Triplet state properties of malonic acid C_{60} derivatives $C_{60}[C(COOR)_2]_n$; R = H, Et; n = 1-6

R. V. Bensasson,^a M. N. Berberan-Santos,^b M. Brettreich,^c J. Frederiksen,^d H. Göttinger,^a A. Hirsch,^c E. J. Land,[†]^e S. Leach,^f D. J. McGarvey,^{*d} H. Schönberger^c and C. Schröder^d

- ^a Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, CNRS UMR 8646, INSERM U201, 43 rue Cuvier, 75231 Paris Cedex 05, France
- ^b INETI-IBQTA, Departamento de Tecnologia e Indústrias Químicas, Estrada do Paço do Lumiar, 1649-038 Lisboa, Portugal
- ^c Institut für Organische Chemie der Universität Erlangen-Nurnberg, Henkestrasse 42, 91054 Erlangen, Germany
- ^d School of Chemistry and Physics, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, UK ST5 5BG
- ^e CRC Drug Development Group, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester, UK M20 4BX
- ^f DAMAP, Observatoire de Paris-Meudon, CNRS UMR 8588, F-92195 Meudon, France

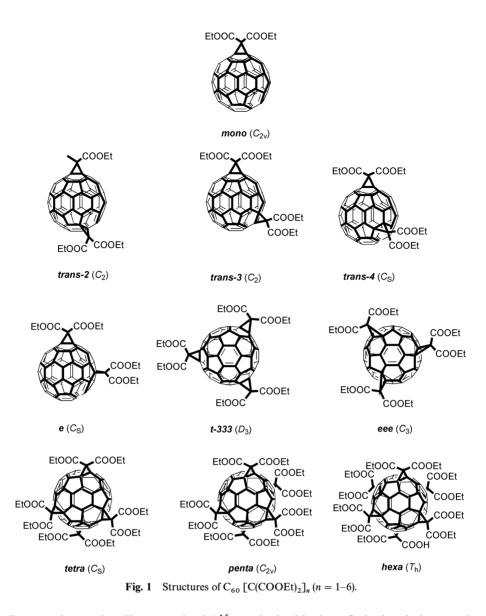
Received 20th June 2001, Accepted 22nd August 2001 First published as an Advance Article on the web 2nd October 2001

Laser flash photolysis and pulse radiolysis have been used to determine properties of the lowest triplet state of a series of water-soluble malonic acid derivatives of C_{60} , $C_{60}[C(COOH)_2]_n$ with n = 2-6, in water at pH 7.4. Similar studies were carried out on the corresponding ethyl esters, $C_{60}[C(COOH)_2]_n$ with n = 1-6, in the non-polar solvents, benzene or toluene. The properties include the T–T absorption spectra, the triplet molar absorption coefficients and the quantum yields of formation, Φ_T and Φ_{Δ} of the triplet and of singlet oxygen, respectively. This study shows a general tendency of the λ_{max} of the T–T absorption spectra, and of the Φ_{Δ} values to decrease with increasing number of addends. For regioisomers, the spectroscopic and photophysical parameters are modulated with the pattern of addition. The Φ_{Δ} quantum yields for the acids in aqueous solution are systematically lower than those of the ethyl esters in toluene. The lower Φ_{Δ} values observed for the acids in aqueous solution, and to a lesser extent for the esters in benzonitrile, can be interpreted as due to the presence of solute clusters in polar solvents.

Introduction

Knowledge of the photophysical properties of fullerenes and fullerene derivatives is critical to the design of certain artificial molecular systems mimicking photosynthetic reaction centres.¹ Such properties are also vital in the design of fullerene-containing photoelectrochemical systems,^{2,3} as well as being important in the selective photocleavage of singleand double-stranded DNA by fullerene-oligonucleotide conjugates.^{4,5} For the use of fullerenes in physiological media, an important requirement is their functionalisation with hydrophilic addends. Photophysical studies, in particular the determination of the triplet quantum yield, can provide useful diagnostic tools to investigate dimerisation and aggregation of such amphiphilic molecules.^{6,7}

The objective of the present work is to compare the triplet properties of a series of water-soluble malonic acid C_{60} derivatives in aqueous solution with those of their corresponding ethyl esters in non-polar solvents. Measurements on nine malonic acid C_{60} derivatives based on $C_{60}[C(COOH)_2]_n$ (n = 2 to 6) and on the corresponding ethyl esters (also including the mono-adduct) have enabled us to investigate the influence of the number of addends, and of their pattern of addition, on their photophysical properties. The bis-adducts


studied were *trans*-2-, *trans*-3-, *trans*-4- and e- $C_{60}[C(COOH)_2]_2$. The tris-adducts were *e,e,e*- and *t*333- $C_{60}[C(COOH)_2]_3$, the tetra-, penta- and hexa-adducts being the all-*e*-regioisomers.

Guldi *et al.*^{8,9,10} have previously studied some photophysical properties of several of these multi-functional C_{60} malonic esters, and here we provide further information on a wider range of derivatives and the corresponding acids. Fig. 1 shows the structures of the molecules studied (only the esters are shown). Using laser flash photolysis and pulse radiolysis, we have determined the triplet absorption spectra, including molar absorption coefficients, and the triplet state and singlet oxygen quantum yields, Φ_T and Φ_A of $C_{60}[C(COOH)_2]_n$ in water and of $C_{60}[C(COOEt)_2]_n$ in organic solvents. We discuss the influence of the number of addends, the pattern of addition and the solvent polarity on these parameters.

Experimental

The malonic acid derivatives $C_{60}[C(COOH)_2]_n$ (n = 2-6) and their corresponding ethyl esters (n = 1-6) were synthesized as described by Hirsch *et al.*¹¹⁻¹⁴ The aqueous solutions were buffered at pH 7.4 using 5.0×10^{-3} M phosphate buffer. Water was re-distilled over alkaline potassium permanganate under nitrogen. Perdeuterated water, D₂O (99.8% D) was from Janssen Chemicals (Beerse, Belgium). The pH measurements were made with a radiometer pH meter with a glass

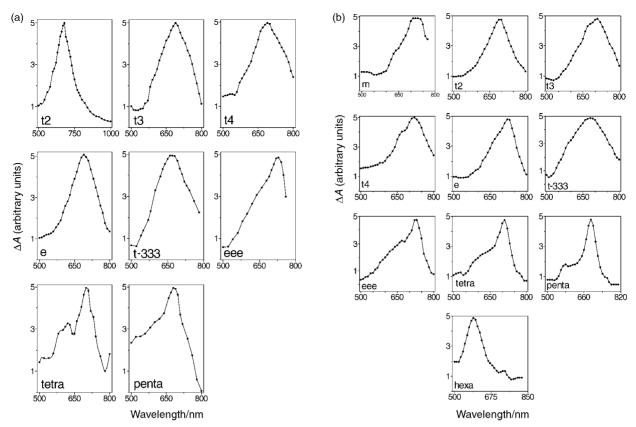
[†] Senior Research Fellow in Chemistry, Keele University.

electrode and the pD were taken as the pH measured +0.4.¹⁵ Toluene (BDH), benzene (Romil), cyclohexane (Aldrich) and benzonitrile (Aldrich) were all HPLC grade and used without further purification.

Solutions were excited at 355 or 532 nm, either with a JK Lasers System 2000 Nd/YAG laser¹⁶ or a Spectron-Qswitched Nd/YAG laser.¹⁷ Quantum yields of singlet oxygen O_2 (¹ Δ_g) production, Φ_{Δ} , were determined by photoexcitation of the $C_{60}[C(COOH)_2]_n$ (n = 2 to 6) in oxygenated D_2O at pH 7.4, and of the corresponding ethyl esters (n = 1-6) in airequilibrated toluene or benzene using, respectively, perinaphthenone in D_2O and C_{60} in toluene or benzene as standard reference sensitisers, for both of which Φ^{St}_{Λ} is unity.18,19 The singlet oxygen phosphorescence signal, peaking at 1270 nm, was observed via laser flash photolysis using a liquid-nitrogen cooled germanium diode and amplifier supplied by Applied Detector Corporation (USA). Triplet molar absorption coefficients at λ_{max} , the wavelength of the principal T-T absorption band, were determined via laser flash photolysis using a comparative method,²⁰ with the assumption that the triplet quantum yield, $\Phi_{\rm T}$, is equal to the singlet oxygen quantum yield, Φ_{Δ} .

Results and discussion

Triplet absorption spectra


The absorption profiles of the triplet-minus-ground state difference absorption spectra of the acids and ethyl esters obtained by laser flash photolysis are rather similar (Fig. 2(a) and (b)). The wavelength of maximum absorption in the principal absorption band of the T-T spectra, λ_{max} , shows little change on going from n = 1 to n = 5, but for n = 6 there is a significant shift to the blue.

The triplet-triplet absorption maxima of the acids in water (H_2O) are slightly blue-shifted relative to the corresponding ethyl esters, with the exception of the *eee* tris-adduct (Table 1).

The triplet-triplet absorption bands of these derivatives in the 700 nm region are most likely related to the $2 {}^{3}G_{u} \leftarrow 1 {}^{3}T_{2g}$ transition, corresponding to the strong 750 nm band of C_{60} .²¹ Where comparison is possible, the positions of the triplet absorption band maxima for the esters broadly agree with those reported by Guldi *et al.*⁸ However, Guldi *et al.* report a λ_{max} of 650 nm for the *eee* tris-adduct, which contrasts with our observation of λ_{max} at 725 nm for this derivative (Fig. 2(b), Table 1).

Determination of the quantum yields of singlet oxygen production, Φ_{Δ} , and of the corresponding triplet quantum yields, Φ_{T}

The sensitised production of singlet oxygen by the malonic acid derivatives $C_{60}[C(COOH)_2]_n$ (n = 2-6) in D_2O , and by their corresponding ethyl esters in toluene or benzene, was assessed by comparison of the slopes of linear plots of I_o (the amplitude of the time-resolved 1O_2 (${}^1\Delta_g$) 1270 nm phosphorescence signal extrapolated to t = 0) vs. laser intensity, with

Fig. 2 (a) Triplet spectra of C_{60} [C(COOH)₂]_n (n = 2-6) in water at pH 7.4 and (b) C_{60} [C(COOEt)₂]_n (n = 1-6) in toluene.

the slopes obtained for optically-matched solutions of the reference compounds. The ratio of the slopes, α^{F} , of ${}^{1}O_{2}$ production sensitised by the fullerene derivatives F as a function of the laser intensity, to the corresponding slopes, α^{St} , determined for ${}^{1}O_{2}$ production sensitised by the reference as a function of the laser intensity, allows the determination of the quantum yield of singlet oxygen production by the fullerene derivatives from the slope ratio, after correction for any small differences in the fraction of light absorbed by the solutions at the laser excitation wavelength, λ_{exc} (eqn. (1)).

$$\Phi_{\Delta}^{\rm F} = \Phi_{\Delta}^{\rm St} \frac{\alpha^{\rm F}}{\alpha^{\rm St}} \frac{1 - 10^{-A_{\lambda\,\rm exc}^{\rm St}}}{1 - 10^{-A_{\lambda\,\rm exc}^{\rm F}}} \tag{1}$$

In this equation, $A_{\lambda_{exc}}^{St}$ and $A_{\lambda_{exc}}^{F}$ are the absorbances for the standard and for the fullerene solutions at the excitation

Fullerene derivative	$C_{60}[C(COOEt)_2]_n$ (toluene)	C ₆₀ [C(COOH) ₂], (H ₂ O, pH 7.4)
C ₆₀	20 200(750) ^a	—
Mono-adduct	12 200(710)	720 ^b
	900(720) ^c	
trans-2 (bis-adduct)	16 700(690)	11 000(680)
	$15\ 300(690)^d$	
	8200(690) ^c	
trans-3 (bis-adduct)	10 700(700)	8900(700)
	$11400(700)^d$	
	8000(705) ^c	
trans-4 (bis-adduct)	11 200(720)	6800(700)
e (bis-adduct)	15 400(710)	15 000(690)
	9700(710) ^c	
trans-333 (tris-adduct)	8700(730)	11 200(670)
eee (tris-adduct)	10 900(725)	8900(730)
	7500(650) ^c	
All e (tetra-adduct)	15 000(710)	7400(710)
All e (penta-adduct) ^{e}	8000(690)	4950(680)
All e (hexa-adduct) ^{e}	7700(590)	

Table 1 Triplet molar absorption coefficients ($\pm 20\%$)/M⁻¹ cm⁻¹ and λ_{max} /nm

^{*a*} From ref. 21. ^{*b*} Observed for $C_{60}[C(COONa)_2]$ in water, and complexed with γ -cyclodextrin in water.^{27 *c*} From ref. 8. Dr D. Guldi has informed us that "the measurements of the triplet absorption coefficients reported in ref. 8 were performed *via* the comparative method, with the assumption that the triplet molar absorption coefficient of C_{60} , chosen as standard, is 16 000 M⁻¹ cm⁻¹ at 750 nm and that the triplet quantum yields for all these esters are unity". ^{*d*} *Via* pulse radiolysis. ^{*e*} In benzene.

Table 2 Singlet oxygen quantum yields Φ_{Δ} (±10%)

Fullerene derivative	$C_{60}[C(COOEt)_2]_n$ (toluene)	C ₆₀ [C(COOH) ₂] _n (D ₂ O, pH 7.4)
C ₆₀	1^a	_
Mono-adduct	0.97	
trans-2 (bis-adduct)	0.94	0.68
trans-3 (bis-adduct)	0.84	0.36
trans-4 (bis-adduct)	0.80	0.29
e (bis-adduct)	0.85	0.31
trans-333 (tris-adduct)	0.70	0.51
eee (tris-adduct)	0.55	0.30
All <i>e</i> (tetra-adduct)	0.30	0.21
All e (penta-adduct)	0.13^{b}	0.12
All e (hexa-adduct)	0.13^{b}	0.06

wavelength. The measured Φ_{Δ} values are given in Table 2. For these determinations the same solvent was used for the fullerene derivative and the standard, since the radiative properties of singlet oxygen are dependent on the solvent.²²

The singlet oxygen quantum yields of the acids in aqueous solution are systematically lower than those of the ethyl esters in toluene or benzene (see Table 2). The lower values observed in aqueous solution can be interpreted as due to the presence of clusters. It is well known that the singlet to triplet intersystem crossing quantum yields decrease as a consequence of dimerisation or aggregation for aromatic hydrocarbons^{23,24} porphyrins²⁵ and certain other fullerenes.^{7,26} Some Φ_{Δ} measurements were also made in cyclohexane and benzonitrile. The values found for C₆₀[C(COOEt)₂]_n (n = 1-6) in cyclohexane were identical, within experimental error, to the values found in toluene or benzene. However, the yields in benzonitrile (a more polar solvent) were intermediate between the toluene/benzene-ester results and the acid results in water (D₂O), implying some aggregation in benzonitrile.

In the case of the mono-adduct acid derivative, Guildi *et* $al.^{27}$ have deduced the presence of clustering in water on the basis of a short triplet state lifetime $(t_{1/2} \sim 0.4 \ \mu s)$ as compared to that for the γ -cyclodextrin encapsulated mono-adduct $(t_{1/2} \sim 55 \ \mu s)$. In the case of $C_{60}[C(COOH)_2]_n$, (n = 2-6) studied here, triplet state lifetimes in water ranging from 10–50 μs were obtained, and are similar to the lifetimes found for the corresponding esters in toluene.

The quantum yields of singlet oxygen production for $C_{60}[C(COOH)_2]_n$ (n = 2-6) in D_2O and their corresponding ethyl esters in toluene and benzene, can be employed in the estimation of the corresponding Φ_T , using eqn. (2).

$$\Phi_{\rm T} = \frac{\Phi_{\Delta}}{S_{\Delta}S_{\rm Q}} \tag{2}$$

 S_{Δ} is the fraction of triplet states quenched by oxygen leading to formation of singlet oxygen and S_{Ω} is the fraction of triplet

states quenched by oxygen.²⁸ Under the experimental conditions employed, the value of S_Q is close to unity for all the compounds studied, since the triplet lifetime decreases by at least one order of magnitude in the presence of oxygen. The S_{Δ} value is unity for the fullerenes studied to date, including C_{60} as well as C_{60} methanofullerenes,²⁹ since independently measured Φ_{Δ} and Φ_{T} are near unity for these molecules. It should be noted that the S_{Δ} value is 0.9 ± 0.1 for many aromatic $\pi\pi^*$ triplet states without electron-donating groups.³⁰ Thus, if we assume the S_{Δ} value is unity for these fullerene derivatives, the Φ_{T} values are approximately equal to the Φ_{Δ} values (Table 2). This is verified below for two of these fullerenes.

Determination of triplet molar absorption coefficients

(i) Laser flash photolysis. Using a comparative method,^{31,32} it is possible to estimate the triplet state molar absorption coefficients of the malonic acid derivatives *via* a knowledge of their triplet quantum yields. Linear plots of the extrapolated t = 0 absorbance changes at appropriate monitoring wavelengths *vs.* laser intensity are constructed for optically matched solutions of the fullerene derivative and the standard (C₆₀ in benzene or toluene for which $(\varepsilon_T - \varepsilon_G)^{St} = 20\,200 \text{ M}^{-1} \text{ cm}^{-1}$ at 750 nm²¹ and $\Phi_T^{St} \sim 1.^{18,21}$). In contrast to the determination of Φ_{Δ} , it is not necessary, for transient absorption studies, to use the same solvent for standard and unknown. The triplet molar absorption coefficients may be deduced using eqn. (3), where β^F and β^{St} represent the respective slopes of the plots described above.

$$(\varepsilon_{\rm T} - \varepsilon_{\rm G})^{\rm F} = (\varepsilon_{\rm T} - \varepsilon_{\rm G})^{\rm St} \left(\frac{\Phi_{\rm T}^{\rm St}}{\Phi_{\rm T}^{\rm F}}\right) \left(\frac{\beta^{\rm F}}{\beta^{\rm St}}\right) \left(\frac{1 - 10^{-A_{\lambda_{\rm exc}}^{\rm St}}}{1 - 10^{-A_{\lambda_{\rm exc}}^{\rm F}}}\right)$$
(3)

For all the fullerene derivatives studied, ε_{G} is negligible compared to ε_{T} at the triplet absorption maxima.

Using the above expression, the triplet molar absorption coefficients of the acids, $C_{60}[C(COOH)_2]_n$, in water, as well as

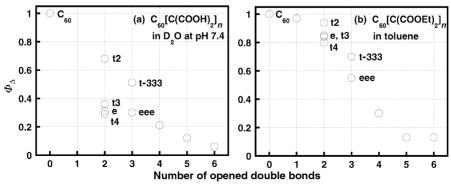


Fig. 3 Plots of quantum yields of singlet oxygen $O_2({}^{1}\Delta_g)$ formation (Φ_{Δ}) (a) for C_{60} [C(COOR)₂]_n, R = H, n = 2-6 and (b) R = Et, n = 1-6 vs. the number of addends (n), *i.e.* the number of opened double bonds.

the corresponding ethyl esters $C_{60}[C(COOEt)_2]_n$ in toluene or benzene, have been determined, and are reported in Table 1. Guldi *et al.*⁸ have determined triplet molar absorption coefficients for the mono, *trans-2*, *trans-3*, *e* bis- and *eee* tris-adduct ester derivatives and these values are also included in Table 1. The values of Guldi *et al.*⁸ are all significantly lower than the values reported here and the reasons for this are indicated in a footnote to Table 1.

(ii) Pulse radiolysis. Pulse radiolysis was used to make measurements of the triplet molar absorption coefficients of the ethyl esters, *trans*-2 and *trans*-3 in toluene *via* a comparative method that exploits quantitative triplet energy transfer.³² The triplet states of each ethyl ester were produced in benzene by energy transfer from the triplet state of biphenyl, for which $\varepsilon_{\rm T}$ is 27 100 M⁻¹ cm⁻¹ at 365 nm.³³ These measurements yield estimates of $\varepsilon_{\rm T}$ (*trans*-2) at 690 nm of 15 300 M⁻¹ cm⁻¹ and $\varepsilon_{\rm T}$ (*trans*-3) at 700 nm of 11 400 M⁻¹ cm⁻¹. These values are in reasonable agreement with the molar absorption coefficients obtained from the laser flash photolysis measurements. This agreement confirms the validity of the assumption that $\Phi_{\rm T} = \Phi_{\rm A}$ for these compounds.

Structural influences on photophysical properties

The results of this study reveal a trend; the values of Φ_{Δ} (Fig. 3(a) and (b) and Table 2), and the triplet molar absorption coefficient (Table 1) show a tendency to decrease with increasing number of addends. This effect of the extent of functionalisation on the photophysical properties of fullerenes (C_{60} and C_{70}) derivatives has already been reported.^{34–38} For the different bis- and tris-regioisomers, the spectroscopic and photophysical parameters are dependent on the pattern of addition. There are evidently underlying effects of the specific addition pattern on the electronic structures governing the molecular spectra and photophysical properties of these fullerenes derivatives, in particular the interstate coupling factors, including electronic, vibrational and spin–orbit parameters. Theoretical studies on individual compounds are required to determine the quantitative aspects of these factors.

Acknowledgements

This work was performed under European contract FMRX-CT98-0192. Some of the experiments were performed at the Paterson Institute for Cancer Research Free Radical Research Facility, Manchester, UK with the support of the European Commission through the Access to Large-Scale Facilities activity of the TMR Programme. We are grateful to Drs I. Hamblett and S. Navaratnam for expert assistance and to Dr D. Allan, Mr B. W. Hodgson and Mr P. Lucas for technological support. We are also grateful to Professors T. Garestier and C. Hélène for their constant support.

References

- P. A. Liddell, D. Kuciauskas, J. P. Sumida, B. Nash, D. Nguyen, A. L. Moore, T. A. Moore and D. Gust, J. Am. Chem. Soc., 1997, 119, 1400.
- 2 K. C. Hwang and D. Mauzerall, *Nature*, 1993, **361**, 138.
- 3 R. V. Bensasson, J.-L. Giraud, S. Leach, G. Miquel and P. Seta, *Chem. Phys. Lett.*, 1993, 210, 141.
- 4 A. S. Boutorine, H. Tokuyama, M. Takasuki, H. Isobe, E. Nakamura and C. Hélène, Angew. Chem. Int. Ed. Engl., 1994, 53, 2462.

- 5 A. S. Boutorine, O. Balland, H. Tokuyama, M. Takasuki, H. Isobe, E. Nakamura and C. Hélène, in *Fullerenes*, ed. K. M. Kadish and R. S. Ruoff, The Electrochemical Society, Inc., Pennington, NJ, 1995, vol. 5, pp. 186–196.
- 6 F. Wilkinson, in Organic Molecular Photophysics, ed. J. B. Birks, Wiley, London, 1975, vol. 2, pp. 95–158.
- 7 J.-M. Janot, E. Bienvenüe, P. Seta, R. V. Bensasson, A. C. Tomé, R. F. Enes, J. A. S. Cavaleiro, S. Leach, X. Camps and A. Hirsch, J. Chem. Soc., Perkin Trans. 2, 2000, 1.
- 8 D. M. Guldi, H. Hungerbühler and K.-D. Asmus, J. Phys. Chem., 1995, 99, 9380.
- 9 D. M. Guldi and K.-D. Asmus, J. Phys. Chem., 1997, 101, 1472.
- 10 D. M. Guldi and M. Prato, Acc. Chem. Res., 2000, 33, 695.
- 11 I. Lamparth and A. Hirsch, J. Chem. Soc., Chem. Commun., 1994, 1727.
- 12 A. Hirsch, I. Lamparth and H. R. Karfunkel, Angew. Chem. Int. Ed. Engl., 1994, 33, 437.
- 13 A. Hirsch, I. Lamparth, T. Grösser and H. R. Karfunkel, J. Am. Chem. Soc., 1994, 116, 9385.
- 14 I. Lamparth, C. Maichle-Mössmer and A. Hirsch, Angew. Chem. Int. Ed. Engl., 1995, 34, 1607.
- 15 P. Salomaa, L. L. Schaleger and F. A. Long, J. Am. Chem. Soc., 1964, 86, 1.
- 16 E. J. Land, S. Navaratnam, B. J. Parsons and G. O. Phillips, Photochem. Photobiol., 1982, 35, 637.
- 17 J. H. Tinkler, S. M. Tavender, A. W. Parker, D. J. McGarvey, L. Mulroy and T. G. Truscott, J. Am. Chem. Soc., 1996, 118, 1756.
- 18 M. Terazima, N. Hirota, H. Shinohara and Y. Saito, J. Phys. Chem., 1991, 95, 9080.
- 19 R. Schmidt, C. Tanielian, R. Dunbassch and C. Wolf, J. Photochem. Photobiol., A, 1994, 79, 11.
- 20 R. V. Bensasson, E. J. Land and T. G. Truscott, Excited States and Free Radicals in Biology and Medicine. Contributions from Flash Photolysis and Pulse Radiolysis, Oxford University Press, Oxford, 1993, pp. 104–107.
- 21 R. V. Bensasson, T. Hill, C. Lambert, E. J. Land, S. Leach and T. G. Truscott, *Chem. Phys. Lett.*, 1993, **201**, 326.
- 22 R. D. Scurlock, S. Nonnell, S. E. Braslavsky and P. Ogilby, J. Phys. Chem., 1995, 99, 3521.
- 23 T. Medinger and F. Wilkinson, *Trans. Faraday Soc.*, 1966, 62, 1785.
- 24 W. Heinzelmann and H. Labhart, Chem. Phys. Lett., 1969, 4, 20.
- 25 R. Redmond, E. J. Land and T. G. Truscott, in *Methods in Porphyrin Sensitization*, ed. D. Kessel, Plenum Press, New York, 1985, pp. 293–302.
- 26 S. Nath, H. Pal, D. K. Palit, A. V. Sapre and J. P. Mittal, J. Phys. Chem. B, 1998, 102, 10158.
- 27 D. M. Guldi, H. Hungerbühler and K.-D. Asmus, J. Phys. Chem., 1995, 99, 13487.
- 28 K. Heihoff, R. W. Redmond, S. E. Braslavsky, M. Rougée, C. Salet, A. Favre and R. V. Bensasson, *Photochem. Photobiol.*, 1990, 51, 635.
- 29 R. V. Bensasson, E. Bienvenüe, C. Fabre, J.-M. Janot, E. J. Land, S. Leach, V. Leboulaire, A. Rassat, S. Roux and P. Seta, *Chem. Eur. J.*, 1998, 4, 270.
- 30 R. W. Redmond and S. E. Braslavsky, Chem. Phys. Lett., 1988, 148, 523.
- 31 B. Amand and R. V. Bensasson, Chem. Phys. Lett., 1975, 34, 44.
- 32 R. V. Bensasson, E. J. Land and T. G. Truscott, Excited States and Free Radicals in Biology and Medicine. Contributions from Flash Photolysis and Pulse Radiolysis, Oxford University Press, Oxford, 1993, pp. 80–82.
- 33 R. V. Bensasson and E. J. Land, *Trans. Faraday Soc.*, 1971, **67**, 1904.
- 34 C. Luo, M. Fujitsuka, A. Watanabe, O. Ito, L. Gan, Y. Huang and C. H. Huang, J. Chem. Soc., Faraday Trans., 1998, 94, 527.
- 35 Y. Nakamura, M. Taki, S. Tobita, H. Shizuka, H. Yokoi, K. Ishiguro, Y. Sawaki and J. Nishimura, J. Chem. Soc., Perkin Trans. 2, 1999, 127.
- 36 D. K. Palit, H. Mohan, P. R. Birkett and J. P. Mittal, J. Phys. Chem. A, 1999, 103, 11227.
- 37 F. Prat, R. Stackow, R. Bernstein, W. Y. Qian, Y. Rubin and C. S. Foote, J. Phys. Chem. A, 1999, 103, 7230.
- 38 R. V. Bensasson, M. Schwell, M. Fanti, N. Wachter, J. O. Lopez, J.-M. Janot, P. Birkett, E. J. Land, S. Leach, P. Seta, R. Taylor and F. Zerbetto, *Chem. Phys. Chem.*, 2001, 2, 109.