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Abstract

A new linear method for the determination of the rate coe�cients of complex ®rst-order (or pseudo-®rst-order)

mechanisms is presented and applied to simulated data. The errors associated with parameter recovery are compared

with those of the traditional nonlinear least-squares method. Nonlinear methods based on convolution kinetics are also

developed, and general convolution equations are obtained. Special attention is paid in both cases to excited state

kinetics, where concentrations are usually known only up to a constant factor. The monomer±excimer kinetics is

discussed in detail, explicit relations for parameter correlation being obtained. The in¯uence of transient e�ects is also

quantitatively discussed. Ó 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

There are two distinct approaches to experimental data analysis. One, aprioristic, assumes a given
mathematical model (that in kinetics results from a mechanism) and tries to ®t the experimental results with
theoretical laws containing unknown parameters. A second approach, more ¯exible and simpler, but at the
same time less rich, assumes no particular model and merely uses empirical functions (e.g. sums of expo-
nentials) to ®t the results. This is typically the case in studies of exploratory nature, when no clear idea
exists on the possible applicable model (or underlying mechanism), but may also be appropriate if a simple
empirical description of the phenomenon su�ces.

One of the main objectives of kinetic studies is the determination of the rate coe�cients of the elementary
steps of a given mechanism. These rate coe�cients can be obtained from experimental data using both the
di�erential and the integral methods [1±3]. It is generally accepted that the integral method has advantages
over the di�erential method since the last one, being based on the numerical di�erentiation of the exper-
imental curve, ampli®es experimental error.
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Even if a given mechanism is compatible with experiment, it may not be the only one. Di�erent
mechanisms can produce identical time evolutions for the concentrations of some of the species involved
(indistinguishability). Also, and assuming that the mechanism is known, the unambiguous assignment of
precise values to individual rate coe�cients may not be possible (unidenti®ability). The aspects of distin-
guishability and identi®ability have been addressed by several authors for ®rst-order ground [4] and excited
state [5,6] kinetics.

The aprioristic analysis of ground and excited state kinetic data is usually based on a nonlinear least-
squares ®t of the experimental curves, where time is the independent variable and the measured dependent
variables are concentrations or quantities proportional to the concentrations. Sometimes the only available
dependent variables are proportional, not to the concentration of a single species, but to a weighted sum of
concentrations, rendering the analysis more delicate. This case will not be addressed here.

In this work, we present a new method for the analysis of ground state and excited state kinetics on the
assumption that these are described by ®rst-order mechanisms. In this method, the rate coe�cients can be
obtained from a linear least-squares ®t, which allows the rigorous estimation of the errors associated with
the parameters, and does not su�er from the parameter bias frequent in nonlinear ®ts [7]. Another unique
advantage of the new method is that it avoids the computation of the theoretical time evolutions, which,
even for moderately complex schemes, cannot be obtained in analytical form. We also derive general
equations based on the convolution approach, that contain as particular cases some integral relations
obtained previously [8].

Both treatments are applied to a reversible two-state kinetic reaction scheme that describes both the
intramolecular and intermolecular excimer and exciplex formation processes [9] as well as intramolecular
charge transfer state formation [10]. A detailed analysis of parameter correlation is carried out. The in-
¯uence of transient e�ects (time-dependent rate coe�cients) on parameter correlation removal is quanti-
tatively discussed.

2. Linear method

2.1. Di�erential form

Consider a kinetic scheme involving species X1;X2; . . . ;Xn; and composed by elementary steps that are
®rst-order or pseudo-®rst order. Besides interconversion, the species are produced at rates
Ii�t� �i � 1; 2; . . . ; n�, so that the governing rate equations are

dC1

dt
� I1�t� ÿ k11C1 � k12C2 � � � � ;

dC2

dt
� I2�t� � k21C1 ÿ k22C2 � � � � ;

�1�

where Ci is the concentration of Xi, and the rate coe�cient kii �i � 1; 2; . . . ; n� is the sum of rate coe�cients
for all elementary decay paths of Xi (e.g., if Xi is an excited state species, kii � Ci �

P
j;j 6�ikji �i � 1; 2; . . . ; n�,

where Ci is the intrinsic decay rate constant), and kij �i 6� j� is the rate coe�cient for the conversion j! i.
Unless explicitly stated, it is assumed throughout that all rate coe�cients are time-independent.

Suppose all Ci�t� and Ii�t� curves �i � 1; 2; . . . ; n� of Eq. (1) are known from experiment, at closely en-
ough spaced times tk �k � 1; 2; . . . ;m; m� n�. Then, Eq. (1) can be rewritten as

Y1�tk� � I1�tk� ÿ k11C1�tk� � k12C2�tk� � � � � ;
Y2�tk� � I2�tk� � k21C1�tk� ÿ k22C2�tk� � � � � �k � 1; 2; . . . ;m�; �2�
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where Yi is the time derivative of Ci �i � 1; 2; . . . ; n�, numerically computed for time tk. The problem of
determining the rate constants kij is thus reduced to n linear least-squares ®ts according to Eq. (2), whereby
the computed Yi �ki1; ki2; . . . ; kin�, as given by Eqs. (1) and (2), are confronted to the Yi numerically com-
puted from the experimental data. As follows from Eq. (2), for a given Yi to enter the least-squares ®t it is
not only necessary to know Ci�t�, but also the Cj�t� of all Xj �j 6� i� that react to give Xi.

This method of analysis, being based on the numerical di�erentiation, is not usually suited for the
analysis of experimental (noisy) curves. The linear integral method discussed herein is to be preferred for
that purpose.

2.2. Integral form

The integrated form of Eq. (1) admits an entirely equivalent approach; integrating both sides with re-
spect to time, one obtains,

C1�t� � C1�0� �
Z t

0

I1�u�duÿ k11

Z t

0

C1�u�du� k12

Z t

0

C2�u�du� � � � ;

C2�t� � C2�0� �
Z t

0

I2�u�du� k21

Z t

0

C1�u�duÿ k22

Z t

0

C2�u�du� � � �
�3�

and the problem of determining the rate constants kij is again reduced to n linear least-squares ®ts according
to Eq. (4),

C1�tk� � C1�0� � J1�tk� ÿ k11Z1�tk� � k12Z2�tk� � � � � ;
C2�tk� � C2�0� � J2�tk� � k21Z1�tk� ÿ k22Z2�tk� � � � � ;

�4�

where Ji�tk� �
R tk

0
Ii�u�du and Zi�tk� �

R tk
0

Ci�u�du, all integrations being performed numerically. Without
loss of generality, it may be supposed that Ci�0� � Ci�0ÿ� � 0 �i � 1; 2; . . . ; n�, the initial concentrations
Ci�0� � Ci�0�� being incorporated in the production term Ji. As before, for a given Ci to enter the least-
squares ®t it is not only necessary to know Zi�t�, but also the Zj�t� of all Xj �j 6� i� that react to produce Xi.

For future reference, we remark here that both methods also hold in the more general case of elementary
steps of any order.

Considering again Eqs. (2) and (4), there are generally n2 unknowns and the same number of parameters,
and the problem is determined. A special case, applicable to ground-state kinetics, is that where
kii �

P
j;j 6�ikji �i � 1; 2; . . . ; n�, the number of independent unknowns being reduced to �n2 ÿ n�. In such a

case a joint least-squares (global analysis) of all equations is justi®ed.

2.3. When the concentrations are known only up to a constant factor

Consider now that all concentrations and production rates are known from experiment but for a con-
stant, unknown factor, as is the case in most excited-state studies, including ¯uorescence decay measure-
ments. In this case

Ii � aiPi; Ci � biDi; �5�

where ai and bi are the unknown factors and Pi and Di are the experimental production rates and ob-
servables, respectively �i � 1; 2; . . . ; n�. Eq. (1) can then be rewritten as
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dD1

dt
� a1P1 ÿ b11D1 � b12D2 � � � � ;

dD2

dt
� a2P2 � b21D1 ÿ b22D2 � � � � ;

�6�

where ai � ai=bi and bij � bjkij=bi. The ®tting Eq. (2) thus become

Y1�tk� � a1P1�tk� ÿ b11D1�tk� � b12D2�tk� � � � � ;
Y2�tk� � a2P2�tk� � b21D1�tk� ÿ b22D2�tk� � � � � �k � 1; 2; . . . ;m�; �7�

where Yi now stands for the numerical time derivative of the observable Di. In each equation, there are n� 1
coe�cients that can in principle be determined. Since there are n equations, the total number of coe�cients
is n�n� 1�. On the other hand, the number of unknowns is higher, n2 � 2n. In this way, n out of n2 � 2n
parameters must be determined independently. As before, a special case, applicable to ground-state ki-
netics, is that where kii �

P
j;j 6�ikji �i � 1; 2; . . . ; n�, the number of independent unknowns being n2 � n, and

all parameters can thus be obtained from experiment. A joint ®t (global analysis) of all equations is again
justi®ed.

If some of the production rates are zero, there is again a reduction in the number of parameters. For
instance, if only one production rate is nonzero, the number of unknowns is n2 � n� 1, and only one extra
relation is needed.

The same reasoning applies to the integrated equations: Instead of Eqs. (3) and (4) we have

D1 � a1J1 ÿ b11Z1 � b12Z2 � � � � ;
D2 � a2J2 � b21Z1 ÿ b22Z2 � � � � ;

�8�

where now Ji�t� �
R t

0
Pi�u�du and Zi�t� �

R t
0

Di�u�du. Again ai � ai=bi and bij � bjkij=bi and thus, the pre-
vious conclusions regarding the number of parameters and equations are also valid here.

2.4. Advantages and limitations of the linear method

The proposed method of kinetic data analysis has two great advantages. Firstly, it is linear in the pa-
rameters, thus allowing a straightforward parameter and parameter uncertainty evaluation. For the eval-
uation of the latter, it should be generally valid to assume that the errors of the dependent (Yi or Ci) variable
are independent of the errors of the dependent variables (Ci or Zi). This is completely justi®ed if the
temporal dependence of the measurement errors is of the white-noise type; in such a situation, the error of
the time-derivative Yi or of the time-integral Zi will be uncorrelated with the error of the concentration itself,
Ci. It is also of course assumed that the errors of the dependent variables are uncorrelated. Secondly,
contrary to the usual approaches, it does not require the computation of the theoretical time evolutions,
which, even for moderately complex schemes, cannot be obtained in analytical form.

The major limitation of the proposed method stems from the fact that, in most cases of interest, not all
relevant concentrations Ci are known, or, if so, not for the su�ciently small time steps required for the
accurate numerical di�erentiations or integrations used by the least-squares ®tting according to Eqs. (2) and
(4).

Nevertheless, in some special situations experimental data of good quality and closely spaced in time
may be available for all species involved. This is for instance the case for monomer±excimer kinetics studied
by the single-photon timing technique when monomer and excimer are spectrally well separated, as with
pyrene [8,11]. The discussed approach should be of interest here. This kinetic scheme is discussed in detail in
Section 4.
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3. Convolution form

The rate equations can be written in an integrated form more general than Eq. (3). Consider again Eq.
(1), rewritten as

dC1

dt
� I1�t� ÿ a1k11C1 ÿ �1ÿ a1�k11C1 � k12C2 � � � � ;

dC2

dt
� I2�t� � k21C1 ÿ a2k22C2 ÿ �1ÿ a2�k22C2 � � � � ;

�9�

where a1; a2; . . . are parameters taking arbitrary values between 0 and 1. Eq. (9) can be written as

dC1

dt
� a1k11C1 � I1�t� ÿ �1ÿ a1�k11C1 � k12C2 � � � � ;

dC2

dt
� a2k22C2 � I2�t� � k21C1 ÿ �1ÿ a2�k22C2 � � � � :

�10�

Taking Laplace transforms on both sides, one obtains

�s� a1k11�C1 � I1 ÿ �1ÿ a1�k11C1 � k12C2 � � � � ;
�s� a2k22�C2 � �I2 � k21C1 ÿ �1ÿ a2�k22C2 � � � � ;

�11�

or

C1 � I1

s� a1k11

ÿ �1ÿ a1�k11C1

s� a1k11

� k12C2

s� a1k11

� � � � ;

C2 �
�I2

s� a2k22

� k21C1

s� a2k22

ÿ �1ÿ a2�k22C2

s� a2k22

� � � �
�12�

and ®nally, performing the inverse Laplace transformation,

C1 � �I1 ÿ �1ÿ a1�k11C1 � k12C2 � � � �� 
 exp�ÿa1k11t�;
C2 � �I2 � k21C1 ÿ �1ÿ a2�k22C2 � � � �� 
 exp�ÿa2k22t�; �13�

where 
 stands for convolution, the convolution between two functions f �t� and g�t� being another
function h�t� � R t

0
f �u�g�t ÿ u�du � f 
 g � g 
 f . Eq. (13) reduce to Eq. (3) if a1 � a2 � . . . � 0.

If kii is a sum of rate coe�cients, as mentioned in Section 2,

kii � Ci �
X
j;j 6�i

kji �i � 1; 2; . . . ; n�: �14�

Eq. (13) admits a further generalization, because one can write,

kii � �ai � �1ÿ ai��Ci �
X
j;j 6�i

�bji � �1ÿ bji��kij �i � 1; 2; . . . ; n�; �15�

where ai and bji are again parameters taking arbitrary values between 0 and 1. Eq. (13) become
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C1 � I1

(
ÿ �1
"
ÿ a1�C1 �

X
j;j 6�1

�1ÿ bj1�kj1

#
C1 � k12C2 � � � �

)

 exp

"
ÿ a1C1

 
�
X
j;j 6�1

bj1kj1

!
t

#
;

C2 � I2

(
� k21C1 ÿ �1

"
ÿ a2�C2 �

X
j;j 6�2

�1ÿ bj2�kj2

#
C2 � � � �

)

 exp

"
ÿ a2C2

 
�
X
j;j 6�2

bj2kj2

!
t

#
:

�16�
The importance of the ai and bij coe�cients will now be discussed in connection with a particular kinetic

scheme.

4. Application to monomer±excimer kinetics

4.1. Usual method

Consider a two-state kinetic model that describe the excimer/exciplex kinetics (Scheme 1). The usual
approach to this problem consists of a nonlinear least-squares ®t of monomer and excimer theoretical
decays to the experimental ones. This amounts to two double exponential ®ts whose common decay
constants are [9]

C1;2 � ÿ 1

2
�X
�

� Y � � �Y
h
ÿ X �2 � 4kDMkMD

i1=2
�
; X � CM � kDM; Y � CD � kMD; �17�

where kDM � k0DM�M� is a pseudo-unimolecular rate constant, and �M� is the ground state concentration of
monomer. As is well-known [4,5,9], unless CM is known from a separate experiment, the individual rate
constants cannot be obtained from the pair of ®tted lifetimes and from the experimental ratio of the pre-
exponential factors of the monomer decay curve. The method was improved by Boens and Ameloot et al.
that developed a global (compartmental) analysis of ¯uorescence decays recorded at several excitation and
emission wavelengths [12]. This allowed the determination of the rate coe�cients and the species associated
excitation and emission spectra. Nevertheless, owing to limitations of the nonlinear least-square procedure,
the precise evaluation of the parameters uncertainties is in itself di�cult. In addition, the rate coe�cients
can be biased due to the nonlinearity between the rate coe�cients and the ®tted parameters [7]. Simulated
monomer and excimer decay curves, with added synthetic noise, were generated as previously described [7],
using as input values the experimental rate constants for the pyrene monomer and excimer in cyclohexane
at room temperature [13], CM � 2:25� 106 sÿ1, CD � 1:55� 107 sÿ1, kDM � 6:7� 106 sÿ1 and kMD �
6:5� 106 sÿ1, and a concentration of 1:0� 10ÿ3 M. From the analysis of the simulated decays by the usual
method (using a double exponential ®t of the monomer decay curve), a set of kinetic parameters was

Scheme 1. Monomer±excimer kinetics.
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obtained. These are in general biased with respect to the input values, owing to the nonlinear nature of the
®tting procedure, as can be seen in Table 1 [7].

4.2. Linear method

Application of the equations of Section 2 (linear method) to the monomer±excimer (or exciplex)
mechanism shown in Scheme 1 is immediate. From the rate equations,

d M�� �
dt

� I�t� ÿ CM M�� � ÿ kDM M�� � � kMD D�� �;
d D�� �

dt
� ÿCD D�� � ÿ kMD D�� � � kDM M�� �;

�18�

one obtains the di�erential form. From the single photon timing experiments, the impulse function L�t�,
and the monomer IM�t� and excimer ID�t� decays are related with the production rate I�t�, and the
monomer, �M���t�, and the excimer �D���t�, by

I�t� � aL�t�; M�� ��t� � bMIM�t�; D�� ��t� � bDID�t�; �19�
where a, bM and bD are unknown parameters, the di�erential form of the linear method becomes

dIM

dt
� aLÿ �CM � kDM�IM � bMDID;

dID

dt
� ÿ�CD � kMD�ID � bDMIM;

�20�

where

a � a
bM

; bMD �
bD

bM

kMD; bDM �
bM

bD

kDM: �21�

A ®t according to Eq. (20) yields therefore in principle the following constants: CM � kDM, CD � kMD,
and bMDbDM � kMDkDM. The number of parameters obtainable from a single experiment is thus inferior by
one to the number of unknowns. The extra relation needed can be obtained either from a steady-state
experiment or, in the case of an intermolecular excimer, by studying two or more concentrations under the
same conditions [4,5].

The analogous integral method discussed in Section 2 yields

M�� � �
Z t

0

I�u�duÿ �CM � kDM�
Z t

0

M�� ��u�du� kMD

Z t

0

D�� ��u�du;

D�� � � ÿ�CD � kMD�
Z t

0

D�� ��u�du� kDM

Z t

0

M�� ��u�du
�22�

and, given Eq. (19),

Table 1

Values of the parameters obtained from the ®t of a simulated pyrene monomer decay by the nonlinear least-squares methoda

Input value Recovered value Bias (%)

kDM (sÿ1) 6:7� 106 6:8� 106 2

kMD (sÿ1) 6:5� 106 7:2� 106 11

sD (ns) 64.5 62 4

a Percent bias relative to the input parameter values. sM � 444 ns is assumed to be known from an independent experiment.
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IM � a
Z t

0

L�u�duÿ �CM � kDM�
Z t

0

IM�u�du� bMD

Z t

0

ID�u�du;

ID � ÿ�CD � kMD�
Z t

0

ID�u�du� bDM

Z t

0

IM�u�du;
�23�

where the parameters retain the meanings given in Eq. (21). A ®t according to Eq. (23) yields again the
constants: CM � kDM, CD � kMD, and bMDbDM � kMDkDM. As previously mentioned, the linear integral
method is better suited for the analysis of noisy data than the di�erential one.

Analysis of simulated pyrene decay curves using the integral method yield parameter values exactly
coincident with the input parameters (given in Table 1), when CM is supposed to be known (in experimental
studies this parameter can usually be obtained from independent measurements). This method also has the
advantage of allowing a straightforward estimation of the uncertainty of the recovered parameters, in
contrast to the usual nonlinear method.

4.3. Convolution form

Consider now the equations applicable to the monomer±excimer Scheme 1, that follow from Eq. (16)

M�� � � I1f ÿ �1� ÿ aM�CM � �1ÿ bDM�kDM�M�� � � kMD D�� �g 
 exp � ÿ �aMCM � bDMkDM�t�;
D�� � � kDM M�� �f ÿ �1� ÿ aD�CD � �1ÿ bMD�kMD� D�� �g 
 exp � ÿ �aDCD � bMDkMD�t�:

�24�

It is seen from these equations that a ®t of the type

M�� � � I� � a M�� � � b D�� �� 
 exp�ct�;
D�� � � d M�� �� � e D�� �� 
 exp�ft�; �25�

allows the determination of the four rate constants, because

ÿ�a� c� � CM � kDM;

ÿ�e� f � � CD � kMD;

b � kMD;

d � kDM:

�26�

From Eq. (26) we can see that there are perfect correlations between the ®tting parameter pairs �a; c� and
�e; f �.

Considering again Eq. (24), one may ®x beforehand the values of some or of all the arbitrary parameters
aM, aD, bDM and bMD, so as to alter the general form of Eq. (25). There are ®rst the following possibilities,
where a single correlation remains:

(i) a � 0() aM � bDM � 1; (e and f correlated).
(ii) c � 0() aM � bDM � 0; (e and f correlated).
(iii) e � 0() aD � bMD � 1; (a and c correlated).
(iv) f � 0() aD � bMD � 0; (a and c correlated).
One may also consider the following combinations, for which the ®tting parameters are no longer

correlated:
(v) a � 0 and e � 0.
(vi) a � 0 and f � 0.
(vii) c � 0 and e � 0.
(viii) c � 0 and f � 0.

In all cases the four rate constants can be recovered from the appropriate ®t (the last one corresponds to the
linear form discussed in Section 2).
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We now consider the experimental situation corresponding to single photon timing, i.e., for which only
the quantities given by Eq. (19) are known from experiment. One has, instead of Eq. (24),

IM � aLf ÿ �1� ÿ aM�CM � �1ÿ bDM�kDM�IM � cMDIDg 
 exp � ÿ �aMCM � bDMkDM�t�;
ID � cDMIMf ÿ �1� ÿ aD�CD � �1ÿ bMD�kMD�IDg 
 exp � ÿ �aDCD � bMDkMD�t�;

�27�

where

a � a
bM

; cMD �
bD

bM

kMD; cDM �
bM

bD

kDM �28�

In this way, instead of Eq. (25) one has

IM � aL� � aIM � bID� 
 exp�ct�;
ID � dIM� � eID� 
 exp�ft�; �29�

where

ÿ�a� c� � CM � kDM;

ÿ�e� f � � CD � kMD;

bd � kMDkDM:

�30�

In this way, and as before, not all parameters can be determined from a single concentration. Again, there
are perfect correlation relations between the ®tting parameter pairs �a; c� and �e; f �, and if one ®xes be-
forehand the values of some of the arbitrary parameters aM, aD, bDM and bMD in Eq. (27), the general form
of Eq. (29) is altered. For the following possibilities, a single correlation remains:

(i) a � 0() aM � bDM � 1; (e and f correlated).
(ii) c � 0() aM � bDM � 0; (e and f correlated).
(iii) e � 0() aD � bMD � 1; (a and c correlated).
(iv) f � 0() aD � bMD � 0; (a and c correlated).

But in the combinations
(v) a � 0 and e � 0,
(vi) a � 0 and f � 0,
(vii) c � 0 and e � 0,
(viii) c � 0 and f � 0,

the ®tting parameters are no longer correlated and all four rate constants can be recovered from the ap-
propriate ®t (the last one corresponds to the linear form Eq. (23)). Fig. 1 shows several plots of the reduced
chi-squared v2 (a common goodness-of-®t criterion), as a function of the parameter c, for ®xed values of the
parameter a obtained from the analysis of simulated monomer decay curves (same conditions as for Table
1). As predicted from Eqs. (29) and (30) the minimum value of v2 occurs when CM � kDM � ÿ�a� c�. Then,
only when CM or kDM are ®xed beforehand, can the other parameter be recovered from the ®t.

5. Combined monomer and excimer

5.1. Linear method

Consider the starting rate equations, Eq. (18). Addition of these two equations termwise leads to a
simpler equation, that does not contain the cross terms [14],
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d M�� �
dt
� d D�� �

dt
� I�t� ÿ CM M�� � ÿ CD D�� �: �31�

A ®t of the type discussed in Section 2, with �M�� � �D�� either in the di�erential or in the integral form,
allows the direct evaluation of CD and CM. If however only the impulse function L�t�, and the monomer
IM�t� and excimer ID�t� decays are known, Eq. (31) becomes

bM

dIM

dt
� bD

dID

dt
� aL�t� ÿ bMCMIM ÿ bDCDID: �32�

From the point of view of ®tting, one can rewrite Eq. (32) as

dID

dt
� AL� BIM � CID � D

dIM

dt
; �33�

where A, B, C and D are ®tting parameters.
Consider now a general linear combination of the time derivatives of �M�� and �D��, where the cross

terms necessarily appear,

d M�� �
dt
� �1� d� d D�� �

dt
� I ÿ dkDM� � CM�M�� � � dkMD� ÿ CD� D�� �: �34�

In terms of the single photon timing observables, Eq. (34) becomes,

Fig. 1. Plot of the reduced chi-squared v2 as a function of the parameter c, obtained for ®xed values of the parameter a. Simulated

monomer decay curves were analyzed with Eq. (29). As predicted from Eqs. (29) and (30), the minimum value of v2 occurs when

CM � kDM � ÿ�a� c�. Then, only when either CM or kDM are ®xed beforehand, can the other parameter be recovered from the ®t.
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dID

dt
� a
�1� d�bD

Lÿ bM

�1� d�bD

dkDM�
�

� CM�IM � dIM

dt

�
� 1

�1� d� dkMD� ÿ CD�ID; �35�

which has the same form as Eq. (33) and therefore the simultaneous determination of CD and CM is im-
possible. However, if CM, for instance, is known, the ambiguity disappears because the ®tting equation may
be written as

dID

dt
� AL� B CMIM

�
� dIM

dt

�
� CID; �36�

where C � ÿCD, and CD can be determined.

5.2. Convolution form

It is also possible to obtain integral relations between �M�� and �D�� that do not contain the rate con-
stants for interconversion kDM and kMD [7,10].

Repeating now the procedure applied in Eqs. (9)±(13), but starting with Eq. (31), one obtains, after
rearrangement,

�CM ÿ a2CD�M�� � 
 exp�ÿa2CDt� � �a1CM ÿ CD� D�� � 
 exp�ÿa1CMt�
� I 
 �exp�ÿa2CDt� ÿ exp�ÿa1CMt�� � �1ÿ a1�CM M�� � 
 exp�ÿa1CMt� ÿ �1ÿ a2�CD D�� �

 exp�ÿa2CDt�; �37�

where a1 and a2 are again parameters taking values between 0 and 1. The equations previously derived in
Refs. [8,11] can be obtained from Eq. (37) as particular cases:

(i) If a1 � a2 � 1,

�CM ÿ CD� M�� �f 
 exp� ÿ CDt� � D�� � 
 exp� ÿ CMt�g � I 
 exp�� ÿ CDt� ÿ exp� ÿ CMt��: �38�
(ii) If a1 � 0 and a2 � 1,

�CM ÿ CD�M�� � 
 exp� ÿ CDt� ÿ CD D�� � 
 1 � I 
 exp�� ÿ CDt� ÿ 1� � CM M�� � 
 1; �39�
whose di�erentiation gives

M�� � � D�� � � �CM ÿ CD�M�� � 
 exp�ÿCDt� � I 
 exp�ÿCDt�: �40�
(iii) If a1 � 1 and a2 � 0,

CM M�� � 
 1� �CM ÿ CD� D�� � 
 exp� ÿ CMt� � I 
 1� ÿ exp� ÿ CMt�� ÿ CD D�� � 
 1; �41�
whose di�erentiation gives

�M�� � �D�� � �CD ÿ CM��D�� 
 exp�ÿCMt� � I 
 exp�ÿCMt�: �42�
One thus sees that ®ts of the types

M�� � � D�� � � �a M�� � � I� 
 exp�bt�
and

M�� � � D�� � � �c D�� � � I� 
 exp�dt�; �43�
where a, b, c and d are the ®tting parameters, allow the determination of CM and CD. Also, Eq. (38), re-
written as
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D�� � 
 exp�ÿCMt� � aI 
 exp�� ÿ CDt� ÿ exp� ÿ CMt�� ÿ M�� � 
 exp�ÿCDt� a � 1

CM ÿ CD

�44�

should allow the determination of CD, provided CM is known.
It is of interest to note that Eqs. (40) and (42) are particular cases of a more general relation obtained

from the memberwise addition of Eq. (24) or Eq. (25), imposing the equality of the arguments of the two
exponentials, and yielding

M�� � � D�� � � I 
 exp�ÿat� � �aÿ CM�M�� � 
 exp�ÿat� � �aÿ CD� D�� � 
 exp�ÿat�; �45�
where a, common argument of the exponentials, is

a � aMCM � bDMkDM � aDCD � bMDkMD �46�
and aM, aD, bMD and bDM are parameters taking values between 0 and 1 (see Eq. (24)). Consideration of the
same relations in terms of the single-photon timing observables (L, IM and ID) leads to the conclusions
reached in Section 5.1. In fact,

M�� � � �1� d� D�� � � aL
 exp�ÿat� � �aÿ CM � dkDM�M�� � 
 exp�ÿat�
� �a� ÿ CD� ÿ d�CD � kMD ÿ a�� D�� � 
 exp�ÿat� �47�

and if one attempts to ®t IM and ID according to Eq. (43), the following correlations are obtained where d is
usually unknown:

a � CD � d
1� d

kMD; �48�

a � CM ÿ dkDM: �49�
Simultaneous determination of CM and CD demands therefore that additional information be used, either
from steady-state measurements or from other decays obtained at di�erent concentrations (which is pos-
sible for intermolecular processes only). Nevertheless, if one of the parameters is known from experiment,
the other can be evaluated using the above relations [8,11].

6. Transient e�ects

The only case where Eq. (32) can be used for the simultaneous determination of CD and CM is when
transient e�ects are present (i.e., the rate coe�cient kDM is time-dependent). In such a case, the general
linear combination contains a time-dependent coe�cient

dID

dt
� a
�1� d�bD

Lÿ bM

�1� d�bD

dkDM�t��
�

� CM�IM � dIM

dt

�
� 1

�1� d� dkMD� ÿ CD�ID �50�

and is therefore of the form

dID

dt
� AL� B�t�IM � CID � D

dIM

dt
: �51�

In this situation only when the two time derivatives are appropriately weighted, does the time-depen-
dence of coe�cient B disappear, and Eq. (33), with constant coe�cients, is valid. Then, the ®t with Eq. (33)
automatically yields the d � 0 solution.
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The same conclusion is valid for an analysis carried out according to the linear integral method or
according to the convolution relations. Considering Eq. (47) for instance, it is seen that for d 6� 0 a time-
dependent coe�cient arises. But a ®t using constant coe�cients automatically ensures that d � 0.

The above considerations imply that if a signi®cant time-dependence of kDM exists, the deviations be-
tween ®tting function and experimental decay will be important for d 6� 0 and the solution for d � 0 is
obtained. Indeed, simulated decay curves for irreversible monomer±excimer kinetics show that the simul-
taneous recovery of both parameters (CM and CD) is strongly dependent on the magnitude of the transient
term. In most of the cases of excimer formation in nonviscous solvents the importance of the transient e�ect
is minor and only visible for the initial times of decay so that CM and CD cannot be obtained simulta-
neously. Analysis of simulated data was carried out in order to quantify this aspect. Monomer and excimer
decay curves with added synthetic noise were simulated as before [7], using the mechanism previously
proposed for excimer formation [8,11], where di�usion is described by the Smoluchowski equation and the
e�ect of reversibility (excimer dissociation during its lifetime) is negligible. The curves were simulated with
CM � 2:25� 106 sÿ1 and CD � 1:55� 107 sÿ1, a pyrene concentration of 5� 10ÿ2 M, and di�usion coe�-
cients of either D � 10ÿ2 nm2 nsÿ1 or D � 10ÿ3 nm2 nsÿ1 . After convolution with an experimental excitation
pro®le, Poisson noise was added [7] and the curves were analysed with Eq. (47). Some results are presented
in Table 2. For the higher di�usion coe�cient (D � 10ÿ2 nm2 nsÿ1) the time dependence of kDM is not
important enough to force a ®t with d � 0 and the precision of parameter recovery is poor. On the other
hand, for the curves simulated with the smaller coe�cient (D � 10ÿ3 nm2 nsÿ1), di�usion of the pyrene
molecules is slower and the transient e�ects are large enough to force d � 0 in Eq. (47). In this case it is
possible to recover the CM and CD parameters with good precision, without assumptions as to the nature of
kDM and kMD.

Molski and Boens [15] have given theoretical support to the method of recovery proposed by Berberan-
Santos et al. [8,11] for CM and CD. In this section we showed the explicit e�ect of this aspect on the ®t, and
examined realistic cases to determine the extent to which transient e�ects must exist for the recovery to be
e�ective.

7. Conclusions

A new linear method for the determination of the rate coe�cients of ground and excited-state complex
®rst-order (or pseudo-®rst-order) mechanisms was presented and applied to simulated data. Nonlinear
methods based on convolution kinetics were also developed, and the general Eq. (16) were obtained. Ex-
cited-state kinetics, where concentrations are usually known only up to a constant factor, was discussed in
detail, in connection with monomer±excimer kinetics. In particular, explicit relations between parameters
(parameter correlation) were obtained and discussed. Removal of this correlation through the in¯uence of
transient e�ects was also quantitatively discussed.
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