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Abstract—The kinetics of luminescence decay is studied in the case of the hopping mechanism of quenching,
assuming that migration of electronic excitations is described by the diffusion equation. It is shown that an ade-
quate consideration of quenching in the boundary condition yields within this approach the correct dependence
of the luminescence decay rate on the concentration of molecules and Férster radii of encrgy transfer,

INTRODUCTION

Radiationless energy transfer of electronic excita-
tions has attracted the attention of researchers for a long
time [1-4]. In recent years this is associated with the use
of energy transfer as a tool for studying the structure of
media and kinetics of processes occurring in them [1-16].

Energy transfer between similar molecules js
referred to as migration of excitations, and that between
different molecules (from donors D to acceptors A) is
referred (o as quenching of the excited states of donors.

Note that the most widespread mechanism of energy
transfer is the dipole-dipole one, when the rates of migra-
tion w and quenching u are written in the form [1-3]:

) _ 1 (RppY® _ L(RpNS
W(R) = %;(T) . ll(l‘) = %—0(7) . (1)

Here 1 is the inherent lifetime of the excited state of a
donor, Ry, and Rp4 are Férster (critical) radii for the
donor — donor and donor —. acceptor energy trans-
fer, respectively, and R and r are distances between the
interacting molecules,

There are two fundamentally different approaches
to the theoretical description of energy transfer,
depending on the r. /1 ratio. where r, is the radius of
strong quenching of a donor by an acceptor and / is the
most probable length of the hop of excitation between
donors [17].

For r /1 > 1, migration occurs by small steps. Each
step results only in a small change in the rate (7). and
migration in a medium with acceptors can be described
by the diffusion equation (2, 17-21]. The solution of
this equation shows that in the case of efficient migra-
tion the donor luminescence decays exponentially,
beginning from a certain monment

I(t)y = IO(°,>(p(~r/17O ~kt/1,4]. (2)

The decay rate £ is expressed in terms of the critical
radius Rp,, the diffusion coefficient D of excitations
and the concentration n 4 of acceptors as:

k = 0.68 - 4m(D1y) *RYn,. Q3)

The diffusion coefficient D can be calculated by dif-
ferent methods [22]. For example, in the three-particle
version of the GAF method [23]. it has the form

D = 043Rpp(4nRppn,r3)" /1, 4)

where ny, is the concentration of donors. By substitut-
ing (4) in (3), we find

k = 0.26(4nR}) n,/3)
><(4RR;DnD/3)(RDD/RDA)‘W.

In another limiting case (rq/I << 1), the size of the
quenching region around an acceptor is so small com-
pared to / that the excitation can enter this region and
escape it by one step (Jump). In this case, as is stated in
a review [17], the diffusion description is invalid and
the luminescence quenching occurs by hopping.

The hopping mechanism of luminescence quench-
ing is described by several approximate methods [22],
such as the continuous time random walk (CTRW), the
effective medium approximation (EMA), and the self.
consistent GAF method At sufficiently strong migra-
tion, these methods also yield the exponential kinetics
of the luminescence decay (2). However. in this case
the dependence of the luminescence decay rate on
Forster radii Ry, and Rp,4 is different. For example, in
the CTRW method gives the expression [17, 22]

(5

k= LILA4RR o0/ 3)(ARR ) o0,/ 3). (6)

Other methods give similar dependences on R,,,, and
Rpa- The only difference is the numerical factor in front
of the parentheses in (6) which is equalto 1.66and 1.97

()()3()—4()0)(/98/85064)8693%}5.()’() © 1998 MAMK Hayra/Interperiodica Publishing




870

in GAF and EMA methods, respectively. Dependence (6)
was confirmed by Monte Carlo calculations [24].

Note that in a medium without acceptors CTRW,
EMA, and GAF methods predict nevertheless the diffu-
sion mechanism energy migration between donors. The
diffusion coefficient is described by formula (4) with
different numerical factors for method [22] (0.40 and
0.12 for CTRW and EMA methods, respectively).

The aim of this paper is to show that the hopping
mechanism of luminescence quenching is also ade-
quately described by the diffusion approximation.
However, because of the short-range nature of the
energy transfer rate «(r) as compared to migration rate
w(R), the luminescence quenching should be taken into
account in the boundary condition. In this case the
decay rate £ can be presented in the form (6) accurate
to a numerical factor.

BASIC EQUATIONS

We calculate the kinetics /() by the method [21]
which is similar to the method of Wigner—Seitz cells in
the theory of the electronic states in crystals. According
to this method, we consider that acceptors are located
in the centers of spheres of radius L. This radius is
determined from the condition

(An/3)L3 = VN, = v,, 7
Here, N is the total number of acceptors in the entire
volume V of a medium, v, is the average volume per
one acceptor. These spheres (cells) are close-packed in
the volume V. Therefore, we neglect fluctuations of the
average distance between acceptors. This approxima-
tion is good if the concentration of acceptors is suffi-
ciently low. Note that the cells differ from each other by
positions of donors within them and, hence, by the dis-
tance r; between the acceptor and the nearest neighboring
donor. The subscript  denotes the number of the cell.

VA = I/”A‘

Let Ci(R, 1) be the concentration of excited donors at
time r at the distance R from the center of the ith cell.
The average concentration of excitations in the ith cell is

n(t) = y,;'jc,.(R, 1)dR. (8)

Integration in (8) is accomplished over the volume of

the ith cell

We can now represent the normalized (/(0) = 1)
kinetics of luminescence in the form

A,

Ny
(1) = Zui(t)/z/z,(()).

t

9
By assuming that at the initial instant of time the con-
centration of excited donors in all cells is the same, i.e.,

n(0) = n-(0)y = .. (10)

= Hy.
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we obtain
NA

1ty = N3 ny(1)/n,

Within the framework of diffusion approximation,

the function C(r, ¢) satisfies the equation [21]: (for dis-

tances greater than the average distance between
donors)

J _
5CAR 1) =

(1D

—%—LCI(R, £)+ DAC(R, 1),
0

3 (12)
a“kci(R, t”R:L = 0.

The boundary condition means that we neglect the
transfer of excitation from one cell to another.

As will be shown below, the decay rate £ in equation
(2) is determined only by the behavior of C{R, t) near
the center of the cell. Therefore, to find CA{R, v (at low
acceptor concentrations) one can use the limit [ —» oo
and demand that C(R, t) —» n(t) for R —- so - where
n(t) is the average concentration of excitations in the
medium. Note that for R —= oo, it follows from (8) that

n(t) = ngexp(—t/1y), (13)

i.e.. the average concentration of excitations is indepen-
dent of the cell number.

Let us now write the boundary condition at the cen-
ter of the cell. On the one hand, in the case of quenching
by hopping, excitation vanishes when it reaches the
donor nearest to the acceptor, i.e., to the center of the
cell. The rate of this process in the ith cell is ulr;).

If the concentration of donors is np, then the volume
Vp of radius R()

vp=(4n/3)Ry = 1/n, (14)

corresponds to each donor. Contains a donor with the
unit probability. Therefore, a sphere with of radius Ry
with a center in the center of the cell. The probability that
this donor is excited is equal to CiRy, Nvp. (We take into
account that an approximate equation CLRy, ) =CL0, 1)
holds due to the diffusion approximation.) Therefore,
we can conclude that the number of excitations in the
ith cell will decrease with the rate wr)CARy, Hvp.

On the other hand, within the diffusion approximation,
a sphere of radius Ry, around the center of the ith cell serves

as a trap for excitation. For this reason, the number of exci-
tations vanished per unit time will be equal to the flux of

excitations 4D RS ICUR, D/9R|, _,. falling on this

sphere.

By equating these two rates, we obtain the boundary
condition

4TDRGIC(R, 1)/IR|4_ o, 5
(1:

= (4n/3)Ryu(r)Ci(Ry, 1),
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CALCULATION OF THE LUMINESCENCE
DECAY RATE
IN THE DIFFUSION APPROXIMATION

Let us solve now equation (12) with boundary con-
dition (15) and asymptotic condition (13).
It is convenient to turn to the function [21]

CiAR, 1)

@R, 1) = roexp (i)’ (16)
which satisfies the evident equation
d¢;/dt = DA, (17
and the boundary condition resulting from (15)
D@(p,—/BR(RzRG = Rou(r;)o;(Ry, 1)/3, (18)

with@{R, 1) =1atr=0.
Let us present the solution of equations (17) and
(18) in the form [21, 25]:

QR 1) = ¢/ (R) + @}(R, 1), (19)

where the function @, (R) satisfies the stationary diffu-
sion equation

DAQ (R) = 0 (20)

and the asymptotic condition cpf( (R) — lalR — o,

while the function @, (R, 1) satisfies the non-stationary
diffusion equation and the following initial condition

®/(R,0) = 1 -¢}(R). Q1)

Note that at long times. @; (R, f) —= 0.
Therefore, the stationary distribution of excitations

(p,-“(R) is established in each cell after some time. The

greater the diffusion coefficient, the shorter the time of
the establishment of this distribution.

By solving equations (20) and (18), we find
O/ (R) = (1-A/R),
A; = u(r)/[4nDnp + ulry/ Ryl

(22)

According to the definition of the function @, (R),

we have [taking into account (16). (13) and with an
accuracy to small terms of the order of n,]

CAR, 1)y = (1 -A,/Rn(1), (23)

IC/IRp_p = (A/RyIn(1). (24)

Taking into account (8), we obtain after integration
of (12) over the volume of the ith cell the equation

dn(1)/dt = ~t3'n (1)~ 4xDnAn(r).  (25)
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By averaging this equation according to (11), we obtain

di(n)/de = —15'1(¢) - kI(1), (26)

where

k = lénan,‘nDjA,-rizdri. 7)
The substitution of expressions (22) and (4) into (27)
yields

k= 179(4nn, Ry, /3)4nn,Rip/3).  (28)

Within a numerical factor, this result coincides with
expression (6). Therefore, the analytic dependence of
the luminescence decay rate k on the concentration of
donors and acceptors and Forster radii of energy trans-
fer is reproduced in the diffusion approximation.

CONCLUSIONS

The hopping mechanism of luminescence quench-
ing is usually studied by the CTRW, GAF and EMA
methods because it is stated [17] that migration and
quenching of luminescence can be described by the dif-
fusion equation. We showed that this statement is erro-
neous. The luminescence kinetics in this case can also
be described by the diffusion approximation. In this
case, migration of excitations obeys the classical diffu-
sion equation and the quenching (taking into account
the short-range donor—acceptor interaction) is taken
into account by the boundary condition. This approach
gives correct analytic dependence (28) for the lumines-
cence decay rate k with the numerical factor 1.79 close
to those obtained by the CTRW, GAF. and EMA meth-
ods (1.11, 1.66, and 1.97, respectively).
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