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External heavy-atom effect on fluorescence kinetics
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Fluorescence quenching in fluid solution by the external heavy-atom effect usually follows simple Stern–Volmer kinetics, and
the quenching effect is gauged by the magnitude of the bimolecular quenching rate constant. However, it is the increased
unimolecular S1 Tn intersystem crossing rate constant of the perturbed fluorophore in the perturber–fluorophore complex that
can be directly compared with that of the unperturbed fluorophore. From a simple model for external heavy atom quenching in
fluid solution, the decay law is predicted to be singly exponential for all quencher concentrations, and a new expression for the
unimolecular S1 Tn intersystem crossing rate constant of the perturbed fluorophore is obtained. The same problem, but in rigid
solution, is also discussed for the first time. The model now predicts a nonexponential fluorescence decay law, from which the
unimolecular S1 7n intersystem crossing rate constant of the perturbed fluorophore can be directly determined.

1. Introduction

The quenching of fluorescence by heavy atoms (i.e., atoms
of large atomic number), a phenomenon first identified as
physical quenching by F. Perrin,1 has been the subject of
many studies.2–18 Heavy atom quenching of fluorescence
may occur in two different ways. Firstly, the heavy atom
can be part of the chromophore under study; this is referred
to as the internal heavy-atom effect.2,4 If however the heavy
atom is external to the chromophore, either
intramolecularly (quenching moiety11,14) or
intermolecularly, as the quencher (e.g. I–, Xe) or part of the
quencher [e.g. CH3I, Hg(CH3)2] then it is said to be the
external heavy-atom effect.3,4 The external process requires
close contact between perturber and fluorophore, usually in
the form of a statistical (contact) charge-transfer complex
(exciplex with binding energy smaller than kT). In fluid
media, this complex is short-lived, as it is both brought
about and broken apart by the incessant diffusive motion of
quencher and fluorophore. In rigid media, e.g. low
temperature organic glasses, diffusion is prevented and the
quenching is static: the perturber is effective only in the
statistical pairs, trios, etc. that were trapped upon cooling
(assuming that aggregation due to decreased solubility is
unimportant).

Heavy atoms in the fluorophore or in close contact to it
increase the rate of intersystem crossing (ISC) by
strengthening spin–orbit coupling,2,3 like in the electronic
transitions in heavy atoms (e.g. Hg). Thus, the decrease of
fluorescence yield (radiative transition S1 60) is in most
cases explained by an increase in the probability of the
competing S1 Tn radiationless transition of the
fluorophore. In some exceptional cases however, the
incorporation of one or more heavy atoms in the structure
(internal effect) significantly shifts the singlet and triplet
energy levels with respect to those of the unperturbed
chromophore,19 modifying its photophysics in a manner
unrelated to spin–orbit coupling strength variation. In the
absence of such effects, the internal heavy-atom effect,
resulting from the substitution of one or more light atoms

(usually hydrogens) by heavy atoms (usually bromines or
iodines) on a given chromophore, is gauged by the
concomitant increase of the S1 7n intersystem crossing
rate constant.

In the case of the external heavy-atom effect in fluid
solution, simple Stern–Volmer kinetics is observed, and the
effect is usually gauged by the magnitude of the
bimolecular quenching rate constant.5,7–10,13,18–20 It seems
however desirable to also obtain from the experimental
results the (unimolecular) S1 Tn intersystem crossing rate
constant of the perturbed fluorophore. In fact, it is this
constant that can be directly compared with that of the
unperturbed fluorophore. Surprisingly, this was attempted
in only one study,21 but the derived equations were not
general enough. In the present note, a simple kinetic
scheme for external heavy atom quenching in fluid solution
is proposed, and from it an expression for the
(unimolecular) S1 Tn intersystem crossing rate constant of
the perturbed fluorophore in the fluorophore–perturber(s)
complex(es) is obtained, valid for all quencher
concentrations. The corresponding fluorescence kinetics for
solid solutions (rigid media) is also discussed. It is shown
that analysis of experimental results should in this case
allow a direct determination of the unimolecular S1 Tn

intersystem crossing rate constant of the perturbed
fluorophore, along with other parameters.

2. Kinetics in a fluid medium

A. Dilute solutions

For the external heavy atom quenching of the fluorescence
of an excited molecule M* by a relatively dilute solution of
quencher Q in a fluid medium, the following mechanism is
considered:
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It is assumed that no stable (bound) complex between the
ground or excited state fluorophore and Q exists. (M*Q) is
therefore a statistical (contact) complex. It is also assumed
that: (i) the concentration of M is much smaller than that of
Q, as usual; (ii) Q is relatively dilute (below 0.1 M, say), so
that the probability of statistical complexes of the type
(M*Qn), with n > 1, is negligible; (iii) no excited processes
exist involving M* and Q, other than enhanced ISC.
Electron transfer, in particular, is not considered.

The rate constants kd and k–d correspond to the formation
and dissociation of the complex by mutual diffusion, and
the rate constants 0 and 1 account for all unimolecular
decay processes; the rate constant of the unperturbed
fluorophore is therefore
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where kF is the radiative rate constant, kIC is the internal
conversion rate constant, kISC is the intersystem crossing
rate constant, and 0 is the intrinsic lifetime. The effect of
the perturber on the radiative and internal conversion
processes is neglected, since the complex is assumed to be
unstable, and the radiative transition (fluorescence) spin-
allowed. It is therefore assumed that the perturbed
fluorophore relaxation processes only differ by an increased
intersystem crossing rate
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or,
                            ISC01 k∆+=                                    (3)

where kISC = kISC
1 – kISC

0. In this way, the total
fluorescence intensity will be directly proportional to the
sum [M*] + [(M*Q)], since the radiative rate constant is
the same for both species.

Considering the usual steady-state experiment (low
intensity continuous irradiation, with intensity I), and
supposing that only isolated molecules M are directly
excited (i.e., that the fraction of M involved in ground state
statistical pairs (MQ) is negligible), the following rate
equations apply,
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One obtains for the photostationary state that
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For [Q] = 0, eqn. (8) reduces to
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The ratio of the fluorescence intensities in the absence, and
in the presence of quencher, F0 and F, respectively, is now
obtained as
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Using eqn. (3), eqn. (10) becomes
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Two limiting cases are now considered:

(a) 1 >> k–d

For a solvent with a viscosity similar to that of a light
alkane or water (ca. 0.5–1 cP; 1 cP = 10–3 Pa s), and at
room temperature, the statistical complex lasts for only 5–
50 ps (see the Appendix). In order to have 1 >> k–d, the
perturbed fluorophore lifetime cannot exceed a few
picoseconds, i.e., it must be much shorter than the life span
of the momentary complex. This implies a very high ISC
rate induced by the perturber. In more viscous media,
and/or at lower temperatures, the same inequality is
fulfilled with correspondingly increased lifetimes.
Whenever 1 >> k–d is valid, one receives from eqn. (11)
the expected full diffusion-control result,

               [Q]1 0d
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All information concerning the rate of intersystem crossing
is of course lost. Eqn. (12) is only approximately valid
since transient effects are not considered.

(b) k–d >> 1

In most cases, the dissociation rate constant of the complex
is much higher than the decay rate of the perturbed
fluorophore, k–d >> 1, i.e., the perturbed fluorophore
lifetime should greatly exceed that of the momentary
complex. Again for a solvent with a viscosity similar to that
of a light alkane or water, and at room temperature, k–d >>

1 imposes on the perturbed fluorophore lifetime a lower
limit of a few hundred picoseconds.

In the absence of strong electrostatic interaction (as would
happen if M and Q were both charged species), the ratio
kd/k–d is simply $YRJDGUR
V�FRQVWDQW�WLPHV������ Rc

3, where



Rc is the collision distance for the complex22–24 (see also the
Appendix). In this way, kd/k–d is a molar volume, Vm, close
to that of the transient complex (M*Q). Eqn. (11) can thus
be rewritten as
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For dilute solutions of Q, Vm[Q] << 1, and eqn. (13)
reduces to
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which has the Stern–Volmer form, F0/F = 1 + kq 0[Q]. The
Stern–Volmer bimolecular quenching rate constant kq is
therefore related to the unimolecular intersystem crossing
rate constants by

                  ISCmq kVk =                                                  (15)

and the intersystem crossing rate constant of the perturbed
fluorophore is
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which is the desired relation. An equation identical to eqn.
(14) is obtained for the corresponding time-resolved
experiment (flash excitation) where 0/  is substituted for
F0/F, again under the assumption that Vm[Q] << 1.

It is of interest to note that the assumptions made above
effectively correspond to a fast excited-state equilibrium
between M* and (M*Q). This leads directly to the well-
known result for excimer kinetics (high-temperature
limit 20) of a singly exponential decay whose decay constant
is the average of the intrinsic decay constants of the two
species. This result can be generalized and understood as
follows: if a certain species participates in several fast
equilibria,25 then the decay of any of those species will be
singly exponential, and the common decay rate will be the
weighted average of all intrinsic decay rates (one for each
species), the weighting factor being the fraction of time
spent in each form, or equivalently, the fractional amount
of each species. For the present problem one obtains
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where � is the fraction of M* present as the statistical
complex,
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and using eqn. (1) and (2), eqn. (13) is obtained from eqn.
(17).

Owing to the fast equilibrium assumption, the inclusion of
direct excitation of statistical ground state complexes (MQ)
in the kinetic scheme, important for not too small , does
not change the final result, eqn. (13).

Within the two species model, eqn. (13) is more general
than eqn. (14), because this last equation is only valid if

Vm[Q] << 1. However, eqn. (13) will certainly fail if Vm[Q]
�0.1, since then complexes of the type (M*Qn), with n > 1,
become significant. This can be shown as follows: using
again a molar volume for the complex, Vm, the probability
that a given M* molecule will have n perturbers within that
volume, (i.e., that a complex (M*Qn) will be formed), is
approximately given by the Poisson distribution,
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where n ][QmV=  is the average number of perturbers in

"contact" with a generic M* fluorophore. Then, for
Vm[Q] = 0.1 the calculated fraction of M* involved in
complexes is 9.5%, and of these complexes, 94% have
n = 1. But for Vm[Q] = 0.5, complexes with n > 1 already
amount to 25% of all complexes. Consideration of
complexes of the type (M*Qn), with n > 1, is therefore
required for Vm[Q] > 0.1, at least.

B. Concentrated solutions

Only fast excited state equilibrium (implying moderate
perturber efficiency) is considered here. It is assumed that
M* and (M*Qn) (n = 1, 2, ...) have a common radiative rate
constant, but that the ISC rate constant of (M*Qn) is a
linear function of n.26

                     ISC0 knn +=                                         (20)

Eqn. (20) is a key assumption that appears to be
experimentally validated by the linearity of Stern–Volmer
plots with concentrated quenchers [see eqn. (24) below].

The fraction of each type of complex is approximately
given by the Poisson distribution used above. For very
concentrated solutions however, the existence of a
maximum coordination number (maximum number of
quenchers around the fluorophore) must be accounted for.
This is particularly important for small fluorophores and
bulky quenchers.

The correct distribution, valid for the entire concentration
range, is the binomial one,
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where n  = Vm[Q] is the average number of perturbers in
"contact" with a generic M* fluorophore, N = Vm [Q]0 is the
maximum coordination number, and [Q]0 is the
concentration of the quencher in a pure quencher medium.

As discussed in Section 2A, the decays of M* and of all the
(M*Q n) (n = 1, 2,..., N) will be single exponential, with a
common decay rate constant given by
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or

            [Q]ISCm0ISC0 kVkn +=+=                      (23)

and a Stern–Volmer relation identical to eqn. (14) follows,
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It is thus concluded that eqn. (14) is obeyed for all
concentrations of Q, and is in fact more general than eqn.
(13)!

C. Application

As an example of the application of eqn. (24), consider the
quenching of the fluorescence of a derivative of the
fullerene C70 by bromobenzene, in methylcyclohexane–
bromobenzene mixtures at room temperature.27 A linear
Stern–Volmer plot is obtained for the entire concentration
range, with a quenching rate constant of 1.4 × 108 dm3 mol–
1 s–1, i.e., well below diffusion control. Using van der
Waals radii of 0.53 and 0.30 nm for the C70 derivative and
for the quencher molecule, respectively, a molar volume of
1.4 dm3 mol–1 is obtained for the encounter complex. From
eqn. (24), one thus obtains that kISC = kISC

1 – kISC
0 = 9.7 ×

107 s–1. Since the ISC rate of the unperturbed fullerene
derivative in pure methylcyclohexane is 9.1 × 108 s–1,27,28 it
follows that kISC

1 = 1.0 × 109 s–1.

3. Kinetics in a rigid medium

For the external heavy atom quenching of the fluorescence
of an excited molecule M* by a quencher Q in a rigid
medium, the statistical complexes are static, since
molecular translational motion is negligible in the time
scale of interest. In this way, in order to have a significant
effect, relatively concentrated solutions are required. This
implies that not only the (M*Q) complex will be present,
but that complexes of the type (M*Qn) (n = 2, 3,..., N) will
also exist in significant amounts. Assuming again that M*
and (M*Qn) have a common radiative rate constant, but that
the ISC rate constant of (M*Qn) is given by eqn. (20), the
global fluorescence intensity will be given by
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Here, and in opposition to the dynamic case, inclusion of
direct absorption of exciting light by the static complexes in
the kinetic model is mandatory, since F deviates from F0

only for significant fractions of (M*Qn).

Using eqn. (21) and (26), eqn. (25) can finally be rewritten
as
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From this equation, a curved Stern–Volmer plot is
predicted.

A limiting situation can be obtained from eqn. (27): if the
complexes are essentially nonfluorescent, then eqn. (27)
reduces to
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Eqn. (28) can in principle be used to obtain Vm and N from
experiment. If n << N and N is large, eqn. (28) becomes
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i.e., a Perrin type29 static quenching is obtained.

For the time-resolved experiment (flash excitation), a
nonexponential decay law is predicted by the model:
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or, finally
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If n  = N, the decay is singly exponential for all times. If
n << N, and N is large, the general eqn. (31) reduces to
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tknttI −−−−=                       (32)

For long times, an exponential decay is recovered, with a
fractional amplitude equal to the fraction of unperturbed
molecules. For very short times, the decay is again

exponential, with a decay constant  = 0 + n kISC, as in
a fluid medium. It is interesting to note that a decay law
mathematically identical to eqn. (32) occurs in several
dynamic quenching processes in micelles.30(ref.therein)

Analysis of the experimental steady state intensity vs. [Q],
eqn. (27), or of the experimental decay for a single
quencher concentration, eqn. (31), should allow the
determination of Vm, N, and kISC.

4. Discussion and conclusions

For external heavy atom quenching in fluid solution, a
simple Stern–Volmer kinetics is usually observed, and the
magnitude of the effect is measured by the bimolecular
quenching rate constant. However, it is the unimolecular
S1 7n intersystem crossing rate constant of the perturbed
fluorophore in the perturber–fluorophore complex that can
be directly compared with that of the unperturbed
fluorophore. In this communication, a simple kinetic model
for external heavy atom quenching in fluid solution was
presented, yielding the observed Stern–Volmer behaviour
for the whole composition range, and from it an explicit
expression for decay rate constant, eqn. (23), and
unimolecular S1 7n intersystem crossing rate constant of
the perturbed fluorophore, eqn. (16), are obtained. The
calculation of the intersystem crossing rate constant by
means of this relation requires the calculation of the molar
volume associated to the complex, Vm. This volume may be
estimated (from M and Q molecular dimensions) with
reasonable accuracy. For the external heavy atom
quenching of the fluorescence in a rigid medium, simple
expressions for the fluorescence intensity, eqn. (27), and for
the fluorescence decay, eqn. (31), were obtained. Analysis
of experimental results should in this case allow the
independent determination of Vm, of N, and of the
unimolecular S1 7n intersystem crossing rate constant of
the perturbed fluorophore.
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Appendix—equilibrium constant for a
statistical complex (MQ)

Suppose that M and Q are solutes, whose molecules are
spheres of radii RM and RQ, respectively, immersed in a
continuum.31 Suppose further that the concentration of Q is
much higher than that of M. If the encounter complex (MQ)
is defined as the entity made up by the joined spheres, with
a center-to-center distance Rc = RM+RQ (collision
diameter), and if the complex is formed only by chance
(statistical complex), then the fraction of M molecules
present as the collision complex is always negligible,
except for very concentrated solutions of Q, where most of
the spheres are forced into permanent contact. This happens
because for relatively dilute solutions, the probability of
finding a Q molecule in contact with a M molecule is
essentially zero (it is the probability of a single value out of
a continuous distribution).

If however the collision complex is defined as a somewhat
more loose entity, for which the center-to-center distance is
contained between Rc and Rc + R, then a finite fraction of
pairs will exist in the form of collision complexes. This
second definition of statistical complexes is more realistic,
given the molecular (granular) nature of the solvent, which
leads to encounter processes, as opposed to gas phase
collisions. If R is arbitrarily chosen as R = (21/3 – 1)
Rc = 0.26 Rc,

32 then the volume of the spherical shell
around M that can be occupied by the center of a Q
molecule is exactly v = (4/3) Rc

3. The probability of
finding an M molecule with a nearby Q molecule, with a
center between Rc and Rc + R, will thus be NQ v/V, where
NQ is the total number of Q molecules, and V is the volume
of solution. This probability can be rewritten as [Q] NA v,
or [Q] Vm, where NA is Avogadro's constant and Vm is a
molar volume, Vm = v NA. In this way, the number of M
molecules present as complexes is [Q] Vm NM, while that
present as free M molecules is (1 – [Q] Vm) NM. The
corresponding concentrations are then [Q] Vm NM/V and (1
– [Q] Vm) NM/V, respectively. If the possibility of
complexes with two or more Q molecules is to be
discarded, then one must have Vm[Q] << 1, and the
concentrations of complexed and free M molecules become
[Q] Vm NM/V and NM/V. The equilibrium constant for the
formation of the complex is therefore

m
M

Mm

/V)[Q](

)/[Q](
V

N

VNV
K ==

Since this constant can also be written in terms of the
kinetic rate constants for the formation and dissociation of
the complex, kd and k–d, the relation Vm = kd/k–d is finally
obtained.

This relation allows the calculation of k–d from the values
of kd and Vm. Using the well-known approximate relation
kd = (8RT)/(3 ), where R is the perfect gas constant, T is the
temperature, and � is the viscosity of the medium, one
obtains k–d = (2kBT)/( Rc

3 ), where kB is the Boltzmann
constant. If T = 300 K, Rc = 3 Å, and  = 1 cP = 10–3 Pa s,
then k–d = 1011 s–1, and the lifetime of the statistical
complex, 1/k–d, is 10 ps.
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