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The barometric formula, relating the presspfe) of an isothermal, ideal gas of molecular mass

at some height to its pressurg(0) at heightz=0, is discussed. After a brief historical review,
several derivations are given. Generalizations of the barometric formula for a nonuniform
gravitational field and for a vertical temperature gradient are also presented997€american
Association of Physics Teachers.

[. INTRODUCTION vacuum” (an expression that is, however, posterior to Aris-
totle). This “law” is adhered to in the citedCommentarii
The barometric formula Physicorum(Fig. 1.

mgz Limite.d experimental evidence against an almigbyror .
p(z)= p(O)exp( = (1)  vacuiexisted, however, as results from a passage of Galileo
kT Galilei's (1564—-1642 Dialogues concerning two new Ssci-
relates the pressug(z) of an isothermal, ideal gas of mo- encgs(163a.6 A pump had been built for raising water from
lecular massn at some height to its pressure(0) at height @ rainwater underground reservoir. When the reservoir level
z=0, whereg is the acceleration of gravitk, the Boltzmann ~Was high, the pump worked well. But when the level was
constant, andl the temperature. In spite of its simplicity, oW, the pump did not work. Having noticed this, Galileo
namely the assumption of constant temperature, it applies>@gredo in theéialogues asked the engineer in charge to
reasonably well to the lower troposphefer altitudes up to ~ 'epair the pump. To Galileo’s surprise, he replied that it was
6 km, the error is less than 59pand also to the stratosphere, Working perfectly, it being well known that water could not
up to 20 km(with T=217 K, that is,~57 °C).>? The histori- ~ fise more than about 10 m in a suction pump. The empirical
cal aspects linked to the barometric formula are fascinatingknowledge therefore existed, probably for a long time
In Europe, by the end of the XVIth century, the accepted(Pumps based on air pressure were in use since Antiquity
descriptions and explanations of natural phenomena were However, no one had put forward a theory or suggested
those of the Greek philosopher Aristot{884—322 B.Q, that an essentially empty spageeglecting vapor pressyre
whose influence over learned Christendom had been domhad to exist above the water surface in the case of pump
nant since St. Thomas Aquin&$226—1274 Nevertheless, “malfunction.” Galileo supposed that bulk water was glued
Aristotle’s treatises concerning the natural world were byon top of the pump by the vacuufthe Italian words used
then known to contain important mistakes, either as a resuftregluting colla, andvisco, but that this glue had a limited
of the European voyages of discovery of the XVth andresistance, breaking at a certain maximum wefgBecause
XVIth centuries(e.g., the possibility of life near the equator, of this explanation, he rightly conjecturéan false grounds
or the existence of a new continent, Amejica of other that the “breaking” height for other materials should be in-
experimental observation®.g., the structure of the human versely proportional to their densifyTherefore, Galileo de-
hear}. In 1592, the Portuguese Jesuits began the publicatioparted from the Aristotelian doctrine: After all, Nature mani-
of the last coherent corpus of Aristotelian philosophy. Thisfested only a limitechorror vacui and a vacuum could be
work was organized, as usual, in the form of a series ofroduced and maintained.
commented Latin translations of Aristotle’s work€om- It appears that the correct explanati@imospheric pres-
mentarii Colegii Conimbricensis Societatis lesu in Librossure is due to Giambattista Baliani, a Genoese, that first
Avristotelis Stagiritag®>* Comments regarding the above- suggested it to Galileo in a lettrin 1630. However, as
mentioned new discoverigand othersare found at relevant described, Galileo did not agree with such an explanation,
points of the books concerning natural philosophy. Aristot-not even mentioning it in his 1638 bo8Kkrhe question re-
le’s authority, though acknowledged, was not blindly ac-mained however unsettiédAfter his master's death, Gali-
cepted by scholarsand the importance of the “experience leo’s disciple Evangelista Torricellil608—164Y devised a
[i.e., empirical knowledgg the mother of philosophy’{(in decisive experiment with the help of ad hocsetup con-
fact, in the best Aristotelian spifitvas stressed in th€om-  sisting of two long glass tubgsa. 1.2 m sealed at one end,
ments and a bowl of mercu’y (Fig. 2). This celebrated mercury
Within a few decades, the accumulated knowledge obeolumn experiment, carried out in collaboration with another
tained from both observation and active experimentation wasdisciple of Galileo, the young Vincenzo Vivian(il622—
going to make most of Aristotle’s natural philosophy unten-1703, took place in 1643 or 1644. The purposes of the ex-
able. But at the time, the accepted general explanation faperiment weré:® (i) to confirm the existence of a vacuum
various phenomena associated with air pressure, like thgollowing Galileo); (ii) to show that air pressure is the true
working of water pumps, was still “nature’s abhorrence of aexplanation(against Galiley and (iii) to display the varia-
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Fig. 1. Frontispiece of the bodRommentarii Physicorurtprinted in Coim- :-

bra in 1592, first volume of the seriec€ommentarii Colegii Conimbricensis
Societatis lesu in Libros Aristotelis StagiritaSource:Biblioteca Nacional -
de Lisboa

tions of pressure with weather. Air pressure as the true cause

was established by showing that the mercury height was the IS=nnmngeEl
same in both tubes, in spite of the very different volumes of / ' : \
vacuum producedFig. 2). (The proof seemed, however, not S = N
totally convincing for other natural philosophers, as we shall =z C

see) Torricelli was well aware of the great importance of his 4

experiment, though he did not publicize it outside a small

circle of friends and colleagues. But thanks to the exchange

of scientific letters and to scientific travelers such as the e MINNN
French monk Marin Mersenne, it became rapidly known

throughout Europe as thExperiment from Italy although

the name of its author appears to have been concéafed.

Variants of Torricelli's key experiment, and new ones, de-Fig. 2. A drawing of Torricelli's experimental setdprhe mercury column
vised by the French polymath Blaise Pascallgne ot o g tibe A as o place s lover
(16%3_166210’11 and by others, further §trengthened Torri- end’slightly above ?he m'ercury—we?ter interfe?ce, the ’mercur[;/ column col-
celli's theory beyond doubt. Of all experiments, the one thajapsed, and water rushed into the tube, filling it completely to B). Ac-
Pascal considered decisive was the record of the height of @rding to Torricelli, this was the proof of the existence of a vacuum in the
column of mercury as a function of altitude: “If air weight space above the mercury column.
and pressure is the true cause, the height should decrease
with an increase in altitude, as less air exerts weight on top
of a mountain than at its base; on the other hand nature’svilight, say that the visible air, full of vapours, extends
abhorrence of a vacuum must be the same at both places.” #bove us up to about 50 or 54 miles; this | believe is exag-
may be remarked that the variation of air density with alti-gerated, because | will show that if such were the case the
tude had already been explicitly mentioned by Torricelli in avacuum resistance should be much stronger than what it

letter to Ricci® “ (...) the authors that have written about the actually is. But they have a way out, because they can say
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A Table fbewing the Alsi- A Table fhewing the Heights B
tude to. giver Heights of of the Mescury ar given
zhe Mercury. Altitudes.
Inch. Feer. Feet. Inch.
30 o o 30, 00
29 e—— —— ——— 01§ 1000 + 28, o1
28 o 1862 2000 e 27, 86
27 e — 2844 3000 =~ - 26, 85
26 — — 3863 4000 wem—  —— 235, 87 -
25 — — 4922 5000 feet 24, 93
20 mmrimn e 10047 1 mile ——— 24,67
1§ —— —— — 18715 2 — 20, 290 Fig. 4. Schematic representation of the microscope s used to take
10 —— 29662 3 —— — 16, 68 a photograpH(right) showing the exponential distribution of the particles.
§ —— — — 48378 4 —— — 13,72 From Les Atomes®
I — — — — 91831 § —— —— 11,28
0,5 — m—— 110547 10 o —— 4, 24
0,25 —— 120262 1§ —— e 1, 60 . .
o, 1 29 mil. or 1 54000 20 —— —— 0, 0§ 1801, the Colombian astronomer Caldas discovered that a
0,01 4tmil. 216169 2§ e e O, 2 thermometer could be used for the same purpdsy, mea-
o,cot  §3mil. 278338 30 ~——— —— 0,08 suring the boiling point of water, which depends on pressure
40 0,012 through the Clapeyron equation.

In 1909, the French physicist Jean Perrin shoWéat a
i ) . suspension in water of tiny spherical particleadii between

Fig. 3. Calculations op(z) andz(p), by E. Halley*? for p(0)=30-in. Hg . .

(762-mm Hg, and a density of aifz=0) to mercury of 1 to 10 800. 0.2 E_md 0'5/“Lml)6 Obtamed from tre(,:" 'I‘ESII’IS obeys the baro-
metric formula,” behaving as a miniature atmosphere, one
whose “molecules” are visible with an optical microscope
(Fig. 4).

that the air whose weight [density] is given by Galileo

[1/400th of the density of water] belongs to the lowest re-

gion, where men and animals live, but that on top of the higH'- DERIVATIONS OF THE BAROMETRIC

mountains the air begins to be very pure and weights muclirORMULA

less than 1/400th of the weight of wateThe experiment We now discuss some ways of arriving at the barometric

devised by Pascal was carried out by his brother-in-lawf rmula. Some are well known. others not Each one aiv
Florin Peier, in 1648, at the Puy-de-IDee, a lofty mountain ormula. Some are wetl known, others not So. £ach one gives
different insights on the problem.

in Auvergne. The results conformed to Pascal’'s expectation,
the altitude variation of ca. 1 km entraining a decrease in th
height of the column of mercury of ¢4.85 mm. Peier also
repeated the experiment at the highest tower of the cathedral consider a still gas contained in a vessel of heightin
of Clermont-Ferrandca. 39 m height'*'* and observed a equilibrium, the pressure at a given heighis
smaller but distinct variation of the height of the column of ’
cal® 5 mm. Encouraged by the results, Pascal himself re- P(2)=p(H)+M(2)g, )
peated the experiment in Paris, at the St. Jacques ®@&er \yhereM(z) is the mass of the gas in a column of unit area
52 m height, having obtained similar resultthe tower still  that extends fronz to H,
exists, and has at its foot a statue of Pascal with a barometer y

A quantitative relation(barometric formulawas nonethe- _
less not given by Pascal. The exponential dependence of M(Z)_L pm(u)du, ©)
pressure on height could only be obtained after the discovery . . )
of Boyle’s law (Oxford, 1663, and was first recognized by wherep,, is the mass density. From the perfect gas equation

%\. Hydrostatic derivation

the English physicist and astronomer Edmund Halless6—  PV=NKT, whereN is the number of molecules contained in
1742, also from Oxford University, in 1688 He also gave, the volumeV, one obtains

as an example(z) andz(p) in tabular form(Fig. 3), for the Nm mp(z)

case of a groun¢z=0) atmospheric pressure equal to 30 in. pm(2)= VAR (4)

Hg (762-mm Hg and a density of ground air to mercury of
1 to 10 800, this last value being obtained from a density ofand the following integral equation is obtained:
air to water of 1 to 800 and of a density of water to mercury m (H gp(u)
of 1 to 13.5. Much later, the great French mathematician p(Z)=p(H)+—f gp du (5)
Pierre-Simon de Laplacel 749—1827 finally explicitly ob- kJ, T ’
tained the barometric formuléand extensions of )itin his
Traite de Meanique Ceeste®® For this reason, the baromet-
ric formula is sometimes called Laplace’s formula.

The barometerlname coined by Boylewas very soon

whose solution is EqJ) if it is assumed thagy andT do not
depend on height. A differential balance of forces can also be
written from the start, as is common practice in textbooks

used for the measurement of altitude, although the resul _nc_j Wasthorlglnallytdcfme by Latl_plac'_Eé:In mlecham](c:al_ eqfw— it

were subject to some error, owing to local pressure changes rium, the opposite Torces acting in a cofumn of air ot uni
P o area betweer andz+dz must be equal:

and temperature and composition variatidtie real atmo-

sphere not being in strict thermodynamic equilibriurin p(z+dz)+pn(2)gdz=p(z). (6)
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Combining Eqs(4) and(6), one obtains the differential form o
of Eq. (5), w(z 0= [ “two 12 ~2(tloo) lavo. 12
dp mg : .
—=——p. 7) It is expected that for long times E@l2) converges to a
dz kT time-independgnt density fur}qtiov(z’) . _This can jndeed be
The above derivations show that the view of atmospheri¢hown(Appendix A). The limiting functionw(z') is
pressure as originating from the weidlper unit areaof all o
the air above the surface of the earth is essentially valid w(z’)=f f(vo)W(Z'|vg)dvg, (13
0

becauséH — and thusp(H)—0.
Taking p(0)=1.0 atm andy=9.8 ms 2, we get for the air \yhere
mass per unit arell (0)=p(0)/g=1.0 kg cm 2. This mass

is exponentially distributed in height, according to Ef). g . va
Were air an incompressible fluids mercury approximately T T TS5,
is), its density would not vary with height. Assuming that in wW(Z'|vg)= Voo 2g22 g, (14
such a case the density was that for zero height, the total 0 if ,>Uo
height of the air columnH,, would be Tz =39
g
_M(0) kT ® and therefore
s pm(0) mg’ - g
For our atmosphere and taking=290 K, this height(the w(z')= @f(%) T\/W dvo. (15
v oVUo™

so-called scale heights 8.5 km. Such a value was already
correctly estimated by HalleY, simply by using the ratio of ~ What then is the distribution functiof(v,) that leads to the
mercury to air densities mentioned above,Has=762 mm  exponential density, Eq9)? Substitution of Eq(9) into Eq.
x10800=8.3 km. It is interesting to note th&t; is also the  (15) gives an integral equation whose solution is the sought-
averageheight of an air molecule. Indeed, the probability of for function. However, it is Eq(9) we want to obtain, and
finding a certain molecule at a given heighobbeys a distri-  f(y,) must therefore be derived in another way. This can be
bution (density function w(z) that is proportional to the done as follows: Because &t0 (nonequilibrium all mol-
pressure, and it follows from Eq1) and from the normal- ecules are present a0, and starting to move upward, it is

ization requirement that clear that their initial velocity distributiorcannot be the
_mg mgz o ét)eady—state ond4(v|z). The two are related bgAppendix
W(z)—ﬁex —W. () .
. - . L . f(Vv+2g92)
The mean of this probability density function is precisely Eq.
(8). f(0l2) vz+292 ] ol
v = 1 (2SS _ml ® )
° foc f(\v?+292) .
— Qv
B. Kinetic derivations -« v2+2gz
16
A consideration of the matter from the molecular-kinetic (19
point of view is also interesting, and provides a clearer viewand by
of the way the exponential distribution is brought about. vgfs(vdo)
f(vo)= voe[0,+of. (17)

Jovafs(vol0)dvg’

Now, in order to emulate thermodynamic equilibrium, the
steady-statevelocity distribution function must be the unidi-
mensional Maxwell-Boltzmann distribution; in particular,

1. Noninteracting molecules

Consider the following conceptual experiment: A large
number of noninteracting molecules, initially at rest on a
horizontal plane(z=0), are set into upward_v_e_rncal motion that should be true foz=0:
att=0, according to a given distribution of initial velocities,
f(v,). If these molecules are under the influence of a con- m |2 my?
stant gravitational field counteracting their ascent, they rise  fs(v[0)=|5— =] expg -5 <|. (18)

. . . 2 .
only up to a certain maximum height,= v5/2g, falling back ) S o
afterward. Assuming that collisions with the plane are elasinserting this distribution into Eq(17), the initial distribu-
tic, each trajectory repeats an infinite number of times, i.e.tion of velocities turns out to be
the motion becomes periodic. For a given initial veloaity mo2
0
2kT)’

312
) i ) m
the dependence of height on time is = 2l _
p g f(vg) 47Tvo<27TkT) exp(
) (100  and substitution of this distribution into Ed15) finally

yields the exponential density of heights, Ef).
This dependence of height on time can also be expressed byt is interesting to note that the initial distribution of ve-
a probability density functiomv(z’,t|v,), locities, Eq.(19), is identical to the Maxwell distribution of
W(z' tvo)=o[2 —2(t|vg)] (11) speeds[not to be confused with the Maxwell-Boltzmann
1ro 01 distribution of velocities, Eq.18)] for three-dimensional
For a given distribution of initial velocitie§(v,), the overall ~ motion, which immediately shows that the initial average
height density functionw(z’,t), is kinetic energy of the molecules along thexis is 3k T, and

(19

0,20

1 .
Z(tlvg)=vot— 5 gt? if te
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y f)\femaX(AZ)Z o Az
height Pum= 15 Jo M v CoStT9 cosa
— z+ X ................................................ .
, X1 sin 6 don(z+Az)dAz, (21)
A
\ 0 1 Az where
-z - wall Az
Oma{Az)=arc co%— . (22
A N
N Similarly, the lower pressure on the wall is
t— Z-A - A
0 OmaxAz)
pn’—f_}\fo 2m Ucose+gvcos¢9
Fig. 5. The molecule starts at- Az and at an angl® with the normal. % % sin 6 d6 n(z+Az)dAz
N [ OmadA2) Az
not 2k T, as happens in the steady stgig. (19)]. The reason =f J 2m| v cosf—g > Cos o
for this difference is that 2/3 of the initial kinetic energy is 070
taken up by the gravitational field, so that in the steady state x 1sin @ d n(z—Az)dAz. (23)

the average molecular kinetic energy is indékd, and the - )
average molecular potential energyki§, a result that also  Writing n(z+Az) as a truncated power series,
follows from the virial theorent! Substitution of Eq.(19) dn
into Eq.(16) confirms that, once the steady state is attained, n(zxAz)=n(z)*+——
a Maxwell-Boltzmann distribution of velociti¢&qg. (18)] is dz

obeyed at all heights, that is, the system is indeednq equating the upper and lower pressures, one obtains,

; 8
isothermal® , after some calculations,
Of course, this mechanical model does not correspond to
49z

true thermodynamic equilibriungit is nonergodig¢. It just
behaves as i¥ it Were,qbecause a MaxweIQI]—BoItszann-like n(z)=n(0)ex;{ - 7) (25
distribution of velocities was imposed. Any distribution of R 2 ] o
initial velocities leads to a steady state, but only B®) is ~ and, withv=(8kT/7m)~*, the exponential distribution is
compatible with an exponential distribution of heights. recovered, but the argument of the exponential is incorrect
The above model shows that an exponential distribution oPY @ factor ofa/2. It should be remarked at this point that the
heights may still be observed in a very rarefied atmospheréoncepts of mean-free path and mean collision time are ill-
where intermolecular collisions are infrequent. The modeefined, in the sense that they vary with heitithe above
may appear to be of little practical significance, but, in fact,derivation shows however that a steady concentration and a
it may serve as a simple picture of the situation prevalent idinear momentum balance at a given height are achieved by

the very high layers of the Earth’s atmosphere. compensating the higher velocity of descending molecules
with a larger number of ascending ones.

Az, (24

2. Interacting molecules

A kinetic model incorporating collisions is more difficult ) o
to handle, because of the density dependence on height, afd Stochastic derivation
we only give a semiguantitative derivation based on the
mean-free path). Within a time interval equal to the mean
time between collisions, only molecules initially located
betweerz andz+\ contribute to the pressure exerted on the
upper surface of the walFig. 5. Consider now a molecule
starting atz+ Az, with velocity v, and hitting the surface at
an angle with the normal. For simplicity, a linear trajectory

is assumed, because the velocity change originated by t

gravitational field is supposed to be small compared to thgt&ight-free paths with random orientations, while for the
thermal velocitys. The time spent in such a free path is particles suspended in the liqufdr molecules of the liquid

therefore approximately(Az, 8) = Az/(v cos6). In this way, itself) the erratic pattern persists down to molecular dimen-
the vertical component of the impact velocity is SIons. Chapges of direction and veloc_:lty occur much more
frequently in the last case, and a microscopic description
gAz based on the mean-free path concept is not appropriate. This
v,(Az,0)=v cosf+gr(Az,0)=v cos O+ > CoS6" kind of motion (Brownian motion is approximately de-
(20) scribed by the diffusion(or Fokker—Planck equation, for
_ _ timescales larger than the decay time of the particle’s veloc-
Hence, the momentum imparted to the wall is ity autocorrelatiort®=2 Therefore, such an equation applies
Az also to the dilute gas, but on a much coar$keough in most
cases still microscopjcscale.
With the above restrictions, the probability density func-
The upper pressure on the wall is, therefore, tion w(z,t) of a diffusing particle under the action of a con-

A dilute suspension of tiny particles in a liquid also obeys
the barometric formula. However, the kinetic derivations
outlined above apply to a perfect gas only. This is so, be-
cause, while both kinds of trajectories are similar if observed
at low resolution, they cease to be self-similar at different
magnifications: For the dilute gas, they are seen to be com-
sed of longas measured in terms of molecular diameéters

2muv,(Az,0)=2m| v cos 6+ S cosdl
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stant gravitational field directed along the negativdirec-
tion obeys a special kind of Fokker—Planck equation, called
the Smoluchowski equatiét 2

oW 5 Pw ow o6

w Pt (29
whereD is the diffusion coefficientD=kT/f, f being the
drag coefficien{equal to Grnr for a macroscopic sphere of
radiusr in a fluid of viscosity) andc=m’g/f, m’ being
the apparent mass of the parti¢fe.

The time evolution ofv(z,t), subject to the initial condi-

tion,

w(z,0)=86(z—zy), (27)
and to the boundary condition,

Fig. 6. A spherical solid body of madd and radiusR,, surrounded by a
gas of molecular mags, externally contained by a massless spherical wall

IW of radiusR,, .
D EH:WZO at z=0 for all t=0, (28)
which means that the particle starts its motiorzatz, [Eq. 1 3 5
(27)] and cannot cross the plaze-0 [bottom of the vessel; P(r.v)= m MY o =M
Eq. (28)], is** L2\ 2akT) KT 2kT
1 (z—2)? (z+20)? F{ ng)
= . . S Xexpg — —|, 32
w(z,t) AT (exp{ TR oY T (32
c 2 wherelL is the(very large linear dimension of the container
Xex;{— —(z-2p)— — t} and w(z)=[J[P(r,v)dvdx dy is again the exponential
2D 4D density.
C o0
+— e*C”DJ exp(—x?)dx. (29
T (z+29—ct)/2yDt . TWO SIMPLE GENERALIZATIONS OF THE

At short times, a Gaussian-like curve is obtained, as for freeBARo'vIETRIC FORMULA

diffusion; however, an asymmetry soon develops, owing to _ o _
gravity. Finally, fort—oo, only the last term survives, yield- A. Nonuniform gravitational field
ing the exponential density. This density is more easily ob-

tained by settingiw/dt =0 in Eq.(26) and solving the result- : .
y g a.(26) 9 extend the previous results to the case where the gravita-

i di diff tial tion. ; S . : )
ng ordinary cimershtia. equaton ional field is not constant. Consider a spherical solid body of

For the case of particles suspended in a liquid, the expot- d radi ded b I
nential function can be used to explain sedimentation: WhildnNassM and radiusR, surrounded by a gas, externally con-

small particles may be approximately homogeneously disi@ined by a massless spherical wall of radRig (Fig. 6.
tributed in a liquid, the aggregates formed when they coa©N€ obtains for the gas in thermodynamic equilibrium,

Boltzmann’s equatioffor Egs.(5) or (7)] can be used to

lesce, will have masses high enough to compress, so to GmM/r

speak, the exponential function, yielding a thin layer at the r2 ex;{ KT )

bottom. On the other hand, for a fixed particle mass, sedi- p(r)= r e[Ro,Rul, (33
mentation can still be made to occur by increasing the accel- Rw , GmM/r

erationg, as is done in centrifuges. Ry reexn T )ar

where P(r) is the radial density function, such that

fE‘éVP(r)dr = 1, andG is the gravitational constant. The
pressure at a given radius is obtained from the perfect gas
law, rewritten as

D. Statistical derivation

The most straightforward derivation of the barometric for-
mula is perhaps from Boltzmann's distributfén

w4—ngU B(r) = poKT, (34
P(r,v)= Erv) , (300  wherep,, the number density, is
J'V exr{— KT )dr dv :NP(r)dr
LI P T (35

where V is the phase-space volume, aRdr,v) the joint )
equilibrium distribution function for position and velocity. WhereN is the total number of molecules. Hence,

For three-dimensional motion in a constant gravitational P(r)N
field, p(r)= 4_771’7 kT. (36)
E(r,v)=3mv?+mgz (31)

Using EQq.(33) and puttingz=r — Ry, Eq. (36) can finally be
wherev =|v|. Hence, one obtains from E¢B0) rewritten as
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mgRy z about 20 km thick, and centered on an altitude of about 30
p(z)=p(0)exp — : (37)  km. It strongly absorbs ultraviolet light from the Sun, and
KT (z+Rp) . 5
subsequently releases the corresponding energy as’heat.
wheregg is the acceleration of gravity fa@=0, andp(0) is  flat temperature minimum at57 °C is observed between 11

given by and.20 kmt2 correspondjng to a compromise between the
MR, cooling and heating profiles.
A kT
P(0)=—& Gmwir NKT. (38  ACKNOWLEDGMENTS
f Ar? exp( ) r _ . _ .
Ro kT The authors would like to thank Giovanni Pogligfilo-

Equation(37) shows that the pressure approaches a constarﬁz?ce’ Itafly for valhua}bielhelp with some references, and the
nonzero value for higlz. If R,, is very large, almost all the 'eerees for very helpiul comments.

gas exists far away from the solid body, whose gaseous skin

becomes negligible. This means, as is well known, that for,

R,,— no equilibrium distribution is possible. Therefore, if a APPENDIX A
gas is initially concentrated near the body’s surface, forming
an atmosphere, that atmosphere is only temporary, bein ) - ) .
bound to disappear completdlis result applies only to not cI_es,_ a plot o_fz(volt)_ in the vicinity of vg is a rapidly
too massive a body, otherwise relativistic effects must b@scillating function. This occurs because the heights of two
taken into accoupt In the absence of more complex escapemolecules simultaneously starting fraw0, but slightly dif-

mechanisms(e.g., dissociative collisional procesgeshe fering in their respective initial velocities, first slowly di-
time needed for depletion is a function of the fraction of VErge with time, and then, after many cycles, differ by an

molecules in the Maxwellian distribution with velocities @mount between 0 arlzjn(uo)zvél_Zg, that is critically de-

higher than the escape velocy. pendento\v = vy — v (and on timé. In this way, whert
The helium and argon existent in our planet are radioacis large, and even for a very smadl, all values between 0

tive decay products. Their main source is natural gas, wherand z,,(vy) occur many times in a plot of(v,|t) in the

they occur in almost the same volume fractions. If not sepavicinity of v . It is therefore legitimate to replace the rapidly

rated and stored, they are lost forever into the atmosphefgarying delta function by its average value,

when the gaseous hydrocarbons are burned or simply liber-

ated. One could thus expect to find helium and argon in , i [ Zmvo) / /

roughly the same amountz in the atmosphere. Howe?/er, ar- (8(z' =2)(tJvo)) = fo W(Zjug)8(z' ~2)dz

gon is 1000 times more abundant than hel¥This hap-

pens because most of the helium released to the atmosphere =w(z'[vg). (A1)

throughout the ages has escaped to interplanetary space, 2Re density functiom(z|v?) is such thaw(z|v}) dz is the

account of its lower mass. . .

Because the Earth atmosphere contains several gases, JH%CUOI’] of .t|m.e. ;pent by. a mole’cule beMeemndz+dz,
no significant convective and turbulent mixing occurs in thed!Ven that its initial Vek?c'ty, was, (Appendix B. One thus
higher layersiabove 100 ki these layers are richer in the concludes that for a given' the delta f}mctlon of the inte-
lighter gases, such as hydrogen and heffiras follows grand in Eq.(12) can be replaced by(z lvo). and the long

from the application of Eq(1) to each gas separately. tli:rge(lrg)olecular height density functiom(z'), is given by

For a given initial velocity ,, and after a great number of

B. Vertical temperature gradient

. . . . APPENDIX B
Consider now again the case of a uniform gravitational

field but with a vertical temperature gradient. Assuming a The fraction of time spent betweerandz+dz by a mol-
linear variation of temperature with height, which is a goodecule with initial velocity vy, and after many cycles,

approximation for the troposphet?, w(z|v,)dz, can be computed as the probability of finding the
T(2)=Ty— Bz (39) same molecule betweenandz+dz, if the time of observa-
’ tion is a random variable with uniform distributigthe ef-
where 8 is a positive constant, Eqé5) or (7) yield fect of the initial position is negligible after many cycles

Bz

mo/ks This probability is obtained from the random variable trans-
p(2)= P(O)( 1- T_o)

(40)  formation theorent® Taking, for convenience,e [0,v,/9],
one gets, from Eq(10),

This equation represents well the pressure dependence on vo/9 1 g
altitude for the whole tropospherup to 11 km), with® W(Z|vo)=f d| z—(vot—igtzﬂ — dt (B1)
To=288 K (15 °C) and 8=6.5 K km™%. 0 Vo

The fall of temperature with altitude in the troposphere isperforming the change of variabbe=vot— igt?, Eq. (B1)
due to the fact that air is warmed mainly from the surface ofhecomes

the planet. This fall is, however, smaller than could be ex-

pected, because convection occ(up to the tropopau3e® vi2g g

On the other hand, there is a temperature rise in the strato- w(Zlvo)= fo 8(z=x) \/2—_72
sphere(8=—1.0 K km™* from? 20 km to 32 km. This in- VoVvoT £9X
crease is associated with ozone, which concentrates in a layand Eq.(14) follows.

dx (B2)
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APPENDIX C

1. Steady-state distribution of velocities from the initial
distribution of velocities

We first obtain the probability of finding at heiglat a
molecule with initial velocityv, given that a molecule was
found. The probability of finding between and z+dz a
molecule with initial velocity vy is, as shown above,
w(z|v,)dz; on the other hand, the probability of findingzt
a molecule, irrespective of its initial velocity, is
[fifzg—z[w(z|vo)dz]f(v0)dvo]. In this way, the probability
that, at heightz, the observed molecule had initial velocity
Uo IS

w(z|vo)f(vo)

a(vo|2)= 1= : (C1)
d [aga(Zvo) f(ve)dug
Because is related tovg by

v:t\/voz—Zgz, (C2

one obtains, again by application of the random variable

transformation theorer?, that the density function for the
local velocityv is

f(\/v7+292)

v°+29z

foo f(\/v2+2gz)d ’
w vPt29z
which is the desired relation.

f(v|z)= (C3)

2. Initial distribution of velocities from the steady-state
distribution of velocities

For z=0, Eq.(C3) reduces to

f(lv])
v2
B T !
which can be rewritten as
f(vo)=Nv3fy(vo|0), wvoel[0,+=I, (C5)

whereN is a normalization constant. From this requirement,
one finally obtains

vafe(v0]0)

f(vo):m, voe[0,+oof. (Co)
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