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INTRODUCTION 

The energy transfer and migration of electronic
excitations in polymers is widely studied and com-
monly used to analyze their structure [1, 2]. The reason
is that the time dependence of the luminescence inten-
sity of donor and acceptor chromophores can be con-
nected with the interchromophore distance by means of
Forster’s energy transfer rate [3]. Such experiments are
usually performed at very low polymer concentrations,
which makes it possible to neglect the energy transfer
between different polymer molecules. 

There are several ways of attaching chromophores
to a polymer chain [1, 2, 4–19]. In this paper, we study
the following model. Each link of the polymer chain
may contain, with a certain probability, a donor or
acceptor chromophore so that all the chromophores are
distributed along the chain in a random way [1, 4, 6–
11]. Such polymer molecules can be synthesized by
esterification of a long chain of dialcohols by acids con-
taining donors or acceptors and showing the same reac-
tivity with respect to the alcohol. 

The goal of this paper is to study the direct incoher-
ent energy transfer from an excited donor to another
donor or acceptor under the above conditions. We also
study the effect of inhomogeneous broadening of the
chromophore spectrum and the motion of the polymer
chain (for the diffusion and hopping mechanisms of
conformation changes) on luminescence kinetics. We
will focus our attention on a single polymer molecule
isolated from other molecules (the polymer concentra-
tion is assumed to be sufficiently low). This assumption
is made in order to simplify the problem and neglect the
interaction between neighboring polymer chains,
which may give rise to the energy transfer between

chromophores localized on different chains. We will
also assume that the solvent is strong and the tempera-
ture of the polymer is above the 

 

θ

 

-point of the transi-
tion, so that we can use known distribution functions
for the distance between the ends of the polymer chain.
Finally, we will consider the case of the isotropic
dipole–dipole interaction between the chromophores,
when the energy transfer rate 

 

w
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r

 

)

 

 can be written in the
form 
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where 

 

τ

 

 is the lifetime of the donor chromophore
excited state, 

 

R

 

0

 

 is the Forster radius, and 

 

r

 

 is the dis-
tance between the chromophores. 

STATIC MODE 

As was mentioned above, there are several models
of chromophore attachment to a polymer molecule. In
this paper, we assume that there is a certain probability
that a chromophore can attach to any link of the poly-
mer chain. To neglect the energy migration over the
donors, we assume that the concentration of the chro-
mophore-donors is low. Then, we have the following
differential equation for the decay of the excited donor
state 

 

p

 

(

 

t

 

)

 

 due to the energy transfer to the acceptors: 
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where 
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i

 

 is the distance between the donor and the 

 

i

 

th
acceptor and 

 

M

 

 is the number of acceptors attached to
the polymer chain. Equations (2) do not contain any
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loss of excitation related to a finite lifetime of the
excited donor state, since this channel of the decay has
nothing to do with the energy transfer process. Thus,
the total kinetics of the luminescence decay can be rep-
resented as a product of two factors: 

 

exp(–

 

t

 

/

 

τ

 

)

 

 and the
decay kinetics related to the energy transfer to the
acceptor. Note that 

 

r

 

i

 

 in Eq. (2) is independent of time
because, in this part of the paper, we neglect the motion
of the polymer chain during the lifetime of the excited
donor state. The distances 

 

r

 

i

 

 evidently depend on the
chain conformation. 

Assuming that the donor is initially excited with the
probability equal to unity, we obtain from Eq. (2) 

 

(3)

 

The donor luminescence kinetics 
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, related to the
energy transfer to acceptors, is obtained by averaging
(3) over all conformations with the distribution func-
tion 
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) [(
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 is the probability density used
to find the distance between the donor and the acceptor
in the polymer, consisting of 

 

K

 

 links, equal to 

 

r

 

, and 

 

N

 

is the number of links in the polymer chain between the
donor and the acceptor]. In the 

 

d

 

-dimensional space we
have 
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where 
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 = 
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and 
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 is the gamma func-
tion. Note that the distance between two points of the
polymer chain (which are not too close to each other),
separated by 

 

N

 

 links, and the distance between the ends
of the polymer chain consisting of 

 

N

 

 links satisfy one
and the same distribution function [20]. Therefore, by
denoting 

 

g

 

N
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≡
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, we can simplify Eq. (4) and
use the following equality: 

 

(5)

 

This equality imposes restrictions upon the results
obtained below: they are valid at a low chromophore
concentration when the average number of links of the
polymer chain between the donor and the nearest
acceptor is sufficiently large. 

For the ideal (Gaussian) polymer chain, 

 

g
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 has
the form [5, 20] 
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where 

For a nonideal chain (a chain with the volume inter-
action), we have [5, 20] 

(7)

where 

Here Rg is the radius of gyration of a polymer ball

(〈 〉  = a2N for an ideal chain and 〈 〉  = a2N2ν for a
nonideal chain, where a is the statistical length of a link)
and ϑ  and δ are the dimension-dependent critical indi-
ces. These critical indices can be written as ϑ  = (γ – 1)/ν
and δ = (1 – ν)–1, where γ and ν are two universal critical
indices depending on d. The self-consistent field
method (Flory theory) in a space with the dimension d
yields [20] 

(8)

Therefore, for the three-dimensional space (which is
the case under consideration), we have from Eqs. (7)
and (8) 

(9)

The functions 4πx2gN(x) (where x = r/ ) for the
ideal and nonideal polymer chains are shown in Fig. 1. 

Note that the results of the Flory theory (9) are very
close (within two percent) to those obtained by com-
puter simulation (ν = 0.59 [20]), with the accuracy
being sufficient for any real polymer chain. 

When studying the excitation transfer in a system of
finite size (the polymer chain has K links), one has to
make two spatial averages. The first is the average over
all possible positions of acceptors with respect to the
position of the initially excited donor (localized, e.g.,
on the ith link of the polymer chain). This will give us
kinetics of the luminescence decay Ii(t) for the given
initial conditions. The second is the average over all
possible positions of the initially excited donor (in the
system of finite dimensions, these positions are not
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equivalent). This problem was solved numerically for
an ideal polymer chain in [6, 7] using the GAF method
[21] and in [4, 8–10] using the Huber approximation
[22, 23]. 

The problem of excitation transfer in a polymer
chain becomes much easier for an infinite chain (K,
M  ∞ under the condition that M/K = const). In this
case, there is no necessity to calculate the second aver-
age, since all positions of the initially excited donor are
equivalent. Thus, with allowance for formula (5), we
have 

(10)

where c is the mean number of acceptor chromophores
falling into one link of the polymer chain (c ! 1). For
the case of dipole–dipole interaction, both integrals in
Eq. (10) can be calculated exactly. As a result, for the
luminescence kinetics Iid(t) of the ideal polymer chain,
we have 

(11)

and for the luminescence kinetics Inid(t) of the nonideal
chain, we have 

(12)

The luminescence given by Eq. (12) decays slower than
Eq. (11) (see Fig. 2, R0/a = 2, c = 0.01), since, for the
nonideal polymer chain, gN(r)  0 when r  0 [see
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Eq. (7)], while for the ideal chain gN(r)  const when
r  0 [see Eq. (6)]. 

In polymers where only the donor–donor energy
transport occurs, a fundamental quantity, interesting in
both a theoretical and a practical sense, is Gs(t)—the
ensemble-averaged probability that the initially excited
chromophore still remains excited at the instant t. This
probability contains contributions from excitations that
never abandoned the initially excited chromophore and
from excitations that returned to that chromophore after
one or several energy transfer events. As before, Gs(t)
does not contain any loss of excitation related to a finite
lifetime of the excited chromophore state. The proba-
bility Gs(t) is related to the time dependence of lumi-
nescence depolarization: r(t) = r0Gs(t), where r(t) is the
anisotropy of luminescence and r0 is its initial anisot-
ropy [4, 11, 24]. 

Consider two chromophores (the zeroth and first)
attached to different links of the polymer chain. The
dynamics of their excited states p0(t) and p1(t) is
described by the equations 

(13)

where r1 is the distance between the chromophores.
Solutions of these equations, under the assumption that
at the initial instant only the zeroth chromophore is
excited with the unit probability, has the form 

(14)

In the Huber approximation [22, 23], Gs(t) is obtained
by averaging the product of functions (14) for all pairs
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Fig. 1. The distribution function for the (solid line) ideal and
(dashed line) nonideal chains. 

Fig. 2. Luminescence kinetics for the (solid line) ideal and
(dashed line) nonideal polymer chains. R0/a = 2, c = 0.01. 



OPTICS AND SPECTROSCOPY      Vol. 91      No. 5      2001

LUMINESCENCE KINETICS OF LINEAR POLYMER MOLECULES 697

of chromophores (with each pair containing one excited
chromophore): 

(15)

Here, M is the number of pairs, equal to the number of
chromophores (donors) attached to the polymer chain.
The broken brackets denote averaging over all confor-
mations. Assuming, as when deriving Eq. (10), that the
polymer chain is infinitely long, we obtain 

(16)

where c is the mean number of donor chromophores
falling into one link of the polymer chain. In the case of
dipole–dipole interaction, the integrals entering
Eq. (16), can be calculated exactly. Note that Eq. (10)
differs from (16) by the substitutions c  c/2 and

  2 . Therefore, from Eq. (11), using the
above substitutions, for the ideal polymer chain we
have 

(17)

Expression (17) was obtained in [8, 10] within the
framework of the Huber approximation and in [11]
using the GAF method in a two-particle approximation.
A three-particle approximation of the GAF method
leads to the function Gs(t) exponentially growing in
time. This is a common problem of the GAF method in
a low-dimensional system [25]. 

For the nonideal polymer chain, using formulas (7)
and (16), we have 

(18)

Formula (18), again, can be obtained from formula (12)

by the substitutions c  c/2 and   2 , in the
same way as formula (17) was obtained from (11). 

INHOMOGENEOUS BROADENING 

In recent years special attention has been paid to
polymer molecules containing donors and acceptors
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which exhibit inhomogeneous broadening of their
spectral lines [2]. In such polymers, one can observe the
dependence of the luminescence kinetics on the excita-
tion wavelength, on the exciting pulse width, and on the
temperature. In this paper, we try to answer the follow-
ing question: what is the smallest inhomogeneous
width σ where we can notice this effect? 

In the case of inhomogeneous broadening of the
spectra, the luminescence kinetics of donors Iinh(t)
(under nonselective excitation of the chromophores
attached to a long polymer chain) can be written as 

(19)

where w(E1 – E2, r) is the rate of energy transfer from
the donor (with the transition energy E1) to the acceptor
(with the transition energy E2), and gD(E1) and gA(E2)
are the normalized distributions of donors and accep-
tors over the transition energies. For simplicity, we will
make the following assumptions. First, let these distri-
butions be Gaussians with equal widths and let their
peaks be located at the transition energies ED and EA: 

(20)

Second, let the homogeneously broadened lumines-
cence spectra of donors and the absorption spectra of
acceptors also be of Gaussian shape, with their widths

being the same and equal to δ/ . Then, the energy
transfer rate controlled by the dipole–dipole interac-
tion, proportional to the spectral overlap integral [3],
can be written as 

(21)

where R0 is the Forster radius of the donor–acceptor
energy transfer, with the donor and acceptor energies
being E1 = EA and E2 = ED . 

Note that the third and fourth integrals in Eq. (19)
were already calculated [see, e.g., formula (11) for the
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ideal polymer chain]. Using this result and substituting
(21) unto (19), we obtain 

(22)

for the ideal polymer chain.
The luminescence kinetics (22) was calculated

numerically. The results of the calculations are shown
in Fig. 3 for the case ED = EA (or ∆E = 0). As is seen
from Fig. 3, the increase of the inhomogeneous broad-
ening of the spectra (i.e., the ratio σ/δ) slows down
luminescence decay, because inhomogeneous broaden-
ing reduces the energy transfer rate for all donor–
acceptor pairs [this is evident from Eq. (21)]. The lumi-
nescence kinetics for the case ∆E = 2σ is shown in
Fig. 4. The luminescence decay becomes faster at
shorter times and slower at longer times. This results
from the fact that when ∆E = 2σ, the energy transfer
rate in the donor–acceptor pairs, for which E1 – E2 < ∆E,
increases, while in the pairs with E1 – E2 > ∆E, it
decreases as compared to the case where inhomoge-
neous broadening is absent. It follows from Figs. 3 and
4 that the inhomogeneous broadening of the spectra
should be taken into account when σ/δ > 0.2. 

CONFORMATION MOTION 
OF A POLYMER CHAIN 

The effect of the motion of a polymer molecule in
diluted solutions on the rate of intramolecular reaction
between reactive groups attached to the ends of a flexi-
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ble polymer chain was studied in [26–33]. In [26–28],
it was assumed that the reaction occurs when the reac-
tive groups approach close enough to one another (con-
tact reaction), and that the resulting polymer motion
was described using the generalized diffusion equation.
The asymptotic behavior of the reaction at short and
long times was calculated. The energy transfer (lumi-
nescence quenching) is a similar process. The only dis-
tinction (from the theoretical point of view) is in the
dependence of the reaction rate on the distance between
the chromophores. This is why the studies of the effect
of polymer motion upon luminescence kinetics [29, 30]
also employed the diffusion equation. 

For polymer molecules with a random arrangement
of chromophores along the polymer chain, the follow-
ing equation for luminescence kinetics is valid: 

(23)

where (r, t) is the distribution function for distances
between an excited donor and a nonexcited acceptor
and N is the number of links in the polymer chain

between the donor and the acceptor. Initially, (r, t =

0) = gN(r). In the static situation, (r, t) =
gN(r)exp[−tw(r)] [see Eq. (10)]. It is known [20, 29, 30]
that free links perform Brownian motion in a solvent
with a certain diffusion coefficient D, and that the dis-
tribution function may be treated as an energy term by
introducing the interaction energy U(r): 

(24)
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Fig. 3. Luminescence kinetics of the ideal polymer chain for
inhomogeneously broadened spectra. The maximum of the
donor emission spectrum coincides with that of the acceptor
absorption spectrum (ED = EA). The numbers near the
curves are the inhomogeneous/homogeneous linewidth
ratios σ/δ. 

Fig. 4. Luminescence kinetics of the ideal polymer chain for
inhomogeneously broadened spectra. The maxima of the
donor emission spectrum and acceptor absorption spectrum
are located at different transition energies (ED = EA + 2σ).
The numbers near the curves are the inhomogeneous/homo-
geneous linewidth ratios σ/δ. 
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where k is the Boltzmann constant and T is the absolute
temperature. Thus, we can write the equation [29–33] 

(25)

with the boundary and initial conditions 

where r0 is the distance of closest approach. 

The first two terms on the right-hand side of Eq. (25)

describe changes in the distribution function (r, t)
due to the Brownian motion of the links in the spherical
field U(r), while the third term describes changes in the
same function due to the energy transfer from the
excited donor to the acceptor. The initial condition sig-
nifies that the chromophores cannot approach each
other at a distance closer than r0. 

Equation (25) was solved numerically in [29, 31,
33] for the case of short polymer chains and a special
form of the distribution function gN(t), and in [30, 31]
for the case of the ideal chain. A comparison with
experimental data has shown that the diffusion coeffi-
cient can be as high as 10–5 cm2 s [31–33]. In all the
papers cited above, another model of attachment of a
chromophore to a polymer molecule was studied;
namely, the donor and the acceptor were attached to the
ends of the polymer chain. 

For the polymer with a random distribution of chro-
mophores along the chain one has, first, to numerically
solve Eq. (25) separately for each value of N, and then
perform averaging over N [see Eq. (23)]. This is a very
tedious procedure. For this reason, we obtained the ana-
lytic solution to Eq. (25) in the limit of slow diffusion.
To do that, we used a method tested in [34], where the
solution of the diffusion equation was sought in the
form of an iteration series in terms of the small param-
eter D, and only the two first terms were retained (the
zeroth approximation and the first-order correction pro-
portional to the diffusion coefficient). In this case, for
the dipole–dipole mechanism of the energy transfer, we
have 
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we also used the following formulas. It is known [10,
11] that for the ideal polymer chain 
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For the case of the nonideal chain, our calculation
yielded 
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Omitting intermediate manipulations, fulfilled for the
three-dimensional space (d = 3, C ≅  0.50747), we
present the final result. For the luminescence kinetics
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(32)
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and for the nonideal chain 

(33)

Equations (32) and (33) are correct when the second
term in square brackets is smaller than the first one
(within the time span of the order of the excited-state

lifetime τ). This means that the inequality Dτ < 
should be satisfied. The first terms in Eqs. (32) and (33)
describe static quenching, and the second terms are the
first-order corrections related to the diffusion motion of
the polymer chain links. As one can see, the polymer
motion enhances the luminescence quenching. 

Equation (25) can also be solved in the approxima-
tion of extremely fast diffusion (the case of total mixing
[35]). In this case, the diffusion is so strong that a

decrease of the function (r, t) at small r is immedi-
ately counterbalanced by diffusion from larger dis-

tances. For this reason, the distribution function (r, t)
retains its shape [coincident with that of gN(r)], while
its magnitude exponentially decays in time [34, 35].
Thus, taking into account the normalization condition

4π (r)r2dr = 1 and omitting intermediate calcula-

tions, similar to those presented in [34], we have 

(34)
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chains, we replace the distribution function gN(r) with

a rectangular function with the width  and

assume that r0 ! . Therefore, the equations
obtained below for kdif(N) will be correct to within a
numerical factor of the order of unity. Thus, for the

ideal chain [see Eq. (6), 〈 〉  = a2N], we obtain 
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and for the nonideal chain [see Eq. (7), 〈 〉  = a2N2ν,
ν = 3/5], we have 

(36)

As is seen, the luminescence kinetics is not expo-
nential even in the limit of extremely fast diffusion [see
Eqs. (35) and (36)]. The reason for this is that the links
containing chromophores perform Brownian motion
inside a confined space of different volume. The size of
the latter is determined by N, i.e., the number of links
between the donor and acceptor. 

Note that this (diffusion) approximation is valid
when the distance between the chromophores attached
to the polymer chain changes (upon motion of the links)
by small steps compared with R0, i.e., the Forster
energy transfer radius. It is only in this case that the dif-
fusion equation can be used to describe the lumines-
cence kinetics. 

In principle, it is possible to suggest another model
of polymer motion, alternative to that of diffusion. One
can assume that conformation transitions may occur
(with corresponding changes of the distances between
the donor and the acceptor), and that these transitions
between stable conformations are sudden and random
both in time and in space [13, 16, 36, 37]. The distance
between the chromophores changes, in this case, in
such a way that the initial conformation of the system
appears to be completely forgotten after a certain time.
This model of polymer motion may be called the hop-
ping model. The distance between the chromophores,
after each jump, appears to be considerably changed as
compared to the Forster radius. 
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Note that Eq. (23) is valid for any type of polymer
motion (rather than only for diffusion). In the case of
the hopping mechanism, this equation for the lumines-
cence kinetics Ihop(t) can be rewritten as 

(37)

Here, we used the normalization condition

4π (r)r2dr = 1 and introduced the function 

(38)

This function has the meaning of luminescence kinetics
of a polymer chain comprised of N links and possessing
one donor and one acceptor on opposite ends of the
chain [29–33, 37]. 

By introducing the mean time of the conformation
change (τconf) and assuming that the process of confor-
mation changes is Poissonian, we obtained the following
equation for the luminescence kinetics Ihop(N, t) [37]: 

(39)

Here, I(N, t) is the luminescence kinetics in the absence
of conformation transitions. For the ideal polymer
chain, this kinetics is described by the equation [37] 

where T =  (〈 〉  = a2N). The function I(N, T)

is approximated, to within one percent, by the func-
tion [37] 

(40)

while for the nonideal chain (〈 〉  = a2N2ν, ν = 3/5), it
is approximated by Eq. [37] 

which, in turn, to within three percent, is reproduced by
the function [37] 
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(Note that Eq. (39) was obtained in [16, 36] for another
model of attachment of chromophores to the polymer
chain and for another type of conformation transition
but that derivation appears to be valid in the case under
consideration as well). 

Equation (39) is to be solved separately for each
value of N. After that, one should calculate the lumines-
cence kinetics (37). This is a very time consuming task.
Analytical results can be obtained only in the limit of
very small τconf . 

It was shown in our paper [37] that when τconf
reduces, kinetics (39) becomes exponential: Ihop(N, t) ~
exp(–khop(N)t), where khop(N) is the rate constant
obtained from the equation 

(42)

For this reason, in the limit of small τconf, Eq. (37) can
be rewritten in the form 

(43)

Using Eq. (42), we obtained [37] the rate constant

(N) for the ideal polymer chain 
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and the rate constant (N) for the nonideal chain 

(45)

Substituting these results in Eq. (43) and integrating,

we obtain the luminescence kinetics (t) for the
ideal polymer chain 

(46)

and the luminescence kinetics (t) for the nonideal
chain 

(47)

Note again that Eqs. (46) and (47) are valid in the limit
of small τconf . 
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The time τconf is the model parameter: it equals the
inverse rate constant of conformation transitions and
can be obtained by the comparison of theoretical and
experimental data. 

By comparing the luminescence kinetics (46) and
(47) obtained in the hopping limit of the polymer
motion, with kinetics (35) and (36) obtained in the dif-
fusion limit, we see that they similarly depend on time
but differently on R0. This fact can be used to make
clear (by replacing chromophores attached to the poly-
mer chain) the kinds of motion of a polymer in a sol-
vent. 

CONCLUSION

In this paper, we studied the kinetics of lumines-
cence of chromophores randomly distributed over an
isolated flexible polymer chain (a chromophore can be
attached with a certain probability to each link of the
polymer chain). The energy transfer between the chro-
mophores was assumed to be of the dipole–dipole type.
In the static case, when the polymer chain does not
change its conformation during the excited-state life-
time, we obtained, for the ideal and nonideal chains,
formulas (11) and (12) for the luminescence kinetics
and formulas (17) and (18) for the emission anisotropy. 

It was shown that the inhomogeneous broadening of
the luminescence spectra of donors and absorption
spectra of acceptors should be taken into account when
an inhomogeneous broadening σ is large enough (σ >
0.2δ, where δ is the homogeneous broadening). 

In the dynamic case, when a flexible polymer chain
changes its conformation during the excited state life-
time, we considered the diffusion and hopping limits of
the polymer chain motion. In the diffusion limit, we
derived formulas (32) and (33) for the luminescence
kinetics of the ideal and nonideal chains, respectively.
This type of motion obviously is not of great impor-
tance when the diffusion coefficient is sufficiently small

(Dτ ! ). We have shown that even in the limit of
very fast diffusion (D  ∞) the luminescence kinet-
ics remains nonexponential [see Eqs. (35) and (36)].
This results from the fact that acceptors attached to dif-
ferent links of the polymer chain perform Brownian
motion in a confined space of different size. 

We also studied the hopping limit of changes in the
polymer chain conformation (an alternative to the dif-
fusion limit). This type of polymer motion is important
when the time of existence of a stable conformation is
sufficiently short. We obtained analytical expressions
for the luminescence kinetics in the limit of extremely
short τconf . The kinetics remains nonexponential. The
reason for this is the same as in the case of diffusion. 

Note once again that the luminescence kinetics dif-
fers from that given in this paper by the factor
exp(−t/τ), which takes into account a finite lifetime of
the excited chromophore states. 

R0
2
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