
aromatic polymers) or extrinsic fluorescence after
being labeled with fluorescence groups at specific
sites. The fluorescence of polymers contains rele-
vant structural and dynamical information on
polymer systems, both in solution and in the bulk
[1-3]. Particularly useful is the study of electronic
energy transfer between identical and different
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chromophores attached to the polymer chain. In
general, the energy transfer occurs by both short
and long range interactions, but the long range
dipole-dipole term is usually dominant [4]. The
energy transfer rate by a dipole-dipole coupling
mechanism has a 1/7¢ dependence on the donor—
acceptor separation r and for this reason the
fluorescence decay curves strongly reflect the dis-
tribution of distances between the chromophores,
providing relevant information on the conforma-
tion and dynamics of polymers. For moderate and
high polymer densities, the fluorescence observ-
ables become more complex due to intermolecular
energy transfer processes [1,5]. For this reason,
experiments are generally performed under very
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dilute conditions, allowing intermolecular excita-
tion transfer to be neglected.

Some linear polymers contain donor and trap
chromophores randomly distributed among the
sites of the chain [2,5-11]. Usually, the occupancy
of a particular site is independent of the type and
number of chromophores substituted at other
sites. Such polymers can be synthesized for in-
stance by esterification of long chain dialcohols
with acids containing a donor or an acceptor.

In this work, we begin by studying the direct,
incoherent energy transfer from an electronically
excited donor to acceptors randomly distributed
along the chain backbone (Section 2.1). The frac-
tion of sites occupied by donors is assumed to be
small enough or the donor-to-donor energy
transfer rate sufficiently low for the energy trans-
port among donors to be negligible. The donor-to-
donor excited state transport is also studied in
Section 2.2, in the case of polymers randomly la-
beled with a single chromophore. We also take
into account the inhomogeneous broadening of
chromophore spectra in Section 2.3. The influence
of polymer motion (conformation change by seg-
mental diffusion) on energy transfer kinetics is next
studied in Section 3. In all cases, we focus on a
single polymer chain that is isolated from the other
chains to avoid the interchain energy transfer
processes. The polymers are assumed to have coil-
like conformations, which implies the use of 6 or
good solvents to the polymer.

2. Static energy transfer
2.1. Donor-to-acceptor energy transfer

The electronic energy transfer rate by a dipole—
dipole coupling mechanism between a donor and
an acceptor separated by a distance r, is given by

(4]
w(r) 1(&)6, (1)

T r

where t the fluorescence lifetime of the donor in
the absence of acceptors and R, is the Forster ra-
dius.

We will consider long polymer chains with
chromophores sparsely and randomly attached to
the backbone. Each segment (site) of the polymer
chain can contain a chromophore with a proba-
bility p < 1, with p = N/S, where S is the total
number of sites (S>> 1) and N is the average
number of acceptor chromophores in a chain. For
long chains, this number (N) is subject to negligi-
ble statistical variation. However, many different
donor-acceptor configurations exist, owing to the
random character of the labeling procedure. The
chains are supposed to be long enough so that all
donor sites are equivalent, i.e., chain end contri-
butions are negligible. Each chain contains one or
more concretizations (as many as the donors) of
the general configuration around a donor
K ={x1,x2,...,xs}, where the x; (j =1,2,...,5)
are two-valued independent random variables
taking a zero value (empty site) with probability
1 — p and a 1 value (filled site) with probability p.
Following the procedure developed in [12-15], the
time evolution of the survival probability P(z) of
an electronically excited donor, in the absence of
excitation transport among donors, corresponding
to an acceptor configuration K and to a polymer
chain conformation C, is

Peat) = [T exp [~ ()], @

where w(rj(o) is the energy transfer rate constant

between donor and the acceptor at site j, that for
conformation C are at a distance rﬁc). For this
configuration K, averaging over all chain confor-
mations C gives, under the assumption that the
distances between donor and different acceptors

are uncorrelated,

S

P =T] { /0 " gi(r) exp [ - tw(r)xj(-K>] dr},

=1

(3)
where g;(¢) is the distribution function for the
distances between donor and the acceptor at site ;.
The independence assumption mentioned should
hold approximately for a sparse occupation of
sites, i.e., when the average distance between two
consecutive acceptors is large.



E.N. Bodunov et al. | Chemical Physics 274 (2001) 243-253 245

Finally, averaging over configurations K yields,

S

1

PO =T[{-p+p [ g0ewl-mlar}.

4)

Note that the previous two averages commute, i.e.,
their order is immaterial. Under the assumption
that p < 1, Eq. (4) becomes

P(t) = exp [—p/ooc Zgj(r)(l —exp[—fW(r)])drl
(5)

or

PO =exp | < [ r)(1 ~ expl - ) ]
(6

with

g(r) = 1

*]

ng,(r) (7)

The function g(r) is thus the average distance
density distribution, and is expected to approach
some limiting function g.,(r) as the polymer chain
length (and therefore S) increases.

The intrinsic processes of deactivation of the
donor were not considered thus far in order not to
surcharge the equations. Nevertheless, as these
processes are independent of the energy transfer
events, they are easily considered by multiplication
of the final expressions by the intrinsic donor de-
cay, exp(—t/1).

The distance between any two not-so-close sites
of a polymer chain obeys the same distribution as
the chain end-to-end distance, gs(») [16]. There-
fore, for a sufficiently long chain, it follows from
Eq. (7) that g(r) = g (r) = gs(r). For a polymer
chain in a 0 solvent (pseudo-ideal chain), the chain
end-to-end distance is given by [16,17]

gs(r) = 4?4, exp(—B,7?) (8)
with

3\ 3
A1<2n<R§>> Ty Y

In good solvents, the polymer chain conforma-
tion is described by a self-avoiding walk (SAW)
in a lattice. The distribution function is no

longer gaussian as in a 6 solvent, being then
[16,17]

gs(r) = 4 Ay’ 18 exp(—Bor*?) (10)
with

A, = 0.289058 /(R2)>/*

and

B, = 1.22271/(R2)™*, (11)

where (R3) is the average square end-to-end dis-
tance: (R:) = SI*> for a pseudo-ideal chain, and
(R%) = S951% for a SAW chain, / being the statis-
tical segment length (Kuhn length).

Fig. 1 shows the distribution function g(x)
versus the reduced distance x=r/\/(RZ) for
both pseudo-ideal (Eq. (8)) and SAW chains
(Eq. (10)). The polymer chain in a good solvent
(SAW chain) is more expanded than in a 6
solvent and has a correlation hole for short
distances (gs(0) =0). These distribution func-
tions mimic well (within 2%) computer simula-
tion data and their accuracy is in general
sufficient to describe the conformations of real
polymer chains [16].

For a dipole—dipole interaction mechanism and
a pseudo-ideal polymer chain, Eq. (6) becomes

04

g(X)/anX’
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Fig. 1. Reduced distance distribution functions for a pseudo-
ideal (solid line) and SAW (dashed line) polymer chains.
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o= [~or(5) ()]
ZeXp[—S.IZSpI;—Zg(é)I/3] 12)

while for a SAW chain,

Poaw(#) = exp l - 3.872p(RZO>5/3 (E)ZW] .
(13)

The time evolutions of the excited donor sur-
vival probability, P(¢), for both a pseudo-ideal
chain and a SAW chain are plotted in Fig. 2 for
Ry/I =2 and p = 0.01. The pseudo-ideal chain has
an initial fast decay, which is strongly attenuated
in the SAW chain. This results from the shape of
the distribution function gs(r) at short donor-ac-
ceptor distances. As mentioned, the distribution
function gs(r) has a correlation hole at short do-
nor—acceptor distances for the SAW chain, which
does not exist in the pseudo-ideal chain case (see
Fig. 1 and Egs. (8) and (10)). Fast energy transfer
processes between donor—acceptor pairs at small
distances occur in the pseudo-ideal chain but not
in the SAW chain.

P(t)

01 . 1 . ! ) I N I

Fig. 2. Survival probability of donor excited molecules, P(¢),
versus ¢/7, for a pseudo-ideal (solid line) and SAW (dashed line)
polymer chains in static regime. Ry// =2, p =0.01.

2.2. Donor-to-donor transfer

The fundamental quantity for the donor-to-do-
nor excited state transport is G5(¢), the ensemble-
average probability that an originally excited
chromophore is still excited at time ¢. G5(¢) contains
contributions from excitations that never leave the
originally excited chromophore and from excita-
tions that return to the initially excited chromo-
phore after one or more energy transfer events.
G5(t) is related to time-resolved fluorescence
depolarization measurements by #(t) = roG5(¢),
where 7(¢) is the anisotropy of fluorescence and r is
the anisotropy at the initial time [5,11,18].

Considering two donors, 0 and 1, attached to
the polymer chain and separated by a distance 7,
the evolution of the respective survival probabili-
ties obeys the following coupled differential equa-
tions,

d
g Do) = —w(r)[Po(r, 1) = A, 1)), (14a)
d
aPl(rl,t):w(rl)[PO(rl,t)—Pl(rl,t)]. (14b)

The solution to these equations, on the assumption
that the donor 0 is excited at time zero with a
probability 1, is well known,

1

Po(}"l,t) = i

(1 + exp[—2tw(r1)]), (15)

where G%(¢) can be obtained in the limit of the
Huber approximation [19,20] as the ensemble-av-
eraged product for all donor—donor pairs (every
pair contains initially an excited donor). Then,
instead of Eq. (3) one has

GS(1) :}ﬂ{% (1 + /O " e (F)exp [_zzw(r)xj.“} dr) }
(16)

where M is the number of possible pairs between a
given donor and all other donors (which is equal,
for large M, to the number of donors attached to
the polymer chain). Averaging of Eq. (16) over
configurations gives
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G*(1) = exp [’5’ | Semn exp{zzwvm]

—exp| = [ et - expl - 2m0)

(17)

This equation can be obtained from Eq. (6) by the
substitution of N by M/2 and w(r) by 2w(r). For
the dipole-dipole interaction mechanism, the in-
tegrals in Eq. (17) can be calculated exactly, as
before. Therefore, for the pseudo-ideal polymer
chain,

2\ Rj/t\'3
S (f) = 3282 \p20 (2
Gy (1) exp[ 3.2 F(3)p12 <r) ]

R2 /t\1/3
:exp[—5.118pl—20(;) ] (18)
This equation was previously obtained in the
framework of the Huber approximation [8,10] and
using the GAF method in the two-particle ap-
proximation [11]. The three-particle approxima-
tion of the GAF method gives an exponential
increase of G5(¢) at long times [21]. This is a usual
problem of the GAF method in systems of low
dimensionality [22].
For the SAW chain, we obtain from Egs. (10)
and (17),

R\ 23/54
Giw(t) = exp [—2.347p(70) (E) ]

T

(19)

2.3. Inhomogeneous broadening

The decay curves of polymers bearing fluores-
cent groups can be influenced by the inhomoge-
neous broadening of both the donor and the
acceptor spectra [3]. In this case the fluorescence
decays, at a given temperature, are dependent on
both the excitation wavelength and the pulse
spectral width. We will now try to determine at
which ratio between inhomogeneous, ¢, and ho-
mogeneous, J, widths of spectral broadening this
influence becomes noticeable.

In the case of inhomogeneous spectral broad-
ening, the donor survival probability, P, () (un-
der non-selective excitation), can be written as
(compare with Eq. (6)),

Pun(t) = /dElgD(El)eXP [—P/dEng(Ez)

o S
X / Zgj(r) (1 —e™E-R0) dr
0 j=1

)

(20)

where w(E| — Ey,7) is the rate of energy transfer
from a donor to an acceptor having transition
energies E| and F,, respectively, and gp(E;) and
ga(Ey) are the normalized distributions of donor
and acceptor transition energies. We will consider
gaussian distributions with a common width, o,
and maxima located at transition energies Ep and
E4, respectively

olE) = ﬂlﬁpl—wzi , (21a)
_ 1 (Ea —E)’
gA(E)—mexp[_ A20-2 (21b)

and that the homogeneous spectra of emission of
donors and absorption of acceptors have also a
Gaussian shape of width, §/,/2. Then the rate of
energy transfer by the dipole-dipole mechanism
(being proportional to the overlap integral of the
spectra [4]) can be written as

6
W(E| — Es,7) :l [M} (22a)
T r
with
2 2
R(’(E]—Ez):RgeXpl—u-f-(ﬁ) ,
) 0
(22b)

where AE = Ep — Ex and R, is the Forster radius
for the energy transfer from a donor to an accep-
tor having transition energies FE, = Ep and
E| =Ea.
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Introducing Eq. (22a), (22b) into Eq. (20), after
evaluation of the integrals as in Section 2.1, we
obtain for a pseudo-ideal polymer chain

R /\1/3
Pun(t)= [ dEigp(E))exp —8.125p—0( )

2 \¢
(E\—E))* AE?
% | dEyga(Es)exp | ——L 2/ =2
/ 28a(Ez)exp 37 38
(23)

Fig. 3 shows the results of the numerical integra-
tion of Eq. (23) for Ep = EA(AE = 0). It can be
seen that the increase of inhomogeneous broad-
ening (the ratio 0/0) slows down the donor decay,
because the broadening decreases the rate of en-
ergy transfer for all donor—acceptor pairs.

The donor decay was also calculated for
Ep — Ea = 20 and the results plotted in Fig. 4. The
decay is faster at the beginning, slowing down for
long times, because the rate of energy transfer
increases for donor-acceptor pairs  with
E, — E, < Ep — Ex and decreases for pairs with
E|, — E, > Ep — Ea. In any case, the influence of

P(t)
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(R (t)"™

Fig. 3. Survival probability of donor excited molecules, P(),
versus ¢/t for a pseudo-ideal polymer chain calculated in the
case of inhomogeneous spectra broadening. Maximum of the
fluorescence spectrum of the donor and absorption spectrum of
the acceptor chromophores are situated at the same transition
energy (Ep = Ea). The values on each curve are the ratios be-
tween inhomogeneous and homogeneous widths of spectral
broadening (¢/d). Ry/I =2, p=0.01.
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Fig. 4. Survival probability of donor excited molecules, P(t),
versus 7/t for a pseudo-ideal polymer chain calculated in the
case of inhomogeneous spectral broadening. Maxima of the
fluorescence spectrum of the donor and absorption spectrum of
the acceptor chromophores are situated at the different transi-
tion energies (Ep = Ea + 20). The values on each curve are the
ratios between inhomogeneous and homogeneous widths of
spectral broadening (¢/9). Ry/l =2, p=0.01.

inhomogeneous broadening becomes significant
only for ¢/ > 0.2.

3. Polymer dynamics

The donor survival probability can be written in
a general form that is suitable for considering the
influence of chain motion. We begin by noting that
for a given configuration K one may write

Pelt) = f[ < exp {— /0 () dzix;K>] > (24)

J=1

where the angular brackets represent a time-de-

pendent ensemble average, since for a single do-

nor—acceptor pair #;(¢) is a stochastic process.
Averaging over all configurations K one gets,

TR

(25)

and for small p,
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- 532 (1] [ wepa] )}

7 (26)

For a static system, the ensemble averages are
time-independent, reducing to averages over dis-
tances, and Eq. (5) is received. In the general case,
it is useful to define the random variable

w -1 [ () dr, @7)

allowing to rewrite Eq. (26) as

exp{ pz (1= [ romrexn(-wnaw ) }

(28)

where f;(w, t) is the density function for w;(¢). For
t = 0, the static case is recovered, i.e., f;(w,0) can
be computed from g;(r), taking into account Eq.
(1). On the other hand, for long times ergodicity is
fulfilled and the time average and the ensemble
average become identical,

limow, (1) = w;(00) = () = / T (g (dr (29)

hence
Ji(w,00) = 6[w — w(o0)]. (30)
Now, Eq. (28) can be rewritten as
P(t) = exp {—N/xf(w, [l — exp(—wt)}dw}
0
(31)

with

Z (32)

For sufficiently long times, and using Eq. (30),
Eq. (31) becomes,

s
P(1) exp{ Zl—exp

J=1

E/) \

oo)t)]}. (33)

Usually, this limiting form is of little importance,
because it corresponds to a very late stage of the
decay, where the intensity is negligible. However,

Eq. (33) is obeyed for all times of interest in case of
very fast diffusion, the so-called rapid diffusion
limit [23].

The treatment of cases intermediate between the
static one and the rapid diffusion limit must be
based on Eq. (28). In order to proceed from Eq.
(28), we note that the rate distribution function
fi(w, 1) can be written as

o= [ e

where G;(r, t|ry) is the (normalized) Green function
of the pair diffusion equation, giving the proba-
bility of finding a pair at distance r for time ¢, given
that the initial distance was ry, and f;(w, t|r,ro) is
the distribution of time-averaged rate constants at
time ¢, given that the initial distance was ry and
that the distance at time ¢ is r. In this way, the
integral that appears in Eq. (28), [~ f;(w.?)
exp (—wt)dw, and whose meaning is the survival
probability for a pair, can be rewritten as
Io° gi(r,t)dr, where

so=[ | o

x exp(—wt) dwdry. (35)

(r, tlro) f(w, tlr, 1) drdry,

(34)

(r,tro) f3(w, t|r, ro)

According to the Feynman—Kac theorem, see e.g.
[24], the function g;(r, ¢) obeys a modified diffusion
equation. In order to consider the influence of
polymer motion an appropriate model for the
polymer chain should be chosen. A simple one is
the Rouse—-Zimm model [25,26], that consider the
polymer chain as a system of n beads connected by
n — 1 harmonic springs. The mass is concentrated
in the beads that move in solution with a friction
coefficient, £. The Rouse-Zimm model includes
both the hydrodynamic interactions and the ex-
cluded volume interactions that were disregarded
in the primitive Rouse model. The hydrodynamic
interactions result from the fact that the flow field
at a given bead is perturbed by the spring forces on
the other beads, transmitted through the solvent.
Both models predict a spectrum of relaxation
times characteristic of large scale as well as short
scale diffusive motions. In our case only the large
scale diffusive motions are relevant, which
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simplifies the problem. The very simple harmonic
spring model (two beads connected by a spring)
can then be used to describe the dynamics. When
the distance between chromophores attached at
the polymer chain ends change by small steps
compared to Ry, the distribution function, g;(r,¢)
obeys the following diffusion equation [27-32],
10,0 10

0
a0 =Py g8t Dy,

< (P0G ) - widg 0. GO

where D is the mutual diffusion coefficient of the
chain ends, and

Vi(r) = Uj(r) /KT = —Ing;(r), (37)

where U;(r) is a pseudo-potential of interaction
between the beads, k is the Boltzmann constant
and T the absolute temperature. The first two
terms on the right side of Eq. (36) describe the
evolution of the distribution function g;(r, ¢) owing
to brownian motion while the third one takes into
account the decrease of the number of pairs owing
to the energy transfer events. The time evolution of
the distribution function was obtained by inte-
gration of the differential Eq. (36) with the
boundary and initial conditions,

Lm0t o, =0 (38a)
&/(r.0) = (1), (380)

where « is the distance of closest approach and
g;(r) is the equilibrium distribution. The reflection
boundary condition ensures that the chromo-
phores cannot approach closer than the distance a.

The calculation of a general analytical expres-
sion for the donor decay in the presence of diffu-
sion is impracticable since the general solution of
the diffusion equation for g(r,¢) is unknown.
Nevertheless, approximate solutions can be ob-
tained in the limits of slow and fast diffusion. In
the slow diffusion limit, the diffusion equation was
solved using the method used by us in [33] (see
Appendix A). The distribution function was ob-
tained as an iteration row with the diffusion con-
stant D as the small parameter. Considering only
the zero-order approximation and the first-order

correction term, the survival probability of excited
donors for a pseudo-ideal chain is given by,
2t

. R 173 Dt
id (4 = — —0(Z — _
P(t) = exp [ 8.125p B (1’) 12p 12} (39)

while for the SAW chain

R\ 23/54
_ 3.8721;(70) (%)

Dt/ 1 1/3 £y 17/18
6.535p7<R—0> (;) 1 (40)

Egs. (39) and (40) are valid when the second term
in the square brackets is smaller than the first one
during the intrinsic donor lifetime, 7. This means
that the inequality Dt < R} must be fulfilled. The
first terms of Egs. (39) and (40) describe the static
energy transfer while the second ones are the first-
order corrections due to the diffusion of polymer
chain ends. The decays are faster in the presence of
diffusion, because the motion of polymer segments
approaches excited donors and acceptors, com-
pensating for the depletion due to the energy
transfer events.

In the static case, g;(r,7) can be obtained di-
rectly from Eq. (35) with

PSAV(1) = exp

Gy(r,tlry) = 6(r — ry)g;(ro) (41)
and
fiw, t|r,rg) = d(w — wy), (42)

where wy = w(rg), and Eq. (5) is recovered from
Eq. (28). In the rapid-diffusion limit (D — oo) [30],
one has

G(r,tro) = g;(r) (43)
and

Ji(w,tlr,ro) = 6w —wj(o0)] (44)
hence

gj(r,t) = g;(r) exp[—w;(c0)1] (45)

and Eq. (33) is recovered.

For the real distribution functions the integral
in Eq. (33) does not have analytical solution. In
order to obtain an analytical expression, g;(r) was
approximated by a rectangular function with
width equal to \/(R}) and a < \/(R}). Under this
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approximation, for a pseudo-ideal polymer chain
((R}) = jP%),
oo 1 R 1R

wi(o0) = T a3(R§,>3/2 T PEEE (46)
and
4 81 R} 11\
Plty=exp| - ———p=% (-
Q pl 3\/§F(5/3)pa212(r) ]
Rg t 2/3
— exp [ 5.358p 51 (;) } (47)
while for the SAW chain ((R?) = //° %)
1 RS
SAW _1 0
w; (OO T a3*5/18<R§,)(3+5/18>/2
1 RS
: (48)

T a3=5/18 [3+5/18 59/30 7

_ 60m
59I°(89/59) sin(30m/59)

RS NEES
xp 3-5/183+5/18

RS £\ 30759
_ 0
= exp [_ 3'605p<a35/18[3+5/18 ;) 1 :

(49)

PV (1) = exp

The donor decay is not exponential even in the
limit of very fast diffusion (see Eq. (33)). This is
due to the fact that several acceptor configurations
K exist, each with its own exponential decay in the
limit of rapid diffusion. Nevertheless, diffusion,
however fast, cannot interconvert configurations.
Hence, the global decay is non-exponential, as it
results from the averaged sum of the decays cor-
responding to the different configurations.

4. Conclusions

The fluorescence dynamics of chromophore-la-
beled polymers with energy donors and acceptors
randomly distributed along the chain backbone
was studied. The donor—acceptor energy transfer is
irreversible and the energy migration among do-

nors was neglected. For frozen chains (the spatial
conformation of the chain does not change during
the decay process), analytical expressions for the
donor decay for both pseudo-ideal and SAW
chains were obtained. For mobile chains analytical
expressions were obtained in the limiting cases of
fast and slow diffusion. It was demonstrated that
the inhomogeneous broadening of chromophore
spectra influences the decay curves when the width
of inhomogeneous broadening, o, is larger than
0.20, where ¢ is the width of homogeneous broad-
ening. The donor-to-donor excited state transport
was also studied for randomly labeled polymers
with a single chromophore. The ensemble average
probability that an originally excited chromophore
is still excited at time ¢ was obtained for frozen
chains with both gaussian and SAW conforma-
tions.
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Appendix A
To obtain approximate analytical results when

diffusion is slow (small D) Eq. (36) is rewritten as
follows:

0 A s

agj(rvt) :(A+B)gj(r7t)a (Al)
where A4 and B are operators

s~ 10,0 10,0/

B _Dr2 o' or Dr2 o' or (A-2)
and

A= —w(r). (A.3)

The formal solution of Eq. (A.1) is

~ ’ ~ ~ ~
gi(r,t) =e'g;(r) + / e Bet g (r)du.  (A4)
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Considering that the operator B’j is small in com-
parison with 4, and using Eq. (A.4), one can ob-
tain the solution, g;(r,¢), in iterative form

g(rt) =g + gV (r0) + g7 (r 1) + -

In the zero-order approximation we have
g (r, 1) = e'g;(r). (A.6)
The correction of first order is
! i A
gj(-l)(r, t) = / e:A(t’“)ngj(.O)(r7 u)du. (A.7)
0

The correction of second order is

gg-z)(r,t):/ot =0 B¢ (r, u) du (A.8)

and so on. In accordance with Eq. (28) we obtain
the iteration row for luminescence kinetics

P(0) = expl—p(rO () + £ 0+ £2(0) + - )],

(A.9)
where
N 00
O =>" < / Or,0d ) (A.10a)
j=1 a
S 00
A > / gV (1 (A.10b)
=174
S 00
RIOEEDY / g?(r,0)dr (A.10¢)
=1 Ja

It is known [10,11] that for a pseudo-ideal polymer
chain

i 12r

while for a SAW chain,

> a0 =5(5)"
with

(A.11)

(A.12)

_lor(@)r(s)™"
- 31_,(2_9)41/18
5

=~ 6.37706, (A.13)

where I'(z) being the gamma function.

Introducing these results in Egs. (A.6) and
(A.7), the first two terms f©(¢) and £ (¢) were
calculated, which after being introduced in Eq.
(A.9) yielded Egs. (39) and (40).
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