Monte Carlo simulation of orientational effects on direct energy transfer
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The donor ensemble excitation decay is obtained by a Monte Carlo simulation for the three-
dimensional case. Donor and acceptor reorientational motions are explicitly considered within
the isotropic diffusion model. Allowance is made for donor and acceptor different rotational
rates. The orientation dependent part of the decay is fully contained in the factor (( x%)'/2)
which is the ensemble average of the square root of the finite time average of the usual
orientational factor «*. The time dependence of {( «2)'?) is evaluated by a Monte Carlo
simulation procedure for several relative mobilities of the donor-acceptor pair and finally

captured in a simple, one-parameter formula.

1. INTRODUCTION

Forster-type energy transfer! is a well established mech-
anism of excitation transfer between singlet states.? The rate
constant for this dipole—dipole interaction contains an orien-
tational factor «” which is often taken as the ensemble aver-
age value of the isotropic distribution, 2/3. This corresponds
to the dynamic limit, where rotation of both donor and ac-
ceptor is fast compared to transfer.’ Since «* will in general
be a random function of time, owing to random changes in
donor and acceptor orientations, it is not clear why a time-
independent value should replace «*(#) and more so in the
dynamic limit, where fluctuations occur very frequently.
The answer is that, while the (highly) time-dependent rate
constant effectively contains k 2(¢), and not 2/3, the excita-
tion decay contains the finite time average of the rate con-
stant (see Sec. II) and therefore the finite time average of the

orientational factor «Z; if rotation is fast compared to trans-
fer, and provided both molecules of the pair rotate, all values
of «* are sampled in a short time, and the finite time average
equals the ensemble average from the very beginning of the
decay. Therefore, when 2/3 is substituted for «2(¢) in the

rate constant, one no longer has a rate constant, but rather

the time coefficient of the excitation decay. This has been a
somewhat neglected point. In the general case, the orienta-
tional factor appearing in the decay is a time-dependent

quantity, since the usual 2 should be replaced by «2. This
was previously done by Knoester and Van Himbergen* with
the Huber, Hamilton, and Barnett excitation decay law,’
that takes into account back transfer in an approximate way.

In this work, direct energy transfer is examined in some
detail from a stochastic viewpoint. In contrast to Ref. 4, do-
nor and acceptor are allowed to rotate at different rates, and
a closer connection is made with experimental parameters.
In Sec. II the general theoretical framework is presented,
with emphasis on the stochastic basis of the excitation decay.
In the limit of low concentrations, the usual Forster decay is
retrieved, but now with the time-dependent orientational
factor in. In Sec. III the simulation procedure, based on the
discrete jump model, is outlined. The results of the simula-
tion are presented and discussed in Sec. IV. The main results
are finally summarized in Sec. V. The unit interval, uniform
pseudorandom number generator used is described in Ap-
pendix B.
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Il. THEORY
A. Survival probability and excitation decay

The probability that a certain donor molecule, excited at
t = 0, is still excited at a later time ¢ (survival probability) is
given by

t
P(1) =exp[—f w(t’)dt’], 2.1)
(4]
where w(1) is the time-dependent rate constant. This follows
directly from the deterministic rate law

AN
AN _ _ oN,
dr w

N being the number of excited donors, by putting P=N/
Ny, where NN, is the initial number of excited donors.
Equation (2.2) is however only approximate, since N is
a discrete random variable.® A satisfactory derivation of Eq.
(2.1) must therefore rest on stochastic grounds. Ishida’ gave
such a derivation under the Master equation formalism. A
simpler, and perhaps physically more appealing derivation is
the following: let P(At [1,) be the probability that the donor
is still excited at ¢ = ¢, 4+ A¢, given that it was excited at ¢,. If
At is small, then a truncated power expansion in Az yields

P(At|ty) =1+ P'(0zy) At (2.3)
Defining the rate constant as® w(z,) = — P’(0|z,) one gets
P(Ar|ty) =1 —w(ty) At 2.4)

After a finite time lapse f = nAt, the probability that the
donor is still excited is clearly

(2.2)

P(t) = H [1—w(iA)Ar]. (2.5)
i=1
The exact relation being obtained for #— oo:
. i it\ t
P(t) = lim [1 — w(—f—) —], 2.6
( ) n—s oo il;ll n n ( )
or
P(1) =exp[1im > ln[l —w(i) -t—]], 2.7)
n—e /1 n; n
which reduces to
P(t) = exp[ — lim z w(—li) L] (2.8)
n—ow ;=1 n n
© 1988 American Institute of Physics 6341




6342 M. Berberan-Santos and M. J. E. Prieto: Orientational effects on energy transfer

equivalent to Eq. (2.1) by the definition of Riemann inte-
gral.

If Ny molecules, initially excited, decay independently,
then the probability that, at time ¢, N are still excited must be
given by the binomial law

P(N;t) = (x")[P(t)]”[l _ PN, (2.9)

For large N,, N Stirling formula yields,

P(N,t) = ([_ﬂQ_]N/M,[I_‘_}_)ﬂ] - N/M,)M.
N/N,)  L1—N/N,
(2.10)

and, for constant ¢, Eq. (2.10) peaks very sharply at
N = N,P(1), (2.11)

which is also the mean value of P(N,?). Thus, for a large
number of molecules, the excitation decay becomes deter-
ministic, and the fraction N(¢)/N, equals the survival prob-
ability P(¢) as required by the frequency interpretation of
probability, and N(¢) equals the mean value of P(N,?), as
expected from the law of large numbers.

B. Excitation decay

Direct energy transfer from an excited donor to accep-
tors embedded in condensed media has been studied exten-
sively for several geometries and dimensions."? A unified
approach was presented by Blumen and Manz.'® We will
concentrate here on the three-dimensional case. Within the
dipole—dipole approximation, and for low acceptor concen-
tration, the well-known Forster decay is retrieved. For the
sake of completeness, this decay will be briefly rederived
with special emphasis on the time dependence of the orienta-
tional factor. It is assumed that no translational diffusion
takes place.

The rate constant for energy transfer is, in the dipolar
approximation,

w(rt) = (Hw(r), (2.12)

where & is the orientational factor, given by Egs. (2.14) or
(2.15) and w(r) is

(2.13)

where r is the donor—acceptor distance, 7 is the donor life-
time, and R, is the Forster critical radius.! Equation (2.12)
is valid only if donor and acceptor spectra are characterized
by a single transition dipole in the region of spectral over-
lap.!" Whenever mixed polarization occurs, either in accep-
tor’s absorption or in donor’s emission, the orientational de-
pendence of the rate constant is greatly diminished.'? In the
following, Eq. (2.12) is assumed to hold. The orientational
factor «2 is given by'™

& = [3(nd,)(nd,) —d,d,]? (2.14)

where d, and d, are unit vectors along donor and acceptor
transition dipole directions, and n is the unit vector along the
direction joining donor and acceptor. An equivalent for-
mula, but depending on two angles only, is'?

«? = (3cos’ O + 1)cos’ w, (2.15)

where 0 is the angle between d, and n and o is the angle
between the acceptor transition dipole and the electric field
produced by the donor dipole at the acceptor.'* The orienta-
tional factor, and thus the rate constant, is time dependent
owing to random rotations performed by the donor and by
the acceptor. «” is therefore a random function of time, i.e., a
stochastic process.
Substitution of Eq. (2.12) in Eq. (2.1) yields

P(r, &5,t) =exp| — KCw(nt], (2.16)
where « is the finite time average of 2,
P(r):%f K2(t")dt'. (2.17)
0

In order to obtain the macroscopic excitation decay p(¢)
one merely notes that the fundamental equation derived by
Blumen and Manz, !°

N
p)y=1][1—a+aP.(D],

i=1
where a is the fraction of the NV lattice sites that is occupied
by acceptors and P, (¢) is given by Eq. (2.16) with » = #,, has
to be averaged over the &2,

4 —_— — —_
0 JO 0

N — —
X[[ [1—a+aP(n)]d & (2.19)

i=1

(2.18)

Assuming that the sites are uncorrelated and equivalent
with respect to orientational mobility,

FOR L 8y 1) =FCRDFC )+ f( KR, (2.20)
hence Eq. (2.19) becomes

p(t)=.ﬁ [l—a+aP(], (2.21)
where -

P,(1) = ff( P, nd & (2.22)

In this w:y, the usual decay law valid for low a,

p(r) =exp{ —Nf: g(n[1 —P(r,t)]dr], (2.23)

where g(7) is the distance distribution function, becomes

p(2) = exp[ — wa g(n[1 —?(r,t)]dr]

or, for the dipolar interaction in three-dimensional space,
where

Ng(r) = 4mnr,

n being the number density, one obtains
p =ewp| - (D) L(@y(L) ], 26
2 Co T
where
() = ff( ) ()% W
0

and

(2.24)

(2.25)

(2.27)
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¢o=3/4TR3IN,,
where N, is the Avogadro constant.

Equation (2.26) is the familiar Férster decay law, apart
from the factor (( «2)'/2). Note that this factor is time de-
pendent, since f( «2) is in fact SCK2,t). The orientational
dependence is then contained in the factor {( &2)"/2).

In the dynamic limit, where rotation of donor and ac-
ceptor is fast compared to the decay time scale, the time

average becomes equal to the ensemble average (ergodicity)
since the very beginning and, for all times of interest, one can

put &% = («*), hence
((K)V2)y = (2/3)V? = 0.81649 - -+

(2.28)

(2.29)

on the other hand, in the static limit'> one has »Z = &2,
hence

()Y = (k) = [In(2 +3)/2y3 + 112

=0.69008 --- . (2.30)

In the general case, the factor {( «%)'/2) is time depen-
dent: at = 0, the static limit is verified; for time larger than

zero, an intermediate regime is obeyed, with (( *)'/?)
asymptotically approaching a constant value. This was al-
ready pointed out by Knoester and Van Himbergen.* They
have however assumed that donor and acceptor had the
same rotational behavior. This need not be so even with iden-
tical molecules, since donor and acceptor, being in different
electronic states, may have different shapes and/or interac-
tions with solvent.

The simplest, but still meaningful model for molecular
rotation is the isotropic diffusion model.'® Even at this level,
an analytical calculation of f( «?,t) seems impossible. Nev-
ertheless, this function can be obtained for some special si-
tuations. For ¢ = O (static limit) one has f(«?), given by'’

1
K) = In(2 ++3)
J1 2ﬁ?[n(

—H(E — Din(iZ +E— 1) ]. (2.31)

Where H is the Heaviside function. If both molecules of the
pair are mobile, then (dynamic limit)

lim f( K2,0) =8( &2 —2/3),

I— o

(2.32)

i.e., regardless of initial relative orientation, «* will always
end up as 2/3 (see Fig. 4).

This is, as mentioned, a consequence of the ergodicity of
the stochastic process. If, however, only one of the two mole-
cules rotates,

if 1/3< x2<4/3

lim f{ £7,1) = .
otherwise

=

{( K —1/3)"1272,
0

(2.33)

as derived in Appendix A.
J

cos 8 + (1 — cos §)C?
(1 —cos 8)C,C, 4 Cysen b
(1~—cos 8§)C,C, — C, sen 8

A=

(1 —cos5)C,C, — Cysen d
cos 8 + (1 —cos 8)C3
(1 —cos8)C,C, + Cysen d

6343

In this case the process is nonergodic, since the time

evolution of 7 is conditioned by the initial relative orienta-
tion of donor and acceptor (see also Fig. 4). The dynamic

value of {( «?)'/2), computed from Eq. (2.33), is now
()Y =14+1In(2+3) =0.79684 -+ . (2.34)

The time evolution of {( «*)*/?) is a function of the
reorientation rate of both donor and acceptor. It is assumed
that molecular reorientation proceeds according to the iso-
tropic diffusion model. In Sec. IIT the Monte Carlo method
used to simulate molecular rotation and therefore, to obtain
the time-dependent quantity {( & )'/?), is described.

HI. THE SIMULATION PROCEDURE

Isotropic rotational diffusion was simulated using the
discrete jump model,'® where the molecule keeps its orienta-
tion for a certain interval of time, after which it rotates in-
stantaneously by a finite angle. This model is characterized
by 7,,, average time between jumps, and by the angular dis-
tribution g(a).

For small a, the model becomes diffusive, with a coeffi-
cient of rotational diffusion D given by'®

2
D= {@?) (3.1)
4r,
or, in terms of the rotational correlation time 7,,
2 Ta
T, =——. 3.2
3 @) (3.2)

The probability of having # jumps in a given interval At
is Poisson distributed, with mean Az /7,,. The step used was
At =0.1 7, so the probability of having two or more jumps
in Atis less than 0.5%. In this way the reduced time ¢t * =t /
7, is related to the number n of steps by

t* =0.15 n{a?). (3.3)

Donor and acceptor have, in general, different correla-
tion times for rotation. In order to maintain the probability
of multijump below 0.5%, Ar (and therefore 1 *) must be
defined in terms of the smaller 7,. Accordingly, the average
number of jumps in Af will be 0.14g for the slowest molecule,
where ¢ is the ratio of the smaller to the larger correlation
time. The probability of no jump in Atis exp( — u), where u
is either 0.1 (fast rotating partner) or 0.1¢ (slow rotating
partner). The probability of jump, is of course,
1 —exp( —u). A unit inverval, uniform pseudorandom
number generator (see Appendix B) was used to generate
numbers between 0 and 1, and therefore to decide if rotation
occurred or not. If it did, the molecule rotated by an angle a
from the original position to a new one in a random direc-
tion. This was accomplished by generating a random axis in
space, and then performing a rotation by § around that axis.
If the axis is defined by the unit vector (C;,C,,C;) then the
transformation matrix from the old to the rotated position

isls

(1 —cos8)C,C;+ C,8en
(1 —cos+8)C,C,—C,send .
cosd 4 (1 —cos §)C?2

3.4)
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FIG. 1. A realization of the orientational
factor when both partners have the same
rotational mobility (g = 1). Time span is
decreased from A to C.
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For small § one has {see Appendix C)

(a®) =16~ (3.5)
Usually, & was set to 10°. Check simulations with § = 5°
showed negligible variation.

Application of this procedure to both partners allowed
the calculation of x* [Eq. (2.14) ] for each step. In each run,
initial orientations were selected at random. The time-de-
pendent double integral (( #7)'/?) was evaluated as

(=L [ Ly K?(ﬁ)]m,

(3.6)
m~=1ln+ 1 j=0 m

with m =20000 and n = ¢ /Az. The curves obtained are
probably in error by less than 19%. Values for ¢ = 0 provide a
good test for accuracy, since the exact result ({|«|)) is
known. Deviations were smaller than 0.5% for all runs.

IV.RESULTS AND DISCUSSION

The orientational factor &7 is a stationary stochastic pro-
cess. Its distribution function, independent of time, is given
by Eq. (2.31). A particular realization of x* is shown in Fig.
1for g = 1, i.e., for donor and acceptor with equal mobility.
Itis seen that the near zero a value of & is, the more frequent-
ly it occurs. Values near four are exceedingly rare. If both
molecules rotate, all realizations are essentially equivalent,
since the memory of the initial orientation is rapidly lost.
Therefore, the process is ergodic, and the time average of a
single realization, &7, will equal the ensemble average, («?),
for sufficiently long times, as expressed by Eq. (2.32). If,
however, only one of the molecules of the pair is mobile
(g = 0) then the process is nonergodic, since the initial ori-
entation is never completely forgotten. Two realizations of
«? with g = 0 are shown in Fig. 2, the top one corresponding

| .i. dl “u“ll*&k ‘ 3
» 100 FIG. 2. Two realizations of the orienta-
t tional factor when only one of the partners
is mobile (g = 0).
]
B -
¢ 100
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AUTOCORRELATION

| I i I 1
° 10 20 N 30

FIG. 3. Normalized autocorrelation function of the orientational factor
g=1(A)and ¢g=0(B).

to an unfavorable initial orientation, and the bottom one
corresponding to a favorable initial orientation. It is seen
how these shape the time evolution of «2. It is well known
that the memory of a stationary process x () is quantitative-
ly expressed by the autocorrelation function

(2 +10)x (%)) — (x)?
(x) — (x)? '
In the autocorrelations shown in Fig. 3,
(K> (t + 1)K (%)) was averaged over 350 000 pairs. (x*)
was computed by numerical integration of Eq. (2.31) and
found to be 0.960 01. Since {«*) = 2/3, the variance of x? is
0.515 56. The autocorrelation function for ¢ = 1 displays a
correlation time of the order of 7,, and for ¢ * > 3 is essentially
zero. The autocorrelation function for ¢ = 0 shows the same
initial decay, but stabilizes at a residual, nonzero value. This
indicates the existence of a definite correlation between «2
values taken at different times, even when well separated in

c(t) = (4.1)

2 T T L) ] L] T

w2 t

T R

A .

t FIG. 4. Realizations of ( #)!/2 for
g=1(A)and ¢g=0 (B).

100

tit
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FIG. 5. Time dependence of
{((&)'"?) for selected values of
the relative mobility g.

time. Memory of the initial orientation is never completely
lost.

The time average of «%, «2, is also a stochastic process,
but a nonstationary one. This is easily recognized in Fig, 4,
where five realizations of ( «%)'/? are depicted for ¢ = 0 and
for g=1. For g =0, ( «*)"? curves do not converge to a
single value as # * — oo . This is to be expected, given the limit-
ing distribution of %, Eq. (2.33). For ¢ = 1, on the con-
trary, all five realizations almost superimpose at ¢ * = 100,
with values close to the expected limit, (2/3) 172,

The ensemble average of ( K2)"/2,(( «%)'/?), is shown
in Fig. 5 for some values of g. The curves with g0 approach
the limiting value (2/3) /2, while the curve with g = O has as
a limit the slightly lower value 0.7968... . From the figureitis
apparent that the dynamic limit should, for all the curves
displayed, be reached in less than about 50 7,.

0.82

Curves were well fitted by the empirical formula

_ayoot*+y0
ar* + 1

where p = (( «?)'/?) and a is the fitting parameter.

In Fig. 6 the simulated curve for ¢ = 1 is compared to its
fitting counterpart. For lower g values (g0) the fit was not
so good, the average deviation never exceeding however
0.5%.For g =0and withy_ = 0.7968... a fit comparable to
that with g = 1 is again obtained. In Fig. 7 the parameter ais
shown as a function of g. A least-squares fit to the pairs of
g> 0.1 gives, with an average deviation of 6%,

a= —0.596 ¢* + 1.076 ¢ + 0.285. (4.3)

Equations (4.2) and (4.3), though approximate and re-
stricted to either ¢ = 0 or ¢ > 0.1 are probably as precise as
needed for most purposes.

(4.2)

0.80

-
b _—

<(D)n>
0.78

0.76

0.74

FIG. 6. Comparison between the
{(( ¥)''?) computed by simula-
tion (a) and that obtained with Eq.
— 42 (b)forg=1.

0.72 -
0.70 —
0.68 ] ! i ] 1 ] ] | ]

0 2 4 8 & 10
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FIG. 7. Fitting parameter [Eq. (4.2)] as a function of the relative mobility
g. The fitting polynomial, Eq. (4.3), is shown by a solid line.

With the time span used (¢ * < 10) no adequate treat-
ment can be given to curves with 0<¢<0.1, since these
hardly differ from the curve with ¢ = 0. This, on the other
hand, means that the curve of ¢ = 0 can be used for g < 0.1 if
the time scale of interest is less than 7, /g, i.e., whenever the
slower molecule is essentially immobile.

If the time scale of interest is much larger than 7,, but
comparable to 7, /g, then the faster molecule may be consid-
ered to be in the dynamic limit, and in this scale, {( ¥2)'/?)
will appear to evolve from 0.7968... [Eq. (2.34)] to
0.8164..., Eq. (2.29), since then (see Appendix A)

(k)2 = ((cos” 8 +1/3)'?). (4.4)

This time evolution can be computed in a manner quite
analogous to that used in the simulation procedure described
in Sec. III. Owing to the small difference between the two
dynamical limits it was not deemed worthwhile to perform
the computation. As a first approximation, Eq. (4.3) may be
used for g <0.1, since it extrapolates well to g = 0, i.e., fits
well the curve with g = O when y_ = (2/3)"/?is used.

V. SUMMARY AND CONCLUSIONS

The effect of molecular reorientation on direct energy
transfer was investigated. For this purpose, a Monte Carlo
simulation was carried out within the isotropic diffusion
model. In the three-dimensional case, the orientational de-
pendence of the decay law is contained in the time-depen-

dent factor {( &2)'/?) (Eq.2.26). This time dependence was
captured in a simple, one parameter formula, Eq. (4.2). Itis
also concluded that the usual dynamic limit is only attained
when both donor and acceptor are mobile. If one of the part-
ners does not rotate, a second, slightly lower dynamic limit is
verified.
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APPENDIX A: DERIVATION OF EQ. (2.33)

If only the acceptor is mobile,bthe ensemble average of
Eq. (2.15) is

2 =cos* 0 + 1/3. (A1)

This average has to be performed with respect to the
acceptor and not to the donor, given that rotation of the
acceptor changes only ®, while rotation of the donor affects
both 8 and w.

Equation (2.14) displays a complete symmetry regard-
ing donor and acceptor. This means that use of the asymme-
tric form, Eq. (2.15), gives at the end a result independent of
having specifically considered the acceptor as the mobile
partner.

cos O is uniformly distributed, hence use of the transfor-
mation formula'® relating the distribution Q(y) of y = f(x)
with the distribution of x,P(x),

o) = f P(x)81y — f(x) 1dx. (A2)

Yields, with x = cos fand y = «,
1 2

o) = f 58— 2, (A3)
-1 2 3

or
/3 1

o) =_r —(z—1/3)"25(y — z)dz. (A4)

w3 2

The last integral is nonzero only for ye{1/3,4/3] where
its value is (y — 1/3) ~"/%/2.

APPENDIX B: THE RANDOM NUMBER GENERATOR

The unit interval, pseudorandom number generator
used was based on the multiplicative generator,

X, =aX;(mod m), (B1)

i.e., X; , , is the remainder of the division of aX; by m. Pseu-
dorandom numbers with uniform distribution between O
and 1 afe given by

U, =X,/m. (B2)

Input values X, (seeds) were always odd integers not
divisible by 5 like 777 777; Also the multiplier a used
(100 011) and the modulus m used (10'®) were selected ac-
cording to the recommendations given by Rubinstein.?°

The shuffling procedure described in Ref. 21 was ap-
plied to the generator in order to reduce its sequencial corre-
lation. For this purpose, successive values of U were stored
randomly in a vector with 100 elements. After filling the
vector with Uy, to U,y (the first 100 U’s were discarded),
the shuffling procedure is started: the value of U,,, is used to
select a certain element of the vector. This element becomes
the first random number to be used in the simulation, R,. To
refill the hole left behind, the next number of the primary
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generator, U,,, is stored in that position. The cycle is then
repeated, with R, used to select the vector position to be
occupied by U,;, etc.

APPENDIX C: DERIVATION OF EQ. (3.5)

In each jump, the original position undergoes an angu-
lar displacement «a in a random direction. The angle «a is
related to the angle 6 between the rotation axis and the point
direction, and to the angle of rotation around the axis, § (a
fixed quantity) by

(CH

Since the rotation axis is random, the angular distribu-
tion f{8) is that of a random point on a sphere,

f(6) =1sen 6. (C2)

The distribution of «, g{a), is obtained from the above
equations by use of Eq. (A2). One gets

cosa ==cos 8§ + (1 — cos &)cos? 6.

sen a

gla) = 2[(1 — cos &) (cos @ — cos 8) ]/ (€3)

The average {a?) is then given by

(a?) = fs 2a(_°_‘)_s_‘_”___‘i‘3ﬁ)l/2da. (C4)
o 1 —coséd

For small 6, Eq. (C4) reduces to

(a?) =28~ (C5)
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