Stochastic theory of combined radiative and nonradiative transport
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A stochastic theory of combined radiative and nonradiative transport is presented. The stochastic
approach is physically clear and versatile, allowing the consideration of the combined effect of
radiative and nonradiative transport, carried out here for the first time. The stochastic approach is
formulated for delta-pulse excitation and for the photostationary state. General equations for the
intensity, polarization, and anisotropy decays are derived.1997 American Institute of Physics.
[S0021-960627)52347-9

I. INTRODUCTION larization and anisotropy decays are deriy&ds. (38) and
(39)]. The main results are summarized in Sec. IV.
Radiative transfer, i.e., the transfer of energy mediated

by real(as opposed to virtupphotons, is a common process

of energy transport in astrophysics, plasmas, and in atomig, STOCHASTIC APPROACH

and molecular luminescence. It plays an important role in .
. . A. Formulation and delta-pulse response

solar concentrators, discharge and fluorescent lamps, scintil-

lation counters, and lasers. Consider a homogeneous distribution of ground state

For the purposes of this work, molecular radiative trans-molecules in a given enclosute.g., a fluorescence celLet

fer is defined as the emission of a photon by an electronicallghere be the absorption of a photontatO, according to a

excited molecule, with subsequent absorption by a groundiven (normalized spatial distributionP(r). The excited

state molecule. In assemblies of like molecules, one elemenmolecule generated at time=0 will relax to the ground

tary process of radiative transfer leads to another, until onstate, with a rate constahi{ I" being the reciprocal molecular

of two things happenga) the excitation energy is irrevers- lifetime,

ibly lost through a nonradiative patfinternal conversion, 1

intersystem crossing, quenching,.or, (b) the photon es- =k +ky,=—, (1)

capes from the sample. This repeated radiative transfer is 7o

called either radiative transport or radiation trapping. Its im-wherek, andk,,, are the radiative and nonradiative decay

portance depends on many factors: extent of spectral overlagpnstants, respectively.

between absorption and emission, absorption strength, fluo- As a consequence of the decay, there is a probability

rescence quantum yield, concentration, cell size and shapp,(\,t) that, between andt+dt, a photon with wavelength

excitation and detection geometries, etc. It is particularly im-\ will hit the enclosure’s boundary at a given pomt, and

portant in solutions of highly fluorescent compounds with awill thus leave the sampléneglecting reflection This prob-

good absorption—emission spectral overlap, whether concembility can be written as

trated or in large volumes. When present, radiative transport o
affects the measured fluo_resc_:ence decays and spectra, as well po(\ ) = E Pon(\ 1), )
as the fluorescence polarization. These observables are then a n=1

function of the excitation and emission wavelengths, conceng o be(\,1) is the probability that a photon with wave-
n y

tration, and excitation and detgct!on geometries. length N will cross the boundary at point, betweent and
A stochastic theory of radiative transport allowing thet+dt, after exactlyn absorption—emission events. This
calculation of all observables from known parameters Wasprobability can in turn be written as

recently presentet? Such an approach is here refined and
extended to cases where nonradiative transport operates in Pon(N\,t) = fa(A)gn(t), €)

parallel with radiative transport. , where f,(\) is the probability that a photon with wave-
The stochastic approach is formulated in Sec. Il A forjgngih )\ will hit the boundary at point,, (thus leaving the
delta-pulse excitation, the_prlnC|paI results being the deca}éamplé, after exactlyn absorption—emission events; and
laws, Eqs.(15) and (17). It is next shown that these decay ¢ (1 is the probability that amth generation molecule will
laws become single exponential for long times. The photogy;it 5 photon betweeh andt+dt, given that it will emit
stationary state is then briefly discussed in Sec. Il B. Thgye. Assuming that the photon propagation time is negli-

anisotropy of fluorescence is discussed in Sec. Il C, the effecfip|e, this probability(normalized density functioris given
of radiative transport being contrasted to that of nonrad|at|veoy1

transport. The main results in this section are E§8) and -
(33). In Sec. I, the combined effect of radiative and nonra- (=T (I't) o T @
diative transport is discussed. General equations for the po- Gn (n—=1)!
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The probabilityf,,(\) is
1
fbn(k)=ﬂ‘1>oF(7\)fv[l—ab(r,k)]Pn(r)dr, (5

where the integration goes over the whole voluwef the

enclosure®, is the fluorescence quantum yield, the absorp-

tion probability a,(r,\) is given by

ab(r,x):folrb_rk(x)exp[—k(x)x]dx, )

wherek(\) is the optical density of the medium at the wave-
length\, andP,(r), probability that amth generation pho-
ton will be emitted ar, is

Pa(r)= fva...Lf(r,rn_l)@of(rn_l,rn_z)

drq, (7)

with f(r,r’), probability of absorption at for emission at
r’, given by

XDof(ry,ry)Py(ry)dro_q1dr,_,..

o 1
f(r,r')= J'F()\)k()\)ﬁ

xexd —k(\)|r—r'[]dX, (8)

whereF(\) is the normalized emission spectrum.
Equation(7) can be written as a recurrence relation,

Pn+1(r):q)ofvf(rvrn)Pn(rn)drn- 9

From it, one obtains the spatial distribution functiot(r) of
the nth generation excited molecules,

P
Po(0)= 1 B (rydr

Jvf(r ) pnoa(rp—)drp_q _ % 1(r)
fvaf(l’ M-1)Pn-1(rp-1)dr,_ 1dl‘ an—l ,
(10

where a,_1(r) is the probability that a photon emitted ac-
cording to the G—1)th generation spatial distribution will
be absorbed at, and «,,_ is the probability that a photon
emitted according to then(=1)th generation spatial distri-

bution will be absorbed somewhere within the enclosure.

The spatial distributions given by Eq10) converge to a
stationary distribution for large. The equation for the sta-
tionary distribution of excited moleculepg(r), is obtained
from Eq. (10) by taking the limitn— on both sides.

The normalizedi.e., scaled to one fdr=0) decay law is

o

e SV ap(r, ) IPRr (k)"

=1 fu[1—ap(r,\)IPY(r)dr (n—1)!°
(11
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whereP?(r) stands forP;(r) when®,=1. Using Eq.(10),

o 1—apy(N)
pp(\t)=e nz (m)
JyPa(ndr| (k)n
><(fvP?(lr)dr) (n-1!° 12
where
abi()‘):f ap(r,\)pi(r)dr. 13
\%

Taking into account Eq$9) and(10) and the definition ofy;
[see Eq(10)], one has

JyPY(rdr 2
JyP3(r)dr lﬂl 4
and Eq.(12) becomes,
e [1—apa(V) (k)"
Pl =e72, (1 am(x))(n )(n I
(15

The emission integrated over wavelengths and space direc-
tions is

e JVPR(ndr = [y fyf(r,r)Po(rdrdr’
p(t)y=e™ "
=0 [yPL(r)dr— [y fyf(r,r)PE(r)drdr’
(krt)”*l
=11
s =@ [yPR(ndr (k)"
=& 2 o P ndr (oD (16
Using again Eq(14), Eq. (16) becomes
1-a,\ [T — (k)" ?
p(H)=e “2 - al)(l'[ ai)—(n_l)!. (17)

Knowing that a stationary distribution is reached for the
higher generationsa,— as), one gets from Eq(17),

e
o [ ] e
3 e
=l e
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1-a n-1 (k)" The situation with radiative transport is, in a sense, the
) H — opposite of that with nonradiative transport. In fact, and ow-

1- (n—=1)! . . i o
ing to its long-ranged nature, the return of excitation has
1—a\ [ o\, (K agt)" negligible probability. On the other hand, the contribution of
—( S)(H Iz ]

1 indirectly excited molecules to the overall anisotropy is con-
ai=1 (n—1)! siderable, and cannot be neglected: The radiative mechanism

m — has a higher orientational selectivity than the nonradiative
1- a’s o5 o 10
[T =|ekras—Dt (18)  one:
1-ay/|i=1 as For the purposes of computing the effect of radiative
showing that a long time exponential, with lifetime transport on fluorescence anisotropy, we consider only re-
sults for directions contained in the horizontal plgmelud-
- 7o (19) ing the usual front-face and right-angle geomeijriger
*l-ady’ which the anisotropy of fluorescence takes the highest value.

We further suppose that molecular rotational motion is neg-
ligible during the lifetime and that the exciting photons carry
h vertical polarization.

We start with the calculation of the depolarization due to
d the radiative transfer of the electronic excitation energy. To
jconform with usage, we writey (fundamental anisotropy
for the anisotropy of first generation molecules, implying
thatr,=rq. The anisotropy of second generation molecules,
indirectly excited by reabsorption, will be

r2=pro, (23)
For nonsaturatlng excitation conditions, one may also

obtain the steady-state intensities from EGS) and (17), where g is the depolarization factord<<1). As mentioned,
the probability of return of the excitation to the original mol-
[p(N)

n—1 ecule is negligible, and therefore the anisotropy of fluores-
lop _F()‘)E [1= apa(M) ]( H ai>q)0 ' (20 cence of molecules belonging to timh generation is ob-
tained by repeated application of E&3),

is asymptotically attained. The approximation made in Eq.
(18) is of course the better, the higher. A similar approxi-
mation holds for Eq(15). The usefulness of this approac
has been demonstratédt is interesting to note that Egs.
(15) and(17) are formally identical to the decay law derive
before from a kinetic scheme considering only macroscopi
populations’

B. Continuous excitation  (photostationary state )

n—1

s n—1
IITbb:——E (1- abn<iﬂ i)cbsl, (21) =B""ro (n=12..). 24
A guantum electrodynamical calculation of the depolariza-
I S Y S U tion factor B, by Andrews and Juzelhasi’ gave 3=0.28
E: —0=n21 (1—ap) Iﬂl a;|® (an identical value is obtained from classical

o L electrodynamicy. This value may be compared to that of
=(l-a))+(l—ay)Poai+... . (22)  the nonradiative dipole—dipole transfer mechanism, which

5,6,10
The meaning of the equations is apparent from the expansmﬁ /3=0.04. The polarization retained after one transfer is

explicitly shown for Eq.(22). Equations(20)—(22) can be thus seven times greater for the radiative case, precluding, as

converted into finite sums by means of approximations Slrnlmentloned the common approximation in nonradiative trans-
lar to those carried out for E417). port of neglecting the contribution of higher order genera-

tions.
For excitation with vertically polarized light, the defini-
C. Fluorescence anisotropy tion of anisotropy is
It is well known that nonradiative transport decreases the () =1, (1)
ensemble fluorescence anisotropy. For a pair of randomly r(t)= W (25
L

oriented and nonrotating molecules, and for thesEe dipo-
lar mechanism, Galanin calculated in 19%@at the acceptor Where the parallel and perpendicular intensities are measured
fluorescence anisotropy is only 4% of that of the donor. Thigor a direction at right angle with the excitation, and con-
result was later shown to be in fact the zero-time value of thdained in the horizontal plane. The denominator of €§) is
indirectly excited molecule anisotrofyin any event, neglect usually proportional to the intensity emitted in all directions.
of the contribution of indirectly excited molecules to the en-An alternative measure of linear polarization is the polariza-
semble anisotropy is a good and frequent approximation ifion p, appropriate for light beams,
nonradiative transport studies, where theoretical efforts con- _

) . " L) =1.(t)
centrate on the calculation of the survival probability of the pit)= ———,
directly excited molecules. This calculation is difficult on h(D+1.(1)
account of the possibility of return of the excitation. Never-where the denominator is the intensity emitted in the direc-
theless, good approximatiohsxperimentally teste®® are  tion of measurement. In most fluorescence experiments, an-
available. isotropy is a more useful parameter than polarization, be-

(26)
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cause the denominator is proportional to the intensity decay ° 1\ (et 387 Ir,
and simpler expressions result. When several incoherent 2 [1—apn(N)] H a (=T 25 87Ty
sources are preserfe.g., a mixture of fluorescent com- n=1 = : 0

pounds, both polarization and anisotropy can be expressed - nt (k)" 1
as a sum of contributions, the weight of each being the frac- 2 [1—apn(M)] H (n—1)!
tion of the intensity emitted in all directiorgnisotropy, or (32)

the fraction of the intensity emitted in the direction of mea-
surement(polarizatior).

When radiative transport is present, the denominator of ,(\,t)
Eq. (25) is no longer proportional to the intensity decay. In

Finally, the anisotropy is received from E@8),

fact, the symmetry of the emitting ensemble is lowered, and z 1—a )\)]( ot 1 ) (k,Bt)" "1
a complicated positional pattern of polarizations emerges. o = 2+ 8" 1y (n—1)!
Both anisotropy and polarization become local quantities :fo E3 n— 1 (k)" L
(i.e., relative to the measurement poigi. From the experi- — ) r
mental point of view, Eq(25) can still be used. But from the nzl . aan\)]< H 2+p" o) (n—1)!
theoretical one, information is limited to the decay at a given (33)

boundary point, Eqs(15) or (17), which is proportional to ) . )
I,(t)+1,(t) and not tol (t)+ 21, (t) (both measured at,). By a reasoning similar to_that of EQL7), it may be shown
Polarization, as given by E6), is therefore of more direct that for long times the anisotropy becomes

meaning. Nevertheless, given that anisotropy is the param- r (\,t)=r, exg — ag(1— B)kt]. (34
eter used in the absence of radiative transport, it is importa
to obtain a generalized, albeit local anisotropy, that will re-
duce to the usual result in the limiting situation of negligible Pp(N,t)=3 1y exd —ag(1—B)kt]. (35
radiative transport. To do so, one takes into account the re-
lation between the local anisotropy and local polarization,

hglmllarly, the poIar|zat|on will be

It should be stressed that the reabsorption probabilities
of Egs. (32—(33) must be computed with an absorption
3r probability whose orientational dependence is that of a radi-
P=5 (27 ating electric dipole, and not that of an isotropic emitter,
because it is now assumed that molecular rotation is frozen
during the lifetime. However, the results are expected not to
greatly differ.

or

2
r= STp (28)
b Ill. COMBINED RADIATIVE AND NONRADIATIVE

The total polarization is first obtained, TRANSPORT

A. Importance of nonradiative transport

Pu(N,1) = > apy(\,D)Pn, (29) The contribution of nonradiative energy transport has
n=1 been completely neglected up to now. Nonradiative transport
will be present whenever the average distance between mol-
ecules is smaller or of the order of the rBter radius for
self-transfer. Because some of the parameters that favor ra-
diative transport, like high absorption—emission spectral
(30) overlap and high molecular radiative constant, also favor
nonradiative transport by the dipole—dipole mechanism, the
Forster radius for self-transfer tends to be significant. It is
therefore important to discuss the effect of nonradiative
Lon(\,1) transpc_;rt on_the macroscopic ob_servables Iike the fluores-
cence intensity decay, quantum yield, and anisotropy decay.
(A1) In a system where both mechanisms are operative, and
- ) k,t)n1 neglecting coherence, the excitation will perform a series of

[1—abn<x>]< Il «

wherep,, is the polarization of thath generation. From Egs.
(24) and (27),

_ 38" Mg
p”_m

The fractional contributiora,,(\ ,t) is

abn()\ut) =

n=1)! short range hops by the nonradiative mechanism, alternating
_ =1 ( (31) with long distance jumps by the radiative one. What conclu-

-1 (k)" 1 sions can be drawn from this picture? First, it is well known
E [1- “bn()‘)]< H ) (n—1)" that the ensemble decay law is unaffected by pure nonradia-
tive transport! In this way, each series of short hops will
The polarization is therefore not change the decay probability of that subensemble. Sec-
ond, because the hops are performed locally, the excitation
Pp(N,t) spread during the lifetime does not exceed a fewsten
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radii, and cannot change significantly the spatial distributionp, (x,t)
of the generations considered in the radiative model. Another

consequence of the nonradiative hops is the efficient ran- g 1- ") [ 3(BP)" trogi(h)
domization of the orientation of the emitting dipole. In this = [1=apn(M] R g (t)
way, and depending on the importance of the nonradiative 2+ 9 (t)ﬂn_lro
mechanism, the assumption of isotropic emission may be = — —7 n ,
appropriate even in cases where molecular rotation is insig- —| g,n—1
nificant during the excited state lifetime. All these consider- 2 [1- “bn(h)]( Ll o« o "gn(1)
ations lead to the conclusion that nonradiative transport (39)
leaves the decay law practically unchanged.
rb()\,t)
] n—-1 n—1.7

B. Fluorescence anisotropy 21 [1-— abn()\)]( Ll a w

As regards the anisotropy decay, the contribution of non- " I gn(t) g tr
radiative transport may be quite important. Invoking again ~ =r, — =T : X
the model of a series of short hops alternating with long S -« ()\)]( _ @y “gn(t)
jumps, a strong depolarization is expected for each series of ] bn e gn(t)
hops. Nonradiative transport will therefore contribute to the 2+ 9 (t) B
anisotropy decay. When significant, it may even be the domi- "
nant mechanism. It is thus of interest to obtain an expression (39

for the combined effect of radiative and nonradiative trans- |t must be remarked that the above considerations and
port. To do so, we try to modify the anisotropy decay for formulas are not completely general. A unified treatment of
pure radiative transport, E(83). Following thenth radiative  the problem of combined radiative and nonradiative transport
step, an (+ 1)th generation molecule is excitéat a certain  that includes the continuous variation from the® interac-
time t, ;). Owing to the nonradiative hops, there is a prob-tion to ther~2 interactiot®!? is wanting. We considered
ability G(t—t,,4) that the excitation will remain in that only the combined effect of th@extreme cases pfadiative
molecule. If the next radiative jumm(-1—n+2) occurs  and nonradiativédipole—dipolé processes. This is neverthe-
from the initially excited molecule, one may still apply the |ess expected to be valid for most situations.
depolarization equatiof23). If, on the other hand, the radia-
tive jump originates from an indirectly excited molecule by IV. CONCLUSIONS
the nonradiative mechanism, total depolarization is expected. A stochastic theory of combined radiative and nonradia-
In this way, the emission probability for polarized emissiontive transport has been presented. This approach is physically
will be, for each radiative stemy,(t)G(t), whereg,(t) is  clear and versatile, allowing the consideration of the com-
given by Eq.(4) andG(t) is the probability that the excita- bined effect of radiative and nonradiative transport, carried
tion is in the directly excited molecule, when nonradiative out here for the first time.
transport is operative. The functi@s(t) is given by several . .
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