Oprics and Spectroscopy, Vol. 81, No. 2, 1996, pp. 217-221. Translated from Optika i Spekeroskopiya, Vol-81, No. 2, 1996, pp. 243-247.

Original Russian Text Copyright © 1996 by Berberan-Santos, Bodunov, Martinho.

SOLID-STATE
SPECTROSCOPY

[.uminescence Quenching in Fractal Media
Accelerated by Migration

M. N. Berberan-Santos*, E. N. Bodunov**, and J. M. G. Martinho*

* Center of Chemical Physics of Molecules, Lisbon Technical University, Lisbon, 1096 Poriugal
** Russian State Hydrometeorological Institute, St. Petersburg, 195196 Russia

Received January 18, 1996 -

Abstract—Concentration dependences of the luminescence quantum yield and anisotropy are studied in frac-
tals. It is shown that these dependences at high concentrations of luminescent molecules can be used for deter-

mining fractal dimensionality of the media under study.

INTRODUCTION

Currently, radiationless energy transfer (RET) from an
excited molecule to an unexcited molecule is widely used
in biophysics [1] and physics of polymers [2-8] and
porous glasses [9-15] 1o study various statistical proper-
ties of media. This is explained by the high sensitivity of
RET to the distance between interacting molecules.

The quantity being measured in these experiments is
the décay kinetics of initially excited molecules, which
is described by the diagonal part. G£r) of the Green
function for the excitation transport.

If RET occurs between molecules of the same type
(migration of excitations), the function G41) 1s
uniquely related to the decay kinetics of luminescence
anisotropy r(f) by the cquation

) = 1y(t) =1, (1)

= T an0) = Gl

(1)
Here, /(1) and /(1) arc intensities of polarized lumines-
cence at time ¢ in the dircections parallel and perpendic-
ular to polarization of the cxciting pulse, respectively.

If RET occurs between molecules of different types
(from donors to acceptors, the concentration of donors
being low cnough that migration of excitations is
absent), the total intensity /(r) of luminescence of
donors is also proportional to G (1):

1(1) == GAD). @)

Specific propertics of a medium (for cxample, its
fractal dimensionality) are manifested in a different.
decrease of G (1) in ime [2-14].

Undoubtedly, not only the kinetics of luminescence
decay is of interest, but also the dependence of the
luminescence quantum yield 1 and anisotropy on con-
‘centrations of donors and acceptors in fractal structures
(for example, in viscous solutions of polymer mole-
cules or in porous glasses). Such information, which is
obtained from simple experiments, can improve our
understanding of statistical properties of fractal media.

As far as we know, this problem has not been theo-
retieally solved. In this connection, papers [6, 15]
should be mentioned. In [6], an attempt was made to
calculate the kinetics of luminescence decay for donor
molecules in polymer media taking into account energy
migration. The authors of [6] used the self-consistent
GAF (Gochanour-Anderson-Fayer) method devel-
oped in [16]. However, the equations obtained in [6]
can be solved only numericatly, and thé'net calculations
and conclusions were only made for the time depen-
dence of the diagonal part G 1) of the Green function.

In [15], the kinetics of luminescence quenching of
donors by acceptors was calculated in media with frac-
tal dimensionality by the method of continuous time
random walks (CTRW) taking into account the migra-
tion of excitations and assuming a dipole—dipole inter-
action between molecules. Theoretical results were
compared with experimental data on luminescence of
molccules adsorbed on a surface of porous glasses. The
only fitting parameter was the fractal dimensionality of
a medium, which was found from this comparison.

Concentration dependences of the luminescence quan-
tumn yield 1} and anisotropy r were studied in [9, 10]. In
thesc papers, spectral luminescent properties of dyes
adsorbed on porous glasses were investigated. The
authors of [9, 10] found a nonlinear dependence of the
quantum yield and anisotropy on the volume concen-
tration 1, of donor molecules in the region of low con-
centrations:

Ne/T = | +Ang, ro/r = 1+Bnp. (3)

In equations (3), T, and ry are the luminescence
quantum yield and anisotropy for ultimately low con-
centrations of donors (1) and acceptors (ny) (np — 0,
n, — 0), respectively; and A and B are numerical
coefficients. The exponent a lies within the range of
1/3 < o< 2/3. In three-dimensional media, these depen-
dences should be linear [17]. Based-on this fact, the
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authors of [9, 10] draw the conclusion that the media
under study possess fractal structure.

In this paper, we use the CTRW method [17] to
solve the stated problem. This method allows us to
obtain a number of analytic results for concentration
dependences of the luminescence quantum yield and
anisotropy in fractal structures in the case of an arbi-
trary multipolarity of the interaction between mole-
cules. These dependences differ from those for three-
dimenstonal media, and can thus be used for determin-
ing the fractal dimensionality of media under study.

DERIVATION OF THE EQUATIONS

Incoherent migration of excitations is deseribed by
a system of balance equations

d . ]
—P(x;,x,1) = ——P(x,,x,1
7 (X, %, 1) . (X, X, 1)

N

+ Y Iw(x, X ) P(xg X 1) = (X X)) P(X,, X5, 1))

k

(4)

M
= (X X)P(X; X, 1), P(x,%,0) =38,

Here, subscripts 1, j, k&, and m number molecules; N is
the number of donors; M is the number of acceptors; x;
are spatial coordinates of the ith molecule; P(x;, X, s
the probability of finding an excitation at the /th donor
at time ¢ if the jth donor was excited at time 1 = 0: 1, 1S
the excited state lifetime for the donor; w(x;, x)) is the rate
of cnergy transfer from the jth donor to the ith donor;
u(x,,, x;) 1s the rate of energy transfer from the ith donor to
the rmth acceptor; and 5,-]- 1s the Kronecker delta.

For multipole interaction of impurity centers,
6

=35 m = (%)

&)

where R = |x; - x;|, Rpp and R, are Forster radii for
energy transfer between donors and donors and accep-
tors, respectively; and s = 6, 8, and 10 for dipole-
dipole, dipole—quadrupole, .and quadrupole-quadru-
pole interactions, respectively.

In the CTRW method, equations (4) are first written
in the integral form [17, 18]

P(x;, %, 1) :‘6,]-@)({-{1/10 + Zw(xk,xi)

k
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+ Zu(xm, x,-)) + jdt'Z exp{m(t ~1)
m 0

k

(6)

X (I/TO + Ew(x,, X;)+ Eu(xm, x,«)ﬂ

l#k m
X w(xy, X )exp[=(r = 1)w(x, X)) 1P (xy, x5, 1').

Then, an iteration series corresponding to (6) is written.
The terms of this series are averaged utider the condi-
tion that correlations between moleculéy surrounding
various molecules are small and excitation does not
return to the initial molecule during migration. The
series thus obtained is convoluted in the integral equa-
tion for the total Green function G(x — x', 1) (this func-
tion represents the probability density of finding an
excitation at point x at time 7, if, at r = 0O, the excitation
was at point x')

G(x=x,1) = G ()8(x —x') + Jdt'Gd(r -"Hdv,
0

x [dRpp(R)R*w(x - x)expl-rw(x, - x)]  (7)

xG(x;=x,1), G(x-x,1)=08(x=x").
Here, R = |x — x|, and d is the dimensionality of the
space:

v, = /T +d/2), (8)

where T'(x) 1s a gamma function, pp(R) [and a similar
function p,(R)] is the probability density of finding a
donor (an acceptor) at the distance R from the origin of
coordinates in the fractal structure under study. In

three-dimensional media (d = 3),

Pp = Np, Py = Ny )
In the self-similar structures (fractals) [3, 19-22],
a- a-3
Po(R) = 6pR ™, pu(R) = o,R*. (10

The constants ¢, and G4 represent concentrations of
molecules inside a fractal.

The diagonal part G (t) of the Green function in (7)
is represented as a product of three factors [see equa-
tions (6) and (7)]

Ga(1) = exp(-1/79)04(1)0p(1), (11)

where

Op(1) = cxp{%—!VdGDJRa'l[l—e"'W(R)]dR}, (12)

¢
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0.(1) = exp{»c‘zvd@jk’}“u ““‘““]dR} (13)
4

The kinetics of luminescence decay /(1) is related to
the Green function by the known equation [17], which
follows from the physical meaning of G(x, 1} -

1y = Aofc(x,z)dx, (14)

where A, is the initial density of excitations (which is
assumed to be spatially uniform).

Taking into account (7) and (11)-(14), we obtain the
well-known equation for (¢) [17, 18, 23]
/1

04(1)0p(1)

FEROR T

I(1) = Age

QA( —f)~—-————l(1)dt.

0

The only difference between this equation and the
conventional cquation for three-dimensional media
consists in the form of functions @, (1) and Q4(1).

In order to partially take.into account the possibility
of excitation returning to the initial molecule, in the
CTRW method, instead of function (12), another func-
tion is commonly used [17, 18], which was suggested
n [24]. Generalization of this approach to fractal struc-
tures yiclds

Q,(1) = exp{—c’lvd(o,ﬂ)

x}Ra-l{l
0

Thercfore, the kinetics of luminescence decay [{r) is
calculated in CTRW method from equation (15), in
which functions Qp(1) and Q (1) are described by (16)
and (13), respectively.

The luminescence quantum yield and anisotropy are
related to /(1) and Gp(t) by equations [17]

(16)
2lw(R)]dR}

N/ = [1()di/ (1), (17)

G

r/ry =M/ = (nn/n)de(f)dt/To, (18)

4]

where 1, 1s the luminescence quantum yield of initially
excited molecules. The diagonal part G,(¢) of the Green
function in (18) is defined by expressions (11), (13),
and (16).

Note that, due to approximations made in the deriva-
tion of equation (7), all the formulas are valid for the hop-
ping mechanism of luminescence quenching [17, 18]: the
No.2 1996
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most probable length of the excitation jump from one
donor to another should exceed the radius of strong
quenching of a donor by an acceptor. In the case of the
same multipolarity of the interaction, this means that
the inequality R, < Rp, should be satisfied.

CONCENTRATION DEPENDENCES
AND DISCUSSION

To obtain the concentration dependence of the quan-
tum yield (17), we integrate equation (15) over time.
The resulting equation has the solution

oo

JGXP( —1/75) QA (1)Q p(1)d1/ T,
n/n, = 4— .19
1+ Jexp(-t/10)0, (0220

0

Taking into account (11), (18). and (19). for the

lummcsccncc anisotropy we obtain

o

r/ry =1 +jexp( “1/Ty) QA (1)

0

11@/)(’)

(20

For the multipole interaction of molecules, from
(16) and (13), we obtain

0o(1) = expl=vp(1/1)""),

) (21)
d
V,6pRppT (1

d/s- 1

Yo = 2

0,(1) = expl=y.(t/7)""],
v, = Vo, Ro, (1 ~d/s).

In the casce of low concentrations of molccules (v, < 1,
Yp <€ 1), it follows from (19)—(22) that

—(—//x),

(22)

NN = 1~y 0(1+d/s)+ 0.5y, T(1 +2d/5) o
vl T2+ d /sy = 05T (1 +2d/5)], »
s ,
r/ry =1 ~;Yo{r(d/S}—(7A+'y,))r(2d/.€)]. (24)

For three-dimensional media (d = 3) and the dipole—
dipole interaction of molecules (s = 6), dependences (23)
and (24) coincide with those presented in [17].

For high concentrations (Y, + 7y, > 1), from (19)~22),

we obtain
( + ).\/(}— |
No/M = Yo YalYa+ 7o _ (25)
Ya+t Yo (1 +s/d)
ST +s/d
r/ry = Va + ol (1% f/’u)x' (26)

(Ya+7Yn)
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Fig. 1. Concentration dependences of the luminescence

quantum yield. The values of d are shown near the curves,
Y4 =02,

In(ro/r)
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£
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!
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Fig. 2. Concentration dependences of the luminescence anisot-

ropy. The values of d are shown near the curves, Y, = 0.

In the case of d = 3 and s = 6, equations (25) and (26)
also coincide with those presented in {17].

Expressions (23) and (24) suggest a linear dependence
of the luminescence quantum yield and anisotropy on con-
centrations o, and G, of molecules in a fractal medium
(for low concentrations). In [8, 11, 13, 14], the linear
dependence
27

Ty o< Ny
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was found between G, and concentration 7, of mole-
vules adsorbed on a surface of “latex particles and
porous glasses.

This results in the coincidence of functions (23) and
(24) for fractals and three-ditmensional media. The only
difference is in the values of numerical cocfficients in
frontof 64, Gp, and n,, np, respectively. For this reason,
it is difficult to use equations (23) and (24) to determine
the fractal dimensionality of the medium under study.

In the general case, the relation between the volume
(n) and fractal (o) concentrations of molecules can be
nonlinear, because this relation depends on three fac-
tors: a change in the mean volume concentration n of
molecules can be accompanied by simultancous
changes in the number of fractal clusters formed by
rolecules, in the size of these clusters, and in fractal
concentrations (G, and Gp) in each cluster. If the first
two factors are constant under experimental conditions,
then the relation between n and ¢ will be lincar.

Nonlinear dependences (3) found in [9, 10] are-
probably caused by the conditions of preparation of the
samples studied. The above three factors simulta-
neously changed in these samples with increasing vol-
ume concentration of molecules.

In the region of high concentrations of donors (Y, > 1)
and low concentrations of acceptors (y, <€ 1), cquations
(25) and (26) give nonlinear dependences of the lumi-
nescence quantum yield and anisotropy on the fractal
concentration G, (Yp < Op)

s/7d-1

No/N=1+YaYs /T(1+s/d), (28)
s/d -
ro/r:'YD /F(I+S/d) (29)

These dependences substantially differ (by the
exponent) from those for three-dimensional media and
can be used to determine the fractal dimensionality of
media.

Note that the exponent depends both-on the fractal
dimensionality d of the medium and on the type s of
interaction between molecules.

It is easy to show that the kinetics of luminescence
decay at long times is-exponential [13]:

I(£) < exp(~t/To — k). (30)

If the condition vy, <€ Y is satisfied, then the rate con-
stant k in (30) is equal to unity:

1 s/d-1
k= —
TOYAYD

/T(1 +s/d). (31)

Figures 1 and 2 show the results of numerical calcu-
lations of 1/T and ry/r for v, << 1 from equations (19)
and (20) (s = 6; and d = 3, 2.4, and 1.8). The dashed curves
correspond to calculations according to (28) and (29).
These calculations support the above conclusions.
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CONCLUSION

Thus, we obtained equations describing the concen-
tration quenching of luminescence in fractal structures
for an arbitrary multipolarity of the interaction between
molecules. The analytic results for concentration
dependences of the luminescence quantum yield and
anisotropy can be used for experimental determination
of the fractal dimensionality of media.
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