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The barometric formula, relating the pressurep(z) of an isothermal, ideal gas of molecular massm
at some heightz to its pressurep~0! at heightz50, is discussed. After a brief historical review
several derivations are given. Generalizations of the barometric formula for a nonun
gravitational field and for a vertical temperature gradient are also presented. ©1997 American

Association of Physics Teachers.
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I. INTRODUCTION

The barometric formula

p~z!5p~0!expS 2
mgz

kT D ~1!

relates the pressurep(z) of an isothermal, ideal gas of mo
lecular massm at some heightz to its pressurep~0! at height
z50, whereg is the acceleration of gravity,k the Boltzmann
constant, andT the temperature. In spite of its simplicity
namely the assumption of constant temperature, it app
reasonably well to the lower troposphere~for altitudes up to
6 km, the error is less than 5%1!, and also to the stratospher
up to 20 km~with T5217 K, that is,257 °C!.1,2 The histori-
cal aspects linked to the barometric formula are fascinat
In Europe, by the end of the XVIth century, the accep
descriptions and explanations of natural phenomena w
those of the Greek philosopher Aristotle~384–322 B.C.!,
whose influence over learned Christendom had been do
nant since St. Thomas Aquinas~1226–1274!. Nevertheless,
Aristotle’s treatises concerning the natural world were
then known to contain important mistakes, either as a re
of the European voyages of discovery of the XVth a
XVIth centuries~e.g., the possibility of life near the equato
or the existence of a new continent, America! or of other
experimental observations~e.g., the structure of the huma
heart!. In 1592, the Portuguese Jesuits began the publica
of the last coherent corpus of Aristotelian philosophy. T
work was organized, as usual, in the form of a series
commented Latin translations of Aristotle’s works~Com-
mentarii Colegii Conimbricensis Societatis Iesu in Libr
Aristotelis Stagiritae!.3,4 Comments regarding the abov
mentioned new discoveries~and others! are found at relevan
points of the books concerning natural philosophy. Arist
le’s authority, though acknowledged, was not blindly a
cepted by scholars,5 and the importance of the ‘‘experienc
@i.e., empirical knowledge#, the mother of philosophy’’~in
fact, in the best Aristotelian spirit! was stressed in theCom-
ments.
Within a few decades, the accumulated knowledge

tained from both observation and active experimentation
going to make most of Aristotle’s natural philosophy unte
able. But at the time, the accepted general explanation
various phenomena associated with air pressure, like
working of water pumps, was still ‘‘nature’s abhorrence o
404 Am. J. Phys.65 ~5!, May 1997
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vacuum’’ ~an expression that is, however, posterior to Ar
totle!. This ‘‘law’’ is adhered to in the citedCommentarii
Physicorum~Fig. 1!.
Limited experimental evidence against an almightyhorror

vacuiexisted, however, as results from a passage of Gal
Galilei’s ~1564–1642! Dialogues concerning two new sc
ences~1638!.6 A pump had been built for raising water from
a rainwater underground reservoir. When the reservoir le
was high, the pump worked well. But when the level w
low, the pump did not work. Having noticed this, Galile
~Sagredo in theDialogues! asked the engineer in charge
repair the pump. To Galileo’s surprise, he replied that it w
working perfectly, it being well known that water could no
rise more than about 10 m in a suction pump. The empir
knowledge therefore existed, probably for a long tim
~pumps based on air pressure were in use since Antiquit!.7

However, no one had put forward a theory or sugges
that an essentially empty space~neglecting vapor pressure!
had to exist above the water surface in the case of pu
‘‘malfunction.’’ Galileo supposed that bulk water was glue
on top of the pump by the vacuum~the Italian words used
areglutine, colla, andvisco!, but that this glue had a limited
resistance, breaking at a certain maximum weight.6 Because
of this explanation, he rightly conjectured~on false grounds!
that the ‘‘breaking’’ height for other materials should be i
versely proportional to their density.6 Therefore, Galileo de-
parted from the Aristotelian doctrine: After all, Nature man
fested only a limitedhorror vacui, and a vacuum could be
produced and maintained.
It appears that the correct explanation~atmospheric pres-

sure! is due to Giambattista Baliani, a Genoese, that fi
suggested it to Galileo in a letter,8 in 1630. However, as
described, Galileo did not agree with such an explanat
not even mentioning it in his 1638 book.6 The question re-
mained however unsettled.8 After his master’s death, Gali
leo’s disciple Evangelista Torricelli~1608–1647! devised a
decisive experiment with the help of anad hocsetup con-
sisting of two long glass tubes~ca. 1.2 m! sealed at one end
and a bowl of mercury9 ~Fig. 2!. This celebrated mercury
column experiment, carried out in collaboration with anoth
disciple of Galileo, the young Vincenzo Viviani~1622–
1703!, took place in 1643 or 1644. The purposes of the
periment were:8,9 ~i! to confirm the existence of a vacuum
~following Galileo!; ~ii ! to show that air pressure is the tru
explanation~against Galileo!; and ~iii ! to display the varia-
404© 1997 American Association of Physics Teachers
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tions of pressure with weather. Air pressure as the true ca
was established by showing that the mercury height was
same in both tubes, in spite of the very different volumes
vacuum produced~Fig. 2!. ~The proof seemed, however, n
totally convincing for other natural philosophers, as we sh
see.! Torricelli was well aware of the great importance of h
experiment, though he did not publicize it outside a sm
circle of friends and colleagues. But thanks to the excha
of scientific letters and to scientific travelers such as
French monk Marin Mersenne, it became rapidly kno
throughout Europe as theExperiment from Italy, although
the name of its author appears to have been concealed.8,10,11

Variants of Torricelli’s key experiment, and new ones, d
vised by the French polymath Blaise Pasc
~1623–1662!,10,11 and by others, further strengthened Tor
celli’s theory beyond doubt. Of all experiments, the one t
Pascal considered decisive was the record of the height
column of mercury as a function of altitude: ‘‘If air weigh
and pressure is the true cause, the height should decr
with an increase in altitude, as less air exerts weight on
of a mountain than at its base; on the other hand natu
abhorrence of a vacuum must be the same at both places
may be remarked that the variation of air density with a
tude had already been explicitly mentioned by Torricelli in
letter to Ricci:9 ‘‘ ~...! the authors that have written about th

Fig. 1. Frontispiece of the bookCommentarii Physicorum~printed in Coim-
bra in 1592!, first volume of the seriesCommentarii Colegii Conimbricensis
Societatis Iesu in Libros Aristotelis Stagiritae. Source:Biblioteca Nacional
de Lisboa.
405 Am. J. Phys., Vol. 65, No. 5, May 1997
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twilight, say that the visible air, full of vapours, extend
above us up to about 50 or 54 miles; this I believe is ex
gerated, because I will show that if such were the case
vacuum resistance should be much stronger than wha
actually is. But they have a way out, because they can

Fig. 2. A drawing of Torricelli’s experimental setup.9 The mercury column
attained the same height in tubes A and B. The bowl contained mercury~C!
and, above it and up to D, water. Upon raising tube A, as to place its lo
end slightly above the mercury–water interface, the mercury column
lapsed, and water rushed into the tube, filling it completely~up to E!. Ac-
cording to Torricelli, this was the proof of the existence of a vacuum in
space above the mercury column.
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that the air whose weight [density] is given by Galile
[1/400th of the density of water] belongs to the lowest
gion, where men and animals live, but that on top of the h
mountains the air begins to be very pure and weights m
less than 1/400th of the weight of water.’’ The experiment
devised by Pascal was carried out by his brother-in-la
Florin Périer, in 1648, at the Puy-de-Doˆme, a lofty mountain
in Auvergne. The results conformed to Pascal’s expectat
the altitude variation of ca. 1 km entraining a decrease in
height of the column of mercury of ca.10 85 mm. Pe´rier also
repeated the experiment at the highest tower of the cathe
of Clermont-Ferrand~ca. 39 m height!,10,11 and observed a
smaller but distinct variation of the height of the column
ca.10 5 mm. Encouraged by the results, Pascal himself
peated the experiment in Paris, at the St. Jacques tower~ca.
52 m height!, having obtained similar results~the tower still
exists, and has at its foot a statue of Pascal with a barome!.
A quantitative relation~barometric formula! was nonethe-

less not given by Pascal. The exponential dependenc
pressure on height could only be obtained after the discov
of Boyle’s law ~Oxford, 1662!, and was first recognized b
the English physicist and astronomer Edmund Halley~1656–
1742!, also from Oxford University, in 1686.12 He also gave,
as an example,p(z) andz(p) in tabular form~Fig. 3!, for the
case of a ground~z50! atmospheric pressure equal to 30
Hg ~762-mm Hg! and a density of ground air to mercury o
1 to 10 800, this last value being obtained from a density
air to water of 1 to 800 and of a density of water to mercu
of 1 to 13.5. Much later, the great French mathematic
Pierre-Simon de Laplace~1749–1827! finally explicitly ob-
tained the barometric formula~and extensions of it! in his
Traité de Mécanique Ce´leste.13 For this reason, the barome
ric formula is sometimes called Laplace’s formula.
The barometer~name coined by Boyle! was very soon

used for the measurement of altitude, although the res
were subject to some error, owing to local pressure chan
and temperature and composition variations~the real atmo-
sphere not being in strict thermodynamic equilibrium!. In

Fig. 3. Calculations ofp(z) andz(p), by E. Halley,12 for p~0!530-in. Hg
~762-mm Hg!, and a density of air~z50! to mercury of 1 to 10 800.
406 Am. J. Phys., Vol. 65, No. 5, May 1997
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1801, the Colombian astronomer Caldas discovered th
thermometer could be used for the same purpose,14 by mea-
suring the boiling point of water, which depends on press
through the Clapeyron equation.
In 1909, the French physicist Jean Perrin showed15 that a

suspension in water of tiny spherical particles~radii between
0.2 and 0.5mm! obtained from tree resins obeys the bar
metric formula,16 behaving as a miniature atmosphere, o
whose ‘‘molecules’’ are visible with an optical microscop
~Fig. 4!.

II. DERIVATIONS OF THE BAROMETRIC
FORMULA

We now discuss some ways of arriving at the barome
formula. Some are well known, others not so. Each one gi
different insights on the problem.

A. Hydrostatic derivation

Consider a still gas contained in a vessel of heightH. In
equilibrium, the pressure at a given heightz is

p~z!5p~H !1M ~z!g, ~2!

whereM (z) is the mass of the gas in a column of unit ar
that extends fromz to H,

M ~z!5E
z

H

rm~u!du, ~3!

whererm is the mass density. From the perfect gas equa
pV5NkT, whereN is the number of molecules contained
the volumeV, one obtains

rm~z!5
Nm

V
5
mp~z!

kT
, ~4!

and the following integral equation is obtained:

p~z!5p~H !1
m

k E
z

H gp~u!

T
du, ~5!

whose solution is Eq.~1! if it is assumed thatg andT do not
depend on height. A differential balance of forces can also
written from the start, as is common practice in textboo
and was originally done by Laplace:13 In mechanical equi-
librium, the opposite forces acting in a column of air of un
area betweenz andz1dzmust be equal:

p~z1dz!1rm~z!gdz5p~z!. ~6!

Fig. 4. Schematic representation of the microscope setup~left! used to take
a photograph~right! showing the exponential distribution of the particle
From Les Atomes.15
406Berberan-Santos, Bodunov, and Pogliani
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Combining Eqs.~4! and~6!, one obtains the differential form
of Eq. ~5!,

dp

dz
52

mg

kT
p. ~7!

The above derivations show that the view of atmosphe
pressure as originating from the weight~per unit area! of all
the air above the surface of the earth is essentially v
becauseH→` and thusp(H)→0.
Takingp~0!51.0 atm andg59.8 ms22, we get for the air

mass per unit areaM (0)5p(0)/g51.0 kg cm22. This mass
is exponentially distributed in height, according to Eq.~1!.
Were air an incompressible fluid~as mercury approximately
is!, its density would not vary with height. Assuming that
such a case the density was that for zero height, the t
height of the air column,Hs , would be

Hs5
M ~0!

rm~0!
5

kT

mg
. ~8!

For our atmosphere and takingT5290 K, this height~the
so-called scale height! is 8.5 km. Such a value was alread
correctly estimated by Halley,12 simply by using the ratio of
mercury to air densities mentioned above, asHs5762 mm
31080058.3 km. It is interesting to note thatHs is also the
averageheight of an air molecule. Indeed, the probability
finding a certain molecule at a given heightz obeys a distri-
bution ~density! function w(z) that is proportional to the
pressure, and it follows from Eq.~1! and from the normal-
ization requirement that

w~z!5
mg

kT
expS 2

mgz

kT D . ~9!

The mean of this probability density function is precisely E
~8!.

B. Kinetic derivations

A consideration of the matter from the molecular-kine
point of view is also interesting, and provides a clearer vi
of the way the exponential distribution is brought about.

1. Noninteracting molecules

Consider the following conceptual experiment: A lar
number of noninteracting molecules, initially at rest on
horizontal plane~z50!, are set into upward vertical motio
at t50, according to a given distribution of initial velocitie
f (v0). If these molecules are under the influence of a c
stant gravitational field counteracting their ascent, they
only up to a certain maximum heightzm5v0

2/2g, falling back
afterward. Assuming that collisions with the plane are el
tic, each trajectory repeats an infinite number of times, i
the motion becomes periodic. For a given initial velocityv0,
the dependence of height on time is

z~ tuv0!5v0t2
1

2
gt2 if tPF0, 2v0g G . ~10!

This dependence of height on time can also be expresse
a probability density functionw(z8,tuv0),

w~z8,tuv0!5d@z82z~ tuv0!#. ~11!

For a given distribution of initial velocitiesf (v0), the overall
height density function,w(z8,t), is
407 Am. J. Phys., Vol. 65, No. 5, May 1997
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w~z8,t !5E
0

`

f ~v0!d@z82z~ tuv0!#dv0 . ~12!

It is expected that for long times Eq.~12! converges to a
time-independent density functionw(z8). This can indeed be
shown~Appendix A!. The limiting functionw(z8) is

w~z8!5E
0

`

f ~v0!w~z8uv0!dv0 , ~13!

where

w~z8uv0!55
g

v0Av0222gz8
if z8<

v0
2

2g

0 if z8.
v0
2

2g

, ~14!

and therefore

w~z8!5E
A2gz8

`

f ~v0!
g

v0Av0222gz8
dv0 . ~15!

What then is the distribution functionf (v0) that leads to the
exponential density, Eq.~9!? Substitution of Eq.~9! into Eq.
~15! gives an integral equation whose solution is the soug
for function. However, it is Eq.~9! we want to obtain, and
f (v0) must therefore be derived in another way. This can
done as follows: Because att50 ~nonequilibrium! all mol-
ecules are present atz50, and starting to move upward, it i
clear that their initial velocity distributioncannot be the
steady-state one,f s(vuz). The two are related by~Appendix
C!

f s~vuz!5

f ~Av212gz!

v212gz

E
2`

` f ~Av212gz!

v212gz
dv

, vP]2`,1`@ ,

~16!

and by

f ~v0!5
v0
2f s~v0u0!

*0
`v0

2f s~v0u0!dv0
, v0P@0,1`@ . ~17!

Now, in order to emulate thermodynamic equilibrium, t
steady-statevelocity distribution function must be the unid
mensional Maxwell–Boltzmann distribution; in particula
that should be true forz50:

f s~vu0!5S m

2pkTD
1/2

expS 2
mv2

2kTD . ~18!

Inserting this distribution into Eq.~17!, the initial distribu-
tion of velocities turns out to be

f ~v0!54pv0
2S m

2pkTD
3/2

expS 2
mv0

2

2kTD , ~19!

and substitution of this distribution into Eq.~15! finally
yields the exponential density of heights, Eq.~9!.
It is interesting to note that the initial distribution of ve

locities, Eq.~19!, is identical to the Maxwell distribution of
speeds@not to be confused with the Maxwell–Boltzman
distribution of velocities, Eq.~18!# for three-dimensional
motion, which immediately shows that the initial avera
kinetic energy of the molecules along thez axis is 3

2kT, and
407Berberan-Santos, Bodunov, and Pogliani
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not 12kT, as happens in the steady state@Eq. ~19!#. The reason
for this difference is that 2/3 of the initial kinetic energy
taken up by the gravitational field, so that in the steady s
the average molecular kinetic energy is indeed1

2kT, and the
average molecular potential energy iskT, a result that also
follows from the virial theorem.17 Substitution of Eq.~19!
into Eq. ~16! confirms that, once the steady state is attain
a Maxwell–Boltzmann distribution of velocities@Eq. ~18!# is
obeyed at all heights, that is, the system is inde
isothermal.18

Of course, this mechanical model does not correspon
true thermodynamic equilibrium~it is nonergodic!. It just
behaves as if it were, because a Maxwell–Boltzmann-
distribution of velocities was imposed. Any distribution
initial velocities leads to a steady state, but only Eq.~19! is
compatible with an exponential distribution of heights.
The above model shows that an exponential distribution

heights may still be observed in a very rarefied atmosph
where intermolecular collisions are infrequent. The mo
may appear to be of little practical significance, but, in fa
it may serve as a simple picture of the situation prevalen
the very high layers of the Earth’s atmosphere.

2. Interacting molecules

A kinetic model incorporating collisions is more difficu
to handle, because of the density dependence on height
we only give a semiquantitative derivation based on
mean-free path,l. Within a time interval equal to the mea
time between collisionst, only molecules initially located
betweenz andz1l contribute to the pressure exerted on t
upper surface of the wall~Fig. 5!. Consider now a molecule
starting atz1Dz, with velocity v, and hitting the surface a
an angle with the normalu. For simplicity, a linear trajectory
is assumed, because the velocity change originated by
gravitational field is supposed to be small compared to
thermal velocityv. The time spent in such a free path
therefore approximatelyt(Dz,u)5Dz/~v cosu!. In this way,
the vertical component of the impact velocity is

vz~Dz,u!5v cosu1gt~Dz,u!5v cosu1
gDz

v cosu
.

~20!

Hence, the momentum imparted to the wall is

2mvz~Dz,u!52mS v cosu1
gDz

v cosu D .
The upper pressure on the wall is, therefore,

Fig. 5. The molecule starts atz1Dz and at an angleu with the normal.
408 Am. J. Phys., Vol. 65, No. 5, May 1997
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lE
0

umax~Dz!

2mS v cosu1g
Dz

v cosu D
3 1

2 sin u dun~z1Dz!dDz, ~21!

where

umax~Dz!5arc cosS Dz

l D . ~22!

Similarly, the lower pressure on the wall is

plt5E
2l

0 E
0

umax~Dz!

2mS v cosu1g
Dz

v cosu D
3 1

2 sin u du n~z1Dz!dDz

5E
0

lE
0

umax~Dz!

2mS v cosu2g
Dz

v cosu D
3 1

2 sin u du n~z2Dz!dDz. ~23!

Writing n(z1Dz) as a truncated power series,

n~z6Dz!>n~z!6
dn

dzU
z

Dz, ~24!

and equating the upper and lower pressures, one obt
after some calculations,

n~z!5n~0!expS 2
4gz

v̄2 D , ~25!

and, with v̄5(8kT/pm)1/2, the exponential distribution is
recovered, but the argument of the exponential is incorr
by a factor ofp/2. It should be remarked at this point that th
concepts of mean-free path and mean collision time are
defined, in the sense that they vary with height.19 The above
derivation shows however that a steady concentration an
linear momentum balance at a given height are achieved
compensating the higher velocity of descending molecu
with a larger number of ascending ones.

C. Stochastic derivation

A dilute suspension of tiny particles in a liquid also obe
the barometric formula. However, the kinetic derivatio
outlined above apply to a perfect gas only. This is so,
cause, while both kinds of trajectories are similar if observ
at low resolution, they cease to be self-similar at differe
magnifications: For the dilute gas, they are seen to be c
posed of long~as measured in terms of molecular diamete!
straight-free paths with random orientations, while for t
particles suspended in the liquid~or molecules of the liquid
itself! the erratic pattern persists down to molecular dime
sions. Changes of direction and velocity occur much m
frequently in the last case, and a microscopic descript
based on the mean-free path concept is not appropriate.
kind of motion ~Brownian motion! is approximately de-
scribed by the diffusion~or Fokker–Planck! equation, for
timescales larger than the decay time of the particle’s ve
ity autocorrelation.20–23 Therefore, such an equation applie
also to the dilute gas, but on a much coarser~though in most
cases still microscopic! scale.
With the above restrictions, the probability density fun

tion w(z,t) of a diffusing particle under the action of a con
408Berberan-Santos, Bodunov, and Pogliani
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stant gravitational field directed along the negativez direc-
tion obeys a special kind of Fokker–Planck equation, ca
the Smoluchowski equation21–22

]w

]t
5D

]2w

]z2
1c

]w

]z
, ~26!

whereD is the diffusion coefficient,D5kT/ f , f being the
drag coefficient~equal to 6phr for a macroscopic sphere o
radiusr in a fluid of viscosityh! and c5m8g/ f , m8 being
the apparent mass of the particle.16

The time evolution ofw(z,t), subject to the initial condi-
tion,

w~z,0!5d~z2z0!, ~27!

and to the boundary condition,

D
]w

]z
1cw50 at z50 for all t>0, ~28!

which means that the particle starts its motion atz5z0 @Eq.
~27!# and cannot cross the planez50 @bottom of the vessel
Eq. ~28!#, is21

w~z,t !5
1

2ApDt
H expF2

~z2z0!
2

4Dt G1expF2
~z1z0!

2

4Dt G J
3expF2

c

2D
~z2z0!2

c2

4D
t G

1
c

DAp
e2cz/DE

~z1z02ct!/2ADt

`

exp~2x2!dx. ~29!

At short times, a Gaussian-like curve is obtained, as for f
diffusion; however, an asymmetry soon develops, owing
gravity. Finally, for t→`, only the last term survives, yield
ing the exponential density. This density is more easily
tained by setting]w/]t50 in Eq.~26! and solving the result-
ing ordinary differential equation.
For the case of particles suspended in a liquid, the ex

nential function can be used to explain sedimentation: W
small particles may be approximately homogeneously
tributed in a liquid, the aggregates formed when they c
lesce, will have masses high enough to compress, s
speak, the exponential function, yielding a thin layer at
bottom. On the other hand, for a fixed particle mass, se
mentation can still be made to occur by increasing the ac
erationg, as is done in centrifuges.

D. Statistical derivation

The most straightforward derivation of the barometric fo
mula is perhaps from Boltzmann’s distribution24

P~r ,v!5

expS 2
E~r ,v!

kT D
E
V
expS 2

E~r ,v!

kT Ddr dv , ~30!

where V is the phase-space volume, andP~r ,v! the joint
equilibrium distribution function for position and velocity
For three-dimensional motion in a constant gravitatio
field,

E~r ,v!5 1
2mv

21mgz, ~31!

wherev5uvu. Hence, one obtains from Eq.~30!
409 Am. J. Phys., Vol. 65, No. 5, May 1997
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P~r ,v!5
1

L2 S m

2pkTD
3/2Smg

kT DexpS 2
mv2

2kTD
3expS 2

mgz

kT D , ~32!

whereL is the~very large! linear dimension of the containe
and w(z)5***P~r ,v!dv dx dy is again the exponentia
density.

III. TWO SIMPLE GENERALIZATIONS OF THE
BAROMETRIC FORMULA

A. Nonuniform gravitational field

Boltzmann’s equation@or Eqs.~5! or ~7!# can be used to
extend the previous results to the case where the gra
tional field is not constant. Consider a spherical solid body
massM and radiusR0 surrounded by a gas, externally co
tained by a massless spherical wall of radiusRW ~Fig. 6!.
One obtains for the gas in thermodynamic equilibrium,

P~r !5

r 2 expSGmM/r

kT D
E
R0

RW
r 2 expSGmM/r

kT Ddr rP@R0 ,RW#, ~33!

where P(r ) is the radial density function, such tha
*R0
RWP(r )dr 5 1, andG is the gravitational constant. Th

pressure at a given radius is obtained from the perfect
law, rewritten as

p~r !5rnkT, ~34!

wherern , the number density, is

rn5
NP~r !dr

4pr 2dr
, ~35!

whereN is the total number of molecules. Hence,

p~r !5
P~r !N

4pr 2
kT. ~36!

Using Eq.~33! and puttingz5r2R0 , Eq. ~36! can finally be
rewritten as

Fig. 6. A spherical solid body of massM and radiusR0, surrounded by a
gas of molecular massm, externally contained by a massless spherical w
of radiusRw .
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p~z!5p~0!expS 2
mg0R0

kT

z

~z1R0!
D , ~37!

whereg0 is the acceleration of gravity forz50, andp~0! is
given by

p~0!5

expSmg0R0

kT D
E
R0

Rw
4pr 2 expSGmM/r

kT Ddr NkT. ~38!

Equation~37! shows that the pressure approaches a cons
nonzero value for highz. If Rw is very large, almost all the
gas exists far away from the solid body, whose gaseous
becomes negligible. This means, as is well known, that
Rw→` no equilibrium distribution is possible. Therefore, if
gas is initially concentrated near the body’s surface, form
an atmosphere, that atmosphere is only temporary, b
bound to disappear completely~this result applies only to no
too massive a body, otherwise relativistic effects must
taken into account!. In the absence of more complex esca
mechanisms~e.g., dissociative collisional processes!, the
time needed for depletion is a function of the fraction
molecules in the Maxwellian distribution with velocitie
higher than the escape velocity.25

The helium and argon existent in our planet are radio
tive decay products. Their main source is natural gas, wh
they occur in almost the same volume fractions. If not se
rated and stored, they are lost forever into the atmosph
when the gaseous hydrocarbons are burned or simply li
ated. One could thus expect to find helium and argon
roughly the same amounts in the atmosphere. However
gon is 1000 times more abundant than helium.25 This hap-
pens because most of the helium released to the atmosp
throughout the ages has escaped to interplanetary spac
account of its lower mass.25

Because the Earth atmosphere contains several gases
no significant convective and turbulent mixing occurs in t
higher layers~above 100 km!, these layers are richer in th
lighter gases, such as hydrogen and helium,25 as follows
from the application of Eq.~1! to each gas separately.

B. Vertical temperature gradient

Consider now again the case of a uniform gravitatio
field but with a vertical temperature gradient. Assuming
linear variation of temperature with height, which is a go
approximation for the troposphere,1,2

T~z!5T02bz , ~39!

whereb is a positive constant, Eqs.~5! or ~7! yield

p~z!5p~0!S 12
bz

T0
Dmg/kb

. ~40!

This equation represents well the pressure dependenc
altitude for the whole troposphere~up to 11 km!, with1

T05288 K ~15 °C! andb56.5 K km21.
The fall of temperature with altitude in the troposphere

due to the fact that air is warmed mainly from the surface
the planet. This fall is, however, smaller than could be
pected, because convection occurs~up to the tropopause!.25

On the other hand, there is a temperature rise in the str
sphere~b521.0 K km21 from2 20 km to 32 km!. This in-
crease is associated with ozone, which concentrates in a
410 Am. J. Phys., Vol. 65, No. 5, May 1997
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about 20 km thick, and centered on an altitude of about
km. It strongly absorbs ultraviolet light from the Sun, an
subsequently releases the corresponding energy as hea25 A
flat temperature minimum at257 °C is observed between 1
and 20 km,1,2 corresponding to a compromise between t
cooling and heating profiles.
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APPENDIX A

For a given initial velocityv08 , and after a great number o
cycles, a plot ofz(v0ut) in the vicinity of v08 is a rapidly
oscillating function. This occurs because the heights of t
molecules simultaneously starting fromz50, but slightly dif-
fering in their respective initial velocities, first slowly di
verge with time, and then, after many cycles, differ by
amount between 0 andzm(v0)5v0

2/2g, that is critically de-
pendent onDv 5 v0 2 v08 ~and on time!. In this way, whent
is large, and even for a very smallDv, all values between 0
and zm(v08) occur many times in a plot ofz(v0ut) in the
vicinity of v08 . It is therefore legitimate to replace the rapid
varying delta function by its average value,

^d~z82z!~ tuv08!&5E
0

zm~v08!
w~zuv08!d~z82z!dz

5w~z8uv08!. ~A1!

The density functionw(zuv08) is such thatw(zuv08) dz is the
fraction of time spent by a molecule betweenz andz1dz,
given that its initial velocity wasv08 ~Appendix B!. One thus
concludes that for a givenz8 the delta function of the inte-
grand in Eq.~12! can be replaced byw(z8uv0), and the long
time molecular height density function,w(z8), is given by
Eq. ~15!.

APPENDIX B

The fraction of time spent betweenz andz1dz by a mol-
ecule with initial velocity v0, and after many cycles
w(zuv0)dz, can be computed as the probability of finding t
same molecule betweenz andz1dz, if the time of observa-
tion is a random variable with uniform distribution~the ef-
fect of the initial position is negligible after many cycles!.
This probability is obtained from the random variable tran
formation theorem.26 Taking, for convenience,tP[0,v0/g],
one gets, from Eq.~10!,

w~zuv0!5E
0

v0 /g
dFz2S v0t2 1

2
gt2D G g

v0
dt ~B1!

performing the change of variablex5v0t2
1
2gt

2, Eq. ~B1!
becomes

w~zuv0!5E
0

v0
2/2g

d~z2x!
g

v0Av0222gx
dx ~B2!

and Eq.~14! follows.
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APPENDIX C

1. Steady-state distribution of velocities from the initial
distribution of velocities

We first obtain the probability of finding at heightz a
molecule with initial velocityv0, given that a molecule wa
found. The probability of finding betweenz and z1dz a
molecule with initial velocity v0 is, as shown above
w(zuv0)dz; on the other hand, the probability of finding atz
a molecule, irrespective of its initial velocity, i
@*A2gz

` @w(zuv0)dz# f (v0)dv0#. In this way, the probability
that, at heightz, the observed molecule had initial veloci
v0 is

a~v0uz!5
w~zuv0! f ~v0!

*A2gz
` w~zuv0! f ~v0!dv0

. ~C1!

Becausev is related tov0 by

v56Av0222gz, ~C2!

one obtains, again by application of the random varia
transformation theorem,26 that the density function for the
local velocityv is

f s~vuz!5

f ~Av212gz!

v212gz

E
2`

` f ~Av212gz!

v212gz
dv

, ~C3!

which is the desired relation.

2. Initial distribution of velocities from the steady-state
distribution of velocities

For z50, Eq. ~C3! reduces to

f s~vu0!5

f ~ uvu!
v2

E
2`

` f ~ uvu!
v2

dv
, ~C4!

which can be rewritten as

f ~v0!5Nv0
2f s~v0u0!, v0P†0,1`†, ~C5!

whereN is a normalization constant. From this requireme
one finally obtains

f ~v0!5
v0
2f s~v0u0!

*0
`v0

2f s~v0u0!dv0
, v0P@0,1`@ . ~C6!
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