
 

0030-400X/01/9106- $21.00 © 2001 MAIK “Nauka/Interperiodica”0873

 

Optics and Spectroscopy, Vol. 91, No. 6, 2001, pp. 873–877. Translated from Optika i Spektroskopiya, Vol. 91, No. 6, 2001, pp. 931–935.
Original Russian Text Copyright © 2001 by Bodunov, Berberan-Santos, Martinho.

 

INTRODUCTION 

The electronic excitation energy transfer and migra-
tion in polymers are widely investigated and are com-
monly used to analyze the polymer structure [1, 2]. This
interest has arisen because the time dependence of the
donor and acceptor chromophore luminescence inten-
sity may be related to the interchromophore distance,
via the Forster’s energy transfer rate [3]. Experiments
of this kind are usually made at an extremely low poly-
mer concentration, when the energy transfer between
different polymer molecules may be neglected. 

There are different types of attachment of a chro-
mophore to the polymer chain [1, 2, 4–19]. In this
paper, we study the following model. Each link of the
polymer chain contains a donor or acceptor chro-
mophore. The distribution of donors along the chain is
regular. The distribution of acceptors is random, their
concentration being low. Such polymer molecules
(unless they form globules) may be considered as one-
dimensional crystals [1, 2, 12–19]. An example of such
systems is provided by aromatic polymers. 

The goal of this paper is to study the direct incoher-
ent energy transfer from an excited donor to another
donor or acceptor under the above conditions. We also
study the effect of the inhomogeneous broadening of
chromophore spectra and the conformation motion of
the polymer chain on the luminescence kinetics. 

STATIC CONDITIONS 

The polymer chain is assumed to comprise mole-
cules of two types: acceptors (traps, e.g., excimer-form-
ing sites), distributed randomly along the chain, and
donors (monomers), distributed regularly. The concen-
tration of traps is low, and the majority of the chain con-

sists of monomer molecules. The distribution of traps is
fixed within a time interval exceeding the lifetime of the
donor excited state (the rotational motion of monomers,
leading to the formation of excimers, is frozen). 

The excitation (exciton) is simulated by a particle
performing a one-dimensional symmetric Markovian
random walk along a segment of the chain comprised of
monomers and bounded by the two nearest traps. The
excitation is transferred only between the nearest
neighbors (the polymer temperature is assumed to be
higher than the 

 

θ

 

-point of the transition). It is also
assumed that an exciton has one and the same probabil-
ity to find itself on any link of the polymer chain. All
probabilities of jumps are the same and equal to the
mean probability of the jump per unit time 

 

W

 

. Being on
any monomer, an exciton also has the probability of
vanishing (in a radiative or nonradiative way) instead of
jumping to the nearest monomer or trap. This probabil-
ity is independent of the position of the exciton in the
chain and is equal to that for the monomer compound. 

Under the conditions listed above, the following
equations are valid, describing the dynamics of exciton
motion along the polymer chain segment, bounded by
two traps and comprised of 

 

n

 

 monomers: 

 

(1)

 

In Eqs. (1), 

 

p

 

j

 

(

 

t

 

)

 

 is the probability of finding the exciton
on the monomer 

 

j

 

 at the instant 

 

t

 

 and 

 

V

 

 is the rate con-

d
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stant of energy transfer from the donor (monomer) to a
trap (acceptor). It is usually assumed that 

 

V

 

 = 

 

W

 

. This is
a reasonable assumption if the trap is an excimer-form-
ing site of the polymer chain. Equations (1) do not
include the loss of excitation related to the finiteness of
the lifetime 

 

τ

 

 of the excited state, since this channel of
the decay is independent of the energy transfer process,
and, therefore, the total kinetics of the luminescence
decay can be represented as the product of two cofac-
tors: 

 

exp(–

 

t

 

/

 

τ

 

)

 

 and the kinetics of the decay related to
the energy transfer to the acceptor. 

The kinetics of disappearance of excitation 

 

(

 

t

 

)

 

localized on a polymer chain segment, comprised of 

 

n

 

monomers, is given by the expression 

 

(2)

 

An exact formula for this function, under the initial
condition 

 

p

 

i

 

(

 

t

 

 = 0) = 1/

 

n

 

 (1 

 

≤

 

 

 

i

 

 

 

≤

 

 

 

n

 

)

 

, was obtained in
[12]. For the case 

 

V

 

 = 

 

W

 

, it has the form [1, 12, 14] 

 

(3)

 

where 

 

α

 

k

 

 = (2

 

k

 

 – 1)

 

π

 

/(

 

n

 

 + 1); 

 

n

 

* = 

 

n

 

/2

 

 when 

 

n

 

 is even
and 

 

n

 

* = (

 

n

 

 + 1)

 

/2 when 

 

n

 

 is odd. 

The luminescence kinetics 

 

I

 

(

 

t

 

)

 

 of the entire polymer
chain is obtained by averaging expression (3) over seg-
ments with all possible 

 

n

 

. The relevant distribution
function is known and equals 

 

c

 

2

 

n

 

(1 – 

 

c

 

)

 

n

 

 – 1

 

 [13, 14],
where 

 

c

 

 is the acceptor concentration (the fraction of

Gn
D

Gn
D
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links of the polymer chain occupied by the traps, c ≤ 1).
As a result, we have [1, 14]

(4)

Evidently, I(t = 0) = 1. 

From formulas (3) and (4), we obtain the following
asymptotic expression for the luminescence kinetics at
short times (Wt ! 1): 

(5)

In [15], for intermediate time intervals (1 ! Wt ! c2),
within the context of the diffusion approximation,
assuming that V = ∞, another asymptotic formula was
obtained: 

(6)

Note that a linear chain consisting of N donors and two
acceptors on its opposite ends, with V = ∞, is equivalent
to a chain consisting of N – 2 donors and two acceptors,
with V = W [12]. Equation (6) was also derived in [18,
19]. Bearing in mind asymptotic formula (6), the
authors of [16] suggested the following approximate
formula for the luminescence kinetics: 

(7)

this formula is presumably valid for all times of practi-
cal importance. Finally, the authors of [14] obtained,
using the t-matrix approximation, an expression for
I(t), presumably valid for a low concentration of traps
(c ! 1) and for long times (Wt > 1):

(8)

where erfc(x) is the error function. 

We compared the exact kinetics [formulas (3) and
(4)] with the approximate kinetics [formulas (7) and
(8)] and found that expressions (7) and (8), which do
not have any adequate asymptotics at short times, are
not accurate in the most interesting time interval, where
I(t) > 0.001 (see Fig. 1). We also noticed that the exact
kinetics for intermediate times is very close to

(1/2)exp(–c ). For this reason, we designed an
approximate kinetics, which satisfies the regularity
found at intermediate times and has the exact asymp-
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Fig. 1. Luminescence kinetics of the polymer chain in the
static case. (1) The exact kinetics, calculated using formu-
las (3) and (4), (2) calculation by formula (7), (3) calcula-
tion by formula (8), and (4) calculation by formula (9). 
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totic behavior (5) at short times. This kinetics is given
by the expression 

(9)

As follows from Fig. 1, this kinetics is sufficiently
accurate over the whole, most interesting time interval,
being, in practice, much more convenient than formu-
las (3) and (4), which require us to take into account a
great number of terms (the series are slowly con-
verging). 

Formula (9) will be used below when studying the
effect of the motion of a polymer molecule on lumines-
cence kinetics, when the traps are the excimer-forming
sites of the chain. 

In the polymers in which only the donor–donor
energy transfer is effective, a fundamental quantity,
interesting both from theoretical and practical view-
points, is Gs(t)—the ensemble-averaged probability to
find the initially excited chromophore still excited at
the instant t. The probability Gs(t) contains contribu-
tions from excitations that never abandoned the initially
excited chromophore and from those that returned to
this chromophore after one or several energy transfer
events. As before, Gs(t) does not contain a loss of exci-
tation related to the finiteness of the chromophore
excited-state lifetime. The probability Gs(t) is related to
the time dependence of the luminescence depolariza-
tion: r(t) = r0Gs(t), where r(t) is the luminescence
anisotropy and r0 is the initial anisotropy [4, 11, 20].
Note that for the polymers studied in this paper (with-
out acceptors), the probability Gs(t) is well known: 

(10)

where I0 is the modified Bessel function. 

INHOMOGENEOUS BROADENING 

Special attention has been paid, in recent years, to
polymer molecules that contain donors and acceptors
with inhomogeneously broadened spectral lines [2]. In
these polymers, one can observe the dependence of the
luminescence kinetics on the excitation wavelength, the
spectral width of the exciting pulse, and the tempera-
ture. In this paper, we make an attempt to answer the
question: what is the smallest inhomogeneous broaden-
ing σ at which this effect becomes noticeable? 

We will assume, for simplicity, that the normalized
distribution of chromophores (donors) over the transi-

I t( ) 1
2
--- c

8
π
---Wt– 

 exp=

+
1 5 8/π+( )c Wt+

2 1 4cWt/ 1 0.25Wt+( )+[ ]
----------------------------------------------------------------- 5c Wt–( ).exp

G
s

t( ) 2Wt–( )I0 2Wt( ),exp=

tion energies gD(E) is a Gaussian, with its maximum
positioned at the transition energy ED , 

(11)

The rate of energy transfer between the nearest chro-
mophores (from ith to j th) now depends on the ener-
gies of their transitions (Ei and Ej) and should satisfy
the Boltzmann-type balance equation Wi → j /Wj → i =
exp[−(Ej – Ei)/kT]. Therefore, we can write 

(12)

where W0 is the rate of energy transfer between chro-
mophores with equal transition energies, k is the Boltz-
mann constant, and T is the temperature. 

Under these conditions, we calculated, using the
Monte Carlo method, the probability Gs(t) related to
the time dependence of the luminescence depolariza-
tion (the model of a linear polymer molecule, compris-
ing 300 chromophores, with periodic boundary condi-
tions was used). The results of the calculations are pre-
sented in Fig. 2 for the case of nonselective (broad-
band) excitation of the chromophores. One can see that
as inhomogeneous broadening increases (with increas-
ing ratio σ/kT), the probability Gs(t) decreases faster at
shorter times, and slower at longer times, as compared
to the times when inhomogeneous broadening is absent
[Eq. (10)]. This result could be expected because in the
presence of inhomogeneous broadening, Wi → j > W0 for
one part of the molecules and the excitation energy
leaves them faster, while for the other part, Wi → j < W0
and the energy transfer occurs more slowly. The latter
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Fig. 2. Time dependence of the function Gs(t) (lumines-
cence anisotropy) for inhomogeneously broadened spectra
of molecules under broad-band excitation. The numbers
near the curves are the parameters σ/kT. 
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statement is illustrated by Fig. 3, which shows the time
behavior of the probability Gs(t) under selective excita-
tion of chromophores with a certain transition energy. 

As follows from the data of Fig. 2, the inhomoge-
neous broadening should be taken into account, under
nonselective excitation, when σ/kT ≥ 1. 

CONFORMATION MOTION 
OF THE POLYMER CHAIN 

If the acceptor configuration (arrangement of the
excimer-forming sites on the polymer chain) is fixed
during the chromophore (monomer) excited-state life-
time, the luminescence kinetics is described by

Eqs. (3), (4), or (9). Now we assume that the conforma-
tion transitions may occur during the time τ, and these
transitions between stable conformations are sudden
and random both in time and in space. In this case, the
arrangement of traps (excimer-forming sites) on the
polymer chain changes abruptly, and the initial config-
uration of the system is forgotten after a certain time
interval t. This type of conformation transition was
mentioned in [13] and studied in [16, 17]. The model
suggested for conformation transitions can be called
“hopping.” By introducing the conformation transition
mean time τconf and assuming that the process of con-
formation changes is Poissonian, the authors of [16, 17]
obtained the following equation for the luminescence
kinetics Iconf (t): 

(13)

where I(t) is the luminescence kinetics in the absence
of conformation transitions, described by (9). Equa-
tion (13) can be solved only numerically. Such a solu-
tion is given in [16], where function (7), strongly differ-
ing from the exact kinetics (see Fig. 1), is used as I(t).
For this reason, the results presented in [16] are of a
qualitative nature. A correct solution of Eq. (13) is
given in Fig. 4 [we used function (9) as I(t) with
Wτ = 50 and c = 0.02]. It follows from the data given in
Fig. 4 that the conformation motion of the polymer
chain can be noticed when τconf /τ > 10 (for the given
trap concentration). 

It is noteworthy that the luminescence kinetics
becomes exponential with decreasing τconf: Iconf (t) =
exp(–kt), where k is the rate constant. The latter con-
stant can be found from the equation 

(14)

Using this equation and Eq. (5), it is not difficult to cal-
culate k in the limit of extremely short τconf: 

k = 2cW. (15)

This result can be easily explained. The polymer chain
is separated by traps into segments of finite length. In
the limit of short τconf, the exciton has an equal proba-
bility to be at any monomer of the segment, and this
probability is independent of time. Each segment has
two traps on its ends, with the rate constant of the
energy transfer from the monomer to the trap being W.
For this reason, the luminescence kinetics becomes
exponential, with the rate constant determined by
Eq. (15). 

The time τconf is the model parameter, which is equal
to the inverse rate constant of conformational transi-

Iconf t( ) I t( ) t/τconf–( )exp=

+
1

τconf
--------- I t1( ) t1/τconf–( )Iconf t t1–( ) t1,dexp

0

t

∫

k

=  1
1

τconf
--------- I t( ) t/τconf–( ) tdexp

0

∞

∫–
 
 
 

  I t ( ) t / τ conf – ( ) t . d exp 
0

 

∞

 ∫  

1.0

 

I

 

conf

 

(

 

t

 

)

0 1 2 5

 

t

 

/

 

τ

 

1
0.2

0.5
2

0.8

0.6

0.4

0.2

1.0

 

G

 

s

 

(

 

t

 

)

0 0.5 1.0 1.5

 

W

 

0

 

t

4

2

1

3

 

0.8

0.6

0.4

0.2

3 4

5 10

 

∞

 

Fig. 3.

 

 Time dependence of the function 

 

G

 

s

 

(

 

t
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 (lumines-
cence anisotropy) for inhomogeneously broadened spectra
of molecules under selective excitation (

 

σ

 

/

 

kT

 

 = 2). (

 

1

 

) The
energy of the chromophores initially excited is at the center
of the inhomogeneously broadened line (11), 

 

E

 

 = 

 

E

 

D

 

;
(

 

2

 

) the energy of the chromophores initially excited lies on
the short-wavelength side of the inhomogeneously broad-
ened line, 

 

E

 

 = 

 

E

 

D

 

 + σ; (3) the energy of chromophores ini-
tially excited lies on the long-wavelength side of the inho-
mogeneously broadened line, E = ED – σ; and (4) broad-
band excitation. 

Fig. 4. Luminescence kinetics under conformation motion
of the polymer chain. Wτ = 50 and c = 0.02. Figures near the
curves are the values of the parameter τconf /τ. 
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tions and which can be obtained by comparing the
experimental and calculated luminescence kinetics of
aromatic polymers. 

CONCLUSION 

In this paper, we studied the kinetics of lumines-
cence of chromophores attached to each link of a long
polymer chain. In a static case, when the polymer chain
does not change its conformation during the lifetime of
the monomer excited state, we obtained analytical
expression (9) for the luminescence kinetics. 

The calculations using the Monte Carlo method
showed that the inhomogeneous broadening of the
chromophore spectra should be taken into account
when the inhomogeneous broadening σ is greater than
or equal to kT. 

The hopping model of conformation motion of the
polymer chain, leading to changes in positions of the
excimer-forming sites along the chain, is studied. This
type of motion is important when τconf ≤ 10τ, where τconf
is the time of conformation transformations. It is shown
that the luminescence kinetics becomes exponential
with decreasing τconf. The relevant rate constant is cal-
culated. 

Note once again that the total luminescence kinetics
differs from that given in this paper by the factor
exp(−t/τ), which takes into account the finiteness of the
chromophore excited-state lifetime. 
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